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Abstract

Sentiment composition is a fundamental sentiment analysis problem. Previous work relied on
manual rules and manually-created lexical resources such as negator lists, or learned a com-
position function from sentiment-annotated phrases or sentences. We propose a new approach
for learning sentiment composition from a large, unlabeled corpus, which only requires a word-
level sentiment lexicon for supervision. We automatically generate large sentiment lexicons of
bigrams and unigrams, from which we induce a set of lexicons for a variety of sentiment com-
position processes. The effectiveness of our approach is confirmed through manual annotation,
as well as sentiment classification experiments with both phrase-level and sentence-level bench-
marks.

1 Introduction

Many sentiment analysis systems rely primarily on the sentiment of individual words. However, precise
sentiment analysis often requires lexical-semantic knowledge that goes beyond word-level sentiment,
even when dealing with short phrases such as bigrams. Phrases may be idiomatic, in which case their
polarity cannot be inferred from the sentiment of their constituent words, e.g., black market, on track,
and let down. The sentiment of most phrases, however, is compositional, namely, it can be determined
from the interaction between their constituents.

Sentiment composition is a fundamental problem in sentiment analysis. It involves a variety of se-
mantic phenomena, the most studied of which are valence shifters (Polanyi and Zaenen, 2004) that re-
verse sentiment polarity, e.g., not happy, hardly helpful, decrease unemployment, or change its intensity
(deeply/somewhat disappointed). Sentiment composition also needs to resolve the polarity of phrases
containing opposing polarities, such as cure cancer, sophisticated crime, and fake success. Another, less
studied type of sentiment composition is expressions such as high income, long queue, and fast learner,
that include gradable adjectives. The sentiment of these expressions cannot be derived from the senti-
ment of their individual words (none of which have clear sentiment in the above examples). While they
can be treated as fixed expressions, similar to idioms, it is beneficial to exploit their semantic composi-
tionality. For example, for a given word w, the polarity of high w, higher w, and increasing w is likely to
be the same, and opposite to the polarity of low/lower w. This allows more robust sentiment learning, as
well as sentiment inference for such expressions.

Previous approaches for sentiment composition relied on hand-written lists of negation words and
composition rules. Such knowledge is hard to acquire and is typically incomplete. Other approaches aim
to learn sentiment composition from sentiment-labeled texts. However, sentiment-labeled texts might
not be available for certain domains or languages.

In this work we propose a new approach for learning sentiment composition. We define a set of
sentiment composition classes that cover a variety of sentiment composition processes, and propose a
novel method for automatic acquisition of lexicons for each of these classes from a large corpus. For
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example, our method learns that words like reduce and preventing, when applied to a negative expression,
change its polarity from negative to positive (e.g., preventing violence). It also learns that the positive
sentiment of words like strong and incredibly is overridden when composed with a negative expression
(e.g., strong disapproval). In addition, we learn composition lexicons for specific gradable adjectives,
e.g., words w such that high w is positive (morale, standard, competitiveness), or negative (cost ,anxiety,
noise).

Unlike previous approaches, our method does not require sentiment-labeled texts, or manually-created
sentiment composition lexicons. The only annotated input required is a sentiment lexicon for individual
words. We train an n-gram sentiment classifier on the input sentiment lexicon, using a novel sentiment-
oriented phrase embedding that is very efficient to compute and scales well for very large corpora. The
classifier is then applied to a large lexicon of bigrams, as well as to the unigrams they are made of.
Finally, we induce from the automatically generated sentiment lexicon of bigrams and unigrams a set of
fine-grained lexicons for sentiment composition.

The accuracy of the resulting sentiment composition lexicons is confirmed via manual assessment.
We also show their contribution to both phrase-level and sentence level sentiment analysis. Our results
illustrate the value of our automatically-generated sentiment lexicons for investigating sentiment com-
position phenomena. We made both these sentiment lexicons and the resulting composition lexicons
publicly available, to facilitate further research on sentiment composition.1

2 Related Work

Many of the previous works on sentiment analysis include some treatment of valence shifters, based on
manual lists of negators, intensifiers, etc. (Wilson et al., 2005; Kennedy and Inkpen, 2006; Taboada et
al., 2011). Moilanen and Pulman (2007) apply manually-composed syntactic rules for sentiment compo-
sition over the syntactic parse. Neviarouskaya et al. (2010) manually created a lexicon with fine-grained
categories for sentiment composition such as propagation and domination which may resolve conflicting
sentiments. Schulder et al. (2017) applied an SVM classifier with linguistic features to bootstrap man-
ual construction of a verbal polarity shifters lexicon. Some researchers, like Choi and Cardie (2008),
combined manual composition rules with machine learning.

Other works aimed to learn a sentiment composition function from sentiment-labeled phrases or sen-
tences by employing conditional random fields (Nakagawa et al., 2010), compositional matrix-space
models (Yessenalina and Cardie, 2011), statistical parsing (Dong et al., 2015) and recursive neural net-
works (Socher et al., 2013; Tai et al., 2015). Several researchers aimed to learn sentiment shifters from
sentiment-labeled texts, e.g. Ikeda et al. (2008), Noferesti and Shamsfard (2016).

In contrast to previous methods, our method does not require sentiment-labeled texts or feature engi-
neering. It also does not rely on manually-composed lexicons of negators, propagators or dominators,
but rather learns such lexicons automatically.

Kiritchenko and Mohammad (2016) wrote that “lexicons that include sentiment associations for multi-
word phrases as well as their constituent words can be very useful in studying sentiment composition”.
They manually developed such a lexicon for a few hundreds of bigrams and trigrams with opposing
sentiments (each phrase has both negative and positive words), and experimented with both supervised
and unsupervised methods for classifying and ranking the sentiment of these phrases. Their work has
shown that rules based on part-of-speech patterns and unigram sentiment strengths are not sufficient for
determining the sentiment of phrases with opposing sentiments. This motivated the current work, which
is focused on learning lexical knowledge for sentiment composition.

Following Kiritchenko and Mohammad, we also build a sentiment lexicon for phrases and their con-
stituent words, but our lexicon is built automatically, and is three orders of magnitude larger (over
250,000 bigrams). The size of the lexicon makes it suitable for learning lexical knowledge for senti-
ment composition.

1Available at http://www.research.ibm.com/haifa/dept/vst/debating_data.shtml
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3 Method

Our method for learning sentiment composition lexicons comprises the following steps:

1. Train an n-gram sentiment classifier on a given sentiment lexicon for unigrams.

2. Use the sentiment classifier to automatically generate large sentiment lexicons of bigrams and uni-
grams.

3. Extract sentiment composition lexicons based on statistics from the bigram and unigram sentiment
lexicons.

The rest of the section describes each of the above steps.

3.1 The Sentiment Classifier

Following previous work (Amir et al., 2015; Rothe et al., 2016; Bar-Haim et al., 2017b), we train a
sentiment classifier on a sentiment lexicon, where the word’s polarity is taken to be the label, and the
word embedding is the feature vector. We use the publicly-available sentiment lexicon of Hu and Liu
(2004) (hereafter, HL). After removing 224 multi-word expressions, the lexicon contains 6,565 words.

The above previous work focused on learning sentiment of unigrams, and optionally of multi-word
expressions (conflated into single tokens), and used word2vec embeddings (Mikolov et al., 2013). In
contrast, we are interested in learning sentiment composition from bigrams, and therefore we are mostly
interested in compositional bigrams, and aim to construct a sentiment lexicon that contains hundreds of
thousands of them. Due to bigram sparsity, learning their embeddings requires a very large corpus.

We use in this work a proprietary English corpus containing news articles and other types of publica-
tions from over 10,000 sources. The size of this corpus is in the order of 1011 tokens. While word2vec
is known as a scalable method for deriving word embeddings, applying it to a corpus of this size is still
computationally expensive.

We therefore opted for a more lightweight method for computing sentiment-oriented embeddings. Our
method is inspired by the classical work of Turney and Littman (2003), who learned word sentiments
based on their pointwise mutual information (PMI) with seed sentiment words. Our method represents
each n-gram (unigram or bigram) as a 6,565 dimensional vector of its Positive PMI (PPMI) (Levy et al.,
2015) with all the words in the HL lexicon. PPMI is defined for phrases u,v as

PPMI(u, v) = max(0, log
f(u, v) ·N
f(u) · f(v)

), (1)

where f(u) and f(v) are the number of sentences that contain u and v in the corpus, respectively, f(u, v)
is the number of sentences in which u and v co-occur, and N is the number of sentences in the corpus.
u and v are said to co-occur if they are found in the same sentence, within a maximum distance of 10
tokens from each other, and have no overlap. We define PPMI(u, u) = 0 for any u.

We convert these sparse word vectors into dense embeddings as follows. First, we train a linear
SVM2 on the PPMI vectors of the words in HL, and apply it to a large lexicon of unigrams (to be
described in the next section). We then select the 2,500 most positive words and 2,500 most negative
words as predicted by the classifier (words in the HL lexicon were ignored). Based on the PPMI vectors
of these 5,000 selected words, we learn a projection from the 6,565 dimensional space into a reduced
space of 100 dimensions. Let M be a 5,000 × 6,565 matrix whose rows are the representations of the
selected words. We compute the truncated Singular Value Decomposition (Deerwester et al., 1990) for
M , Md = Ud · Σd · V T

d , with d = 100, following the notation of Levy et al. (2015). A PPMI row vector
x for any new n-gram u (not in HL) can then be projected into the reduced space by taking the product
x · Vd. The resulting dense representation is much more compact, and is expected to work better for
lower-frequency bigrams with sparse PPMI vectors.

2We used LIBSVM, (Fan et al., 2008).
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Class Condition Predicted
UG1 UG2 Bigram

# Polarity
Composition Classes Sample match

1 REV⊕ w 	 ⊕ combat loneliness
2 REV	 w ⊕ 	 lacked courage
3 PROP⊕ w ∧	 ⊕ ⊕ overwhelming success
4 PROP	 w ∧⊕ 	 	 fresh trouble
5 DOM⊕ w ⊕ improving nutrition
6 DOM	 w 	 reckless decision

Adjective Classes Sample match for (high,low)
7 ADJ(a1,a2)⊕	 E(a1) w ⊕ high morale
8 ADJ(a1,a2)⊕	 E(a2) w 	 low morale
9 ADJ(a1,a2)	⊕ E(a1) w 	 higher inflation
10 ADJ(a1,a2)	⊕ E(a2) w ⊕ lower inflation

Table 1: Definition of composition and adjective classes. Words in bold in the sample matches belong to
the class.

The resulting 100-dimensional embeddings of the words in HL were used to retrain the SVM classifier.
In order to assess the accuracy of the classifier, we performed a 100-fold cross validation experiment over
HL words. For each fold, we removed from the training set words that have the same stem or lemma as
any word in the test set. The classifier achieved high accuracy of 94.5%, confirming the effectiveness of
our method.

3.2 Generating Sentiment Lexicons

Next, we created lexicons of unigrams and bigrams, computed their embeddings and applied the classifier
to predict their sentiments. For the unigrams lexicon we selected words whose length is between 2 and
20 characters, are alphabetic and in WordNet (Miller, 1995), and their frequency in the corpus is at least
2000. This resulted in about 66,000 unigrams. For the bigram lexicon we selected bigrams that contain
only unigrams from the unigram lexicon, and have minimum frequency of 250. The resulting lexicon
of 2.8 million bigrams was still very noisy. In order to obtain a bigram lexicon of coherent phrases, we
filtered out bigrams that the PMI between their unigrams is below 3.0. Finally, we only kept bigrams
whose part-of-speech tag sequence form grammatical bigrams, e.g., Adjective-Noun, Noun-Noun, Verb-
Noun, Adverb-Adjective etc. The resulting lexicon contains 262,555 bigrams. The classifier’s real-valued
predictions were normalized to the range of [−1, 1]. Unigrams that had sentiment in HL kept their
original sentiment (+1 or −1).

3.3 Extracting Composition Lexicons

Finally, we define two types of classes that cover a variety of sentiment composition processes: composi-
tion classes model sentiment reversals and conflicting (opposing) sentiments; adjective classes determine
the sentiment of phrases that contain specific gradable adjectives or their expansions. Our method learns
a lexicon for each class, based on the unigram and bigram sentiment lexicons acquired in the previous
step.

The classes are formally defined in Table 1. Each class definition has two parts: the condition for
matching the class in a bigram, and the predicted bigram polarity (positive ⊕ or negative 	), in case the
class is matched. The condition specifies in which unigram a word w from the class should be matched
(the first unigram UG1 or the second unigram UG2), and optionally additional constraints on the other
unigram. The table also shows a sample match for each class. For example, REV⊕ (row 1 in the table)
is a Reverser. Words in this class are matched in UG1, and if in addition UG2 is negative, the resulting
bigram would be positive, e.g., combat loneliness. Similarly, REV	 (row 2) flips the polarity from
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positive to negative.
The other two types of composition classes are Propagators (PROP) and Dominators (DOM). Propaga-

tors (rows 3-4) are sentiment words that, when followed by a word with opposite sentiment, “propagate”
the sentiment of the other word to the bigram level, e.g., pure vandalism. Finally, dominators (rows 5-6)
dictate the sentiment of the bigram, overriding any conflicting sentiment of the other unigram, if any.

Composition classes are extracted as follows. Let C(c, w) be the set of bigrams in the bigram lexicon
that satisfy the condition of class c for word w, and let S(c) be the set of bigrams whose polarity is the
one predicted by c. The precision of w with respect to c can be defined as:

P (c, w) =
|S(c) ∩ C(c, w)|
|C(c, w)|

(2)

The above formula gives uniform weights for all the bigrams in C(c, w). However, we found that it is
beneficial to also take into account the uncertainty stemming from the automatic sentiment prediction of
the unigrams and bigrams. We do so by weighting each bigram according to strength of the predicted
bigram sentiment, and for classes where the sentiment of UG2 is part of the match (REV and PROP),
also according to the sentiment strength of UG2. Let s(x) be the sentiment score of an n-gram x in the
lexicon, and let wu be a bigram where UG1=w and UG2=u. The weighted formula is:

P (c, w) =

∑
wu∈S(c)∩C(c,w) |s(u)× s(wu)|∑

wu∈C(c,w) |s(u)× s(wu)|
(3)

For DOM classes, we take s(u) = 1, since the sentiment of u is not part of the match. Weak sentiment of
bigrams and unigrams (between −0.1 and 0.1 for unigrams, and between −0.05 and 0.08 for bigrams)
is considered neutral sentiment.3

We include in cwordsw such that P (c, w) > α and |C(c, w)| ≥ k. We use |C(c, w)| as our confidence
measure, by which we rank the words in each class. We took (α = 0.8, k = 10) for reversers and
propagators, and (α = 0.95, k = 20) for dominators.4

Adjective classes are defined for specific pairs of opposing gradable adjectives (a1, a2) (rows 7-10).
In this work we considered the pairs (high, low) and (fast, slow). Since a1 and a2 are antonyms, we
assume that if the bigram a1w is positive, then the bigram a2w is likely to be negative, and vice versa.
We therefore learn two classes for each pair: ADJ(a1,a2)⊕	 contains words that are positive with a1
and negative with a2. ADJ(a1,a2)	⊕ contains words that are negative with a1 and positive with a2.

Adjective classes are learned as follows. We manually define a set of expansions E(a) for each
adjective a (E(a) also includes a itself), e.g. higher, and increasing for high.5 Let B(a,w) be the set of
all the bigrams in the lexicon such that UG1 is in E(a) and UG2 is w. The score of a given word w with
respect to the adjective pair (a1,a2) is defined as:

S(a1,a2)(w) =

∑
x∈B(a1,w) s(x)

|B(a1, w)|
−

∑
x∈B(a2,w) s(x)

|B(a2, w)|
(4)

We select for ADJ(a1,a2)⊕	 and ADJ(a1,a2)	⊕ words w with S(a1,a2)(w) above 0.1 or below -0.1,
respectively, and use the absolute value of this score to rank the predictions.

4 Results

In this section we briefly describe the lexicons that were learned for each class by our method. Table 2
shows the number of words in each class. 2,783 words were learned in total. The biggest classes are the
dominators, in spite of the higher thresholds that are applied to their results, compared to the reversers
and the propagators. This happens because their matching condition is the weakest.

3The thresholds were determined heuristically by observing the resulting lexicons.
4α and k were selected heuristically by observing the resulting lexicons.
5The expansions we used are listed as part of the released dataset.
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Class Word Count
REV⊕ 54
REV	 106
PROP⊕ 48
PROP	 152
DOM⊕ 666
DOM	 662
ADJ(high,low)⊕	 316
ADJ(high,low)	⊕ 416
ADJ(fast,slow)⊕	 294
ADJ(fast,slow)	⊕ 70
Total 2,783

Table 2: Number of words per class.

REV⊕ PROP⊕ DOM⊕
less wasteful critical acclaim unique culture

reduce stress cloud solution beautiful gardens
reducing inflammation proprietary insights wonderful atmosphere

preventing violence complex ideas innovative approach
fewer dropouts challenging endeavor digital capabilities

combat inequality overwhelming victory excellent service
reduces fraud invasive therapy strategic thinker
healthy ageing intense commitment creative spirit

eliminate racism strict compliance diverse environment
reduced bureaucracy disruptive innovation good deeds

REV	 PROP	 DOM	
poor reputation pretty awful too often
too powerful significant concern illegal actions
not happy incredibly boring serious consequences

sexual liberation strong disapproval severe problems
inadequate protection powerful adversary alleged plot

lacked commitment sharp pain allegedly abusive
bad luck great danger poor sanitation

otherwise decent fresh injury heavy debt
negative contribution hot mess dangerous situation

insufficient protection clearly drunk violent outbursts

Table 3: Top-ranked words in each composition class.

Table 3 shows the top-ranked words in each composition class. Each class word (in bold), is followed
by a sample UG2 match for that word and the class in the bigram lexicon. For example, critical acclaim
is a bigram in C(PROP⊕, critical). For the propagator classes, we only show words in HL. These words
have the strongest sentiment and therefore are the most challenging for opposing sentiment resolution.
In addition, in the experiment to be described in Section 6.2, we use HL as our sentiment lexicon, so
only propagators in HL will be matched. Interestingly, the classes learned for REV⊕ and for REV	 are
disjoint, indicating that the reversers operating on positive words are rather different from those operating
on negative words.

Table 4 shows the top-ranked words for adjective classes. For example, high morale is positive, and
low morale is negative, while for unemployment it is the other way around.
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ADJ(high,low)⊕	 ADJ(high,low)	⊕ ADJ(fast,slow)⊕	 ADJ(fast,slow)	⊕
morale unemployment economic turns

productivity poverty broadband temper
ceilings crime implementation spiral
literacy costs loading escalation

standards anxiety response buck
quality noise progress spreading
ethical violence wit spread

profitability debt learner breathing
visibility inequality reaction escalates

competitiveness handedness growth population

Table 4: Top-ranked words in adjective classes.

5 Manual Asssessment

We conducted manual assessment of the precision of each class, by measuring the fraction of bigrams that
have the polarity predicted by the class, out of the bigrams matched by the class. To this end, we selected
from the bigram lexicon a random sample of bigrams matched by each class. Recall that some of the
classes require positive or negative sentiment in UG1 and/or UG2. Our goal is to estimate the precision
of the predicted bigram polarity, given that the matching is correct. In order to avoid incorrect sentiment
matches caused by errors in our automatically-learned unigram sentiment lexicon, we restricted here the
sentiment matches to words from the HL lexicon. We sampled 100 bigrams for each composition class,
except for PROP⊕, which only had 59 matching bigrams6. In addition, we sampled 100 bigrams for each
adjective pair (conflating the positive and negative classes for each pair).

Each of the resulting 759 bigrams was annotated by three in-house human annotators, who were
asked to assess the bigram sentiment (positive/negative/neutral). They also had the option to indicate
that the bigram is an incomplete phrase. Fleiss’ kappa (Fleiss, 1971) for inter-annotator agreement was
0.61, indicating substantial agreement (Landis and Koch, 1977). The gold label for each bigram was
obtained by taking the majority annotation. Ties were adjudicated by one of the authors (34 in total).
We then removed the 59 bigrams assessed as incomplete, and computed precision for each class over the
remaining 700 bigrams.

The results are summarized in Table 5. The precision achieved by the various classes seems very
promising, in particular considering that the only sentiment-annotated input for learning these classes
was a unigram sentiment lexicon. Error analysis reveals that the vast majority of misclassifications
(84.6%) were labeled as neutral by the majority of the annotators, and in 25.1% of them, one annotator
agreed with the class prediction, and the other two were neutral.

The learned classes provide a good starting point for semi-automatic construction of composition
lexicons. We believe that their quality can be easily improved with manual filtering of our results, which
can be done rather quickly.

6 Experiments

In this section we demonstrate the contribution of the learned composition and adjective classes to both
phrase-level and sentence-level sentiment classification tasks. In line with our method for learning the
classes, we focus in this section on sentiment analysis methods that do not rely on sentiment-labeled
phrases or sentences for training.

6.1 Phrase Polarity Classification
In this experiment we test the extracted lexicons for composition and adjective classes and the bigram
sentiment lexicon on the Opposing Polarity Phrases (OPP) lexicon released by Kiritchenko and Mo-

6Note that for this class we require here that UG1 is negative in HL and UG2 is positive in HL.
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Precision
Class ⊕ 	 Total
REV 0.79 0.78 0.78
PROP 0.75 0.81 0.79
DOM 0.71 0.79 0.75
ADJ(high,low) 0.68
ADJ(fast,slow) 0.75
All 0.76

Table 5: Precision assessment.

Exp Sentiment Score Accuracy Coverage Accuracy
(All) (Covered)

c0 Most polar unigram 0.668
c1 Composition 0.713 0.355 0.761
c2 Bigram score 0.726 0.309 0.863
c3 Bigram score or Composition 0.746 0.541 0.807

Table 6: OPP bigram binary classification accuracy and coverage results.

hammad (2016), which consists of phrases with words of opposing polarity. The dataset contains the
sentiment score of each n-gram, the part-of-speech tags of the constituent unigrams, and the sentiment of
all the unigrams included in the phrases, with a total of 307 bigram and 262 trigram phrases with a non-
zero sentiment score. The phrases were collected from Twitter and the sentiment scores were obtained by
manual annotations. The purpose of the OPP lexicon is to train and test sentiment composition models
for opposing polarity phrases and therefore it is suitable for testing our classes and bigram sentiment
prediction methods. Kiritchenko and Mohammad tested both supervised and unsupervised methods for
sentiment classification and ranking. Here, we focus on unsupervised classification of bigrams.

Table 6 shows our experimental results. The baseline, c0, is the best-performing unsupervised method
reported by Kiritchenko and Mohammad. This method determines the bigram polarity according to
the most polar unigram score. Then, in experiment c1 (Composition), we predict the sentiment of the
bigram by trying to match each of the classes in the bigram according to the following order: ADJ, REV,
PROP, DOM. The order is based on the match specificity of the other word in the bigram (the non-class
word): ADJ requires a match in a small set of adjective expansions, REV and PROP only require a certain
polarity (positive/negative), and DOM does not restrict the other word. The first class that is applicable
for the bigram is selected. For the matched class, we predict the bigram sentiment according to the rules
in Table 1. In our second experiment c2, we use the predicted bigram score, and in c3 we use the two
methods in cascade: if the bigram score is not available, we try the composition method of c1. In all
three experiments, we back off to the most polar unigram score (c0) in cases that the test bigram is not
covered by our predictions, so the accuracy results under the Accuracy (All) column are reported over
the complete dataset. The coverage of each method is defined as the fraction of predicted bigrams out of
all the bigrams in the dataset. Finally, Accuracy (Covered) is the accuracy only for the bigrams covered
by each of the methods c1-c3.

The best performance is achieved by configuration c3, which utilizes both the bigram sentiment scores
and the composition and adjective classes. By combining the two methods, we are able to address both
idiomatic phrases (e.g. top gun) and compositional phrases (e.g. great loss) in the OPP dataset. c3
achieves an absolute improvement of 7.8% in accuracy with respect to the baseline c0, over the whole
dataset. The differences between c1-c3 and the baseline c0 are all statistically significant, with p < 0.05
for c1 and p < 0.01 for c2 and c3, according to McNemar’s test (Everitt, 1992). The results show that
our sentiment and composition lexicons are effective even in a domain such as Twitter, which is rather
different from the corpus we used for learning.
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Positive Negative
Precision Reccall F1 Precision Recall F1 Accuracy Coverage

Baseline 0.703 0.462 0.558 0.810 0.525 0.637 0.761 0.653
+ADJ 0.703 0.480 0.571 0.815 0.530 0.642 0.764 0.665
+REV 0.724 0.487 0.582 0.822 0.541 0.653 0.778 0.665
+PROP 0.724 0.488 0.583 0.823 0.545 0.656 0.778 0.667
+DOM 0.720 0.547 0.622 0.820 0.546 0.655 0.772 0.708

Table 7: Results from sentence polarity assessment. Bold indicates significant difference (p < 0.05)
from baseline using approximate randomization test (Noreen, 1989).

Sentence Bigram
Match ↑ ↓ ↔ Match = 6=

+ADJ 59 27 9 23 63 52 11
+REV 40 31 4 5 40 35 5
+PROP 10 6 0 4 10 8 2
+DOM 903 164 132 607 1160 808 352

Table 8: Impact of class matches.

6.2 Sentence Polarity

We further assess the contribution of the composition and adjective classes to a lexicon-based sentiment
classification of sentences.

The baseline system matches terms from the HL lexicon in the sentence. If the number of positive
matches is greater than negative matches, we predict positive; if there are more negative matches, we
predict negative; otherwise we predict neutral.

We then add the classes incrementally. If a class is matched in a bigram, it may modify the sentiment
of that bigram. For example, suppose that the sentence contains the bigram preventing cancer. The
baseline system will match cancer from the HL lexicon in the bigram, giving it negative sentiment of
−1. Then the word preventing from the class REV⊕ will be matched (line 1 in Table 1), since it is
followed by a negative unigram. As a result, the sentiment of the bigram will become positive, and will
get the score 1. The classes were added in the same order as in the previous experiment: adjectives,
reversers, propagators, and dominators. We do not allow mutiple classes to match the same bigram.

For testing these lexicons we use the Claim Stance Dataset introduced by Bar-Haim et al. (2017a). This
dataset contains Pro and Con claims found in Wikipedia for 55 controversial topics, and also includes
labels for sentiment. We chose this dataset due to its diversity - it covers a variety of topics, and since
it was also approached with a lexicon-based sentiment analysis by Bar-Haim et al. This dataset has
2,252 claim sentences that contain sentiment annotations (1012 positive and 1240 negative). We ignore
sentiment found in the sentiment target that is given by the Claim Stance Dataset.

Table 7 shows results for the sentiment prediction with the baseline and after the addition of each class.
We use precision, recall, and F1 to measure performance for positive and negative classes and accuracy
and coverage to measure overall performance, following previous work on this dataset. Bar-Haim et
al. define accuracy as #correct

#predicted and coverage as #predicted
#sentences . If the system returns a neutral label it is

not counted as a prediction. There is consistent improvement over the baseline and each of the classes
contributes to some improvement. F1 for the positive class continues to improve with each additional
lexicon. The case is similar for negative F1 and accuracy, which improve up to DOM.

In Table 8 we look closer at how the classes are being matched and the impact this has on sentiment
prediction. The left side of the table reports the number of sentences with class matches and breaks
down how often they help (↑), hurt (↓), or stay the same (↔) compared to the previous lexicon (e.g.,
ADJ vs the baseline). We see that for the first three classes we match fewer bigrams but consistently
help sentiment prediction. Adding the DOM lexicon helps more than it hurts but the numbers are more
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balanced. We also see more cases where the prediction remains the same. This is because much of the
dominant sentiment learned is consistent with the original lexicon. For example, matching the dominator
good in the bigram good decision, while a correct match, will have no effect on the bigram polarity, since
good was already matched from the HL lexicon as a unigram.

Without manual labels for all bigrams, another option for roughly checking the quality of the bigram
matches is to check if the sentiment of the bigram is consistent with that of the sentence. This is shown in
the right side of Table 8 with a report of the bigram matches. Multiple bigrams can match in a sentence
so there may be more bigram matches than sentence matches. If the bigram is given the same sentiment
as the sentence we count it as consistent (=), otherwise inconsistent (6=). This does not strictly mean
that the bigram polarity is correct or not, but it does give us a rough idea if the sentiment is correct and
if it helps improve the sentence sentiment prediction. The results show that all the classes are consistent
with the sentence sentiment in most of the cases. The dominators have far more matches but they are
also much noisier than the other classes.

7 Conclusion

We presented a new approach for learning sentiment composition from a large, unlabeled corpus, which
only requires a word-level sentiment lexicon for supervision. Our method learns lexicons that can ad-
dress important sentiment composition phenomena such as sentiment reversals and mixed sentiment
expressions. Manual assessment of the predictions made by these classes showed promising results. The
classes were also shown to improve both phrase-level and sentence-level sentiment classification.

The automatically learned sentiment lexicons of bigrams and unigrams proved to be very useful for
research on sentiment composition. We made them publicly available, and hope it will promote further
research in this area. It would also be interesting to apply our method to languages other than English.
Finally, we would like to investigate how much our results can be further improved in a semi-supervised
setting, where the automatically-acquired classes are filtered by human annotators.
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