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Abstract

Given a question and a set of candidate answers, answer selection is the task of identifying which
of the candidates answers the question correctly. It is an important problem in natural language
processing, with applications in many areas. Recently, many deep learning based methods have
been proposed for the task. They produce impressive performance without relying on any feature
engineering or expensive external resources. In this paper, we aim to provide a comprehensive
review on deep learning methods applied to answer selection.

1 Introduction

Answer selection is an active research field and has drawn a lot of attention from the natural language
processing community. Given a question and a set of candidate answers, the task is to identify which
of the candidates contains the correct answer to the question. For example, given the question “Who
established the Nobel Prize?” and the following candidate answers:

1. The Nobel Prize was established more than 100 years ago.
2. The Fields Medal, established in 1936, is often described as the Nobel Prize of mathematics.
3. The Nobel Prize was established in the will of Alfred Nobel.

The third answer should be selected. This example shows that simple word matching is not enough. Even
though, all of the sentences contain the keywords “established” and “Nobel Prize”, only the third sentence
answers the question. From this point, we assume that each candidate answer is a sentence although the
discussion is also applicable to more general case such as each candidate answer is a passage.

Answer selection is an important problem in its own right as well as in the context of open domain
question answering. Although details vary from system to system, a typical open domain question an-
swering system can be considered as consisting of: (a) question analysis (b) retrieval of potentially
relevant documents (c) ranking and selecting of the most promising sentences (or more generally, pas-
sages) within the retrieved documents; and optionally d) extracting the exact natural language phrase
that answers the question (Prager, 2006; Ferrucci, 2012; Sequiera et al., 2017). Figure 1 depicts a typical
question answering pipeline. In this setup, answer selection can be applied to identify the sentences that
are most relevant to the question within the retrieved documents. Besides its application in open domain
question answering, the techniques developed for answer selection can be potentially used to predict
answer quality in community question answering (cQA) sites (Nakov et al., 2015).

Previous work on answer selection typically relies on feature engineering, linguistic tools, or external
resources (Wang et al., 2007; Wang and Manning, 2010; Heilman and Smith, 2010; Yih et al., 2013;
Yao et al., 2013). Recently, many deep learning based methods have been proposed for the task (Bian
et al., 2017; Shen et al., 2017; Tran et al., 2018). They outperform traditional techniques. In addition,
they do not need any feature-engineering effort or hand-coded resources beyond some large unlabeled
corpus on which to learn the initial word embeddings, such as word2vec (Mikolov et al., 2013) or GloVe
(Pennington et al., 2014).

This work is licensed under a Creative Commons Attribution 4.0 International License. License details: http://
creativecommons.org/licenses/by/4.0/
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Figure 1: A typical question answering pipeline architecture, adapted from (Sequiera et al., 2017)

While previous work has recognized the increasing use of deep learning techniques in natural language
processing (Young et al., 2017), no systematic survey of deep learning methods for answer selection to
date has been published. Therefore, in this paper, we aim to give a comprehensive review of various deep
learning methods that have been used to tackle the answer selection task.

In Section 2, we present a review of deep learning methods for answer selection. In Section 3, we
examine the most popular datasets and the evaluation metrics for answer selection. We conclude this
paper in Section 4 by discussing the potential future research directions.

2 Methods

Existing deep learning methods for answer selection can be examined along two dimensions: (i) learning
approaches (ii) neural network architectures (Table 1).

2.1 Learning Approaches

Given a question and a set of candidate sentences, the task is to identify candidate sentences that contain
the correct answer to the question. From the definition, the problem can be formulated as a ranking
problem, where the goal is to give better rank to the candidate sentences that are relevant to the question.
There are three most common approaches to learn the ranking function hθ, namely, pointwise, pairwise
and listwise (Liu, 2011).

In the pointwise approach, the ranking problem is transformed to a binary classification problem. More
specifically, the training instances are triples (qi, cij , yij), where qi is a question in the dataset, cij is a
candidate answer sentence for qi, and yij is a binary value indicating whether cij contains the correct
answer to qi. It is enough to train a binary classifier: hθ(qi, cij)→ ŷij , where 0 ≤ ŷij ≤ 1. For example,
in (Yu et al., 2014), the training objective is to minimize the cross entropy of all labelled question-
candidate pairs in the training set. During inference, given a question, the trained classifier hθ is used
to rank every candidate sentence, and the top-ranked candidate is selected (i.e., argmaxcij hθ(qi, cij)
should be selected as the answer to qi). Many work adopted this approach (Yu et al., 2014; Severyn and
Moschitti, 2015; Wang et al., 2016b; Shen et al., 2017).

The second approach to ranking is the pairwise approach, where the ranking function hθ is explicitly
trained to score correct candidate sentences higher than incorrect sentences. Given a question, the ap-
proach takes a pair of candidate answer sentences and explicitly learns to predict which sentence is more
relevant to the question. For example, in (Feng et al., 2015), the training instances are triples (qi, c+i , c

−
i ),

where qi is a question, c+i is a correct sentence for qi, and c−i is an incorrect sentence sampled from the
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Method Learning
Approach

Model
Architecture

MAP
(Raw
TrecQA)

MAP
(Clean
TrecQA)

TRAIN-ALL unigram+count (Yu et al.,
2014)

Pointwise Siamese 0.693 -

TRAIN-ALL bigram+count (Yu et al.,
2014)

Pointwise Siamese 0.711 -

QA-LSTM (Tan et al., 2015) Pairwise Siamese - 0.682
QA-LSTM with attention (Tan et al.,
2015)

Pairwise Attentive - 0.690

QA-LSTM/CNN (Tan et al., 2015) Pairwise Siamese - 0.706
Attentive Pooling CNN (dos Santos et al.,
2016)

Pairwise Attentive - 0.753

(Severyn and Moschitti, 2015) Pointwise Siamese 0.746 -
L.D.C Model (Wang et al., 2016b) Pointwise Compare-

Aggregate
- 0.771

Pairwise Word Interaction Modelling (He
and Lin, 2016)

Pointwise Compare-
Aggregate

0.758 -

Multi-Perspective CNN (He et al., 2015) Pointwise Siamese 0.762 0.777
HyperQA (Hyperbolic Embeddings) (Tay
et al., 2018a)

Pairwise Siamese 0.770 0.784

PairwiseRank+Multi-Perspective CNN
(Rao et al., 2016)

Pairwise Siamese 0.780 0.801

BiMPM (Shen et al., 2017) Pointwise Compare-
Aggregate

- 0.802

Dynamic-Clip Attention (Bian et al.,
2017)

Listwise Compare-
Aggregate

- 0.821

IWAN (Shen et al., 2017) Pointwise Compare-
Aggregate

- 0.822

IWAN+CARNN (Tran et al., 2018) Pointwise Compare-
Aggregate

- 0.829

MCAN (Tay et al., 2018b) Pointwise Compare-
Aggregate

- 0.838

Table 1: Overview of existing deep learning methods to answer selection

whole candidate sentence space. And the hinge loss function is defined as follows:

L = max{0,m− hθ(qi, c
+
i ) + hθ(qi, c

−
i )} (1)

where m is the margin. If hθ(qi, c+i )−hθ(qi, c
−
i ) < m then L is positive. When this condition is satisfied,

the implication is that the system ranks the positive sentence below the negative sentence, or does not
sufficiently rank the positive answer above the negative answer. On the other hand, if the correct sentence
has a score higher than the incorrect sentence by at least a margin m (i.e., hθ(qi, c+i )− hθ(qi, c

−
i ) ≥ m),

and then the above expression has zero loss. In summary, the loss function is designed to encourage
the correct answer to have a higher score than the incorrect answer by a certain margin. Similar to the
pointwise approach, during testing, the candidate answer with the largest score is selected. (Tan et al.,
2015; Yang et al., 2016; dos Santos et al., 2016; Tay et al., 2018a) also used the pairwise hinge loss
function above.

The third method is the listwise approach (Cao et al., 2007). The pointwise approach and the pairwise
approach ignore the fact that answer selection is a prediction task on list of candidate sentences. In
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the listwise approach, a single instance consists of a question and its list of candidates. For example,
(Bian et al., 2017) adopted the approach. Concretely, during training, given a question qi and its list of
candidate sentences C {ci1, ci2, ..., cim} and the ground truth labels Y {yi1, yi2, ..., yim}, the normalized
score vector S is calculated as follows:

Scorej = hθ(qi, cij)

S = softmax([Score1, Score2, ..., Scorem])
(2)

Target labels also need to be normalized:

Y =
Y∑m
j=1 yij

(3)

And the objective is to minimize the KL-divergence of S and Y.
Even though many work (Yu et al., 2014; Severyn and Moschitti, 2015; Wang et al., 2016b; Shen

et al., 2017) adopted the pointwise approach, this approach is not close to the nature of ranking. The
pairwise approach and the listwise approach exploit more information about the ground truth ordering
of candidate sentences. (Rao et al., 2016) proposed a pairwise ranking approach that can directly exploit
existing pointwise neural network models as base components. The approach outperforms many com-
petitive pointwise baselines. (Bian et al., 2017) showed that the listwise approach performs better than
the pointwise approach on public datasets such as TrecQA (Wang et al., 2007) and WikiQA (Yang et al.,
2015). In the next section, we describe various neural network architectures for modeling the ranking
function hθ, which takes a question-candidate pair and returns a score indicating whether the candidate
is relevant to the question.

2.2 Neural Network Architectures

There are three main types of general architectures for measuring the relevance of a candidate sentence
to a question.
• Siamese Architecture. In a Siamese architecture (Bromley et al., 1993), the same encoder (e.g., a

CNN or a RNN) is used to build the vector representations for the input sentences (i.e., the candidate
answer and the question) individually. After that, the relevance score is determined solely based
on the encoded vectors. There is no explicit interaction between the input sentences during the
encoding process.
• Attentive Architecture. Instead of generating representations for the candidate answer and the

question independently, attention mechanisms (Bahdanau et al., 2014; Hermann et al., 2015; Luong
et al., 2015) can be used to allow the information from an input sentence to influence the com-
putation of the other’s representation (Tan et al., 2015; dos Santos et al., 2016). Even though the
weakness of the Siamese models is alleviated, the interaction between the input sentences during
the encoding process is still minimal in most Attentive architectures.
• Compare-Aggregate Architecture. The Compare-Aggregate architectures can capture more inter-

active features between input sentences than the Siamese architectures and the Attentive architec-
tures, therefore typically have better performance when evaluated on public datasets such as TrecQA
(Wang et al., 2007) and WikiQA (Yang et al., 2015). In a Compare-Aggregate architecture, vector
representations of small units such as words of the sentences are first compared. After that, these
comparison results are aggregated to calculate the final relevance score.

It is worth mentioning that the boundaries between the architecture types are not always crystal clear.
For example, while many Siamese architectures typically capture less interactive features between the
input sentences than the Attentive architectures, few recently proposed Siamese architectures have so-
phisticated comparison layer after the encoding layer (He et al., 2015; Rao et al., 2016). As a result,
they even outperform some Attentive architectures. Even though the boundaries are not crystal clear,
separating the existing different neural architectures into the three categories can provide the big picture
more easily.
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Figure 2: The general architecture of a Siamese model. The same encoder is used to generate the vector
representations for the input sentences.

2.2.1 Siamese Architecture

Siamese neural networks have been proposed for a number of sentence pair modeling tasks, including
semantic similarity (Mueller and Thyagarajan, 2016), paraphrase identification (Hu et al., 2014), and
natural language inference (Conneau et al., 2017). Figure 2 shows the general architecture of a Siamese
model. The vector representations of the input sentences are built separately by the encoder. Two input
sentences have no influence on the computation of each other’s representation. After that, the encoded
vectors are compared using measures such as cosine similarity (Feng et al., 2015; Yang et al., 2015),
element-wise operations (Tai et al., 2015), or neural network-based combination (Bowman et al., 2015).
An advantage of this architecture is that applying the same encoder to each input sentence makes the
model smaller. In addition, the sentence vectors can be used for visualization, sentence clustering and
many other purposes (Wang et al., 2016a).

One of the first attempts at applying deep learning to answer selection was the bag-of-words model
proposed by (Yu et al., 2014). The model generates the vector representation of a sentence by simply
taking the average of all the word vectors in the sentence - having previously removed all the stop words.
Integrating additional overlapping word count features with the model achieves performance better than
many traditional techniques that require large numbers of hand-crafted features or external resources. Tan
et al. (2015) proposed the QA-LSTM model that employs a bidirectional long short-term memory (biL-
STM) network (Hochreiter and Schmidhuber, 1997) and a pooling layer to construct distributed vector
representations of the input sentences independently. Then the model utilizes cosine similarity to mea-
sure the distance of the sentence representations. Severyn and Moschitti (2015) proposed a model that
employs a convolutional neural network (CNN) to generate the representations of the input sentences.
The CNN is based on an architecture that has previously been applied to many sentence classification
tasks (Kalchbrenner et al., 2014; Kim, 2014). In (He et al., 2015), each input sentence is modeled using
a CNN that extracts features at multiple levels of granularity and uses multiple types of pooling. The
representations of the input sentences are then compared at several granularities using multiple similarity
metrics. Finally, the comparison results are fed into a fully connected layer to obtain the final relevance
score. The proposed model outperforms many other Siamese models. Tay et al. (2018a) proposed a sim-
ple but novel deep learning architecture that models the relationship between a question and a candidate
sentence in Hyperbolic space instead of Euclidean space. It achieves highly competitive performance
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without employing any sophisticated neural encoder such as LSTM or CNN. Vector representations of
the input sentences are generated independently in a bag-of-words manner.

2.2.2 Attentive Architecture
In a Siamese architecture, the input sentences are first encoded into fixed-length vector representations
separately, and these representations are then compared. Despite its conceptual simplicity, a disadvantage
is the absence of explicit interaction between the input sentences during the encoding process. A question
is always mapped to the same vector regardless of the candidate answer in consideration, and vice versa.
Attention mechanisms have been applied to alleviate the weakness. Tan et al. (2015) extended the basic
QA-LSTM model with attention (Figure 3). The model employs a biLSTM network and a pooling
layer to generate the question representation oq. The candidate representation oc is calculated similarly,
except that prior to the pooling layer, each biLSTM output vector will be multiplied by a weight, which
is determined by the question representation oq. Conceptually, the attention mechanism gives more
weights on certain words in the candidate answer, and the weights are computed according to the question
information. In this case, the attention mechanism is performed only in a single direction. dos Santos
et al. (2016) proposed a two-way attention mechanism called Attentive Pooling (AP). AP allows the
information from the two input sentences to influence the computation of each other’s representation.

Figure 3: QA-LSTM with attention (figure adapted from (Tan et al., 2015))

2.2.3 Compare-Aggregate Architecture
A common trait of a number of recent state-of-the-art methods for answer selection is the use of the
Compare-Aggregate architecture (Wang and Jiang, 2016; Wang et al., 2017; Bian et al., 2017; Shen et
al., 2017; Tran et al., 2018). Under this architecture, smaller units (such as words) of the input sentences
are compared. And then the comparison results are aggregated (e.g., by a CNN or a RNN) to make the
final decision. Figure 4 shows the architecture of BiMPM, a Compare-Aggregate model proposed in
(Wang et al., 2017). The model consists of five layers as follows.

Word Representation Layer. The goal of this layer is to represent each word in the input sentences
with a d-dimensional vector. BiMPM constructs the d-dimensional vector with two components: a
character-composed embedding and a word embedding pre-trained with GloVe (Pennington et al., 2014)
or word2vec (Mikolov et al., 2013).

Context Representation Layer. The goal of this layer is to obtain a new representation for each po-
sition in the input sentences that captures some contextual information in addition to the word at the
position. BiMPM employs a biLSTM to generate the contextual representations.

Matching Layer. The goal of this layer is to compare each contextual representation of one sentence
against all contextual representations of the other sentence. The output of this layer are two sequences of



2138

matching vectors, where each matching vector corresponds to the comparison result of one position of a
sentence against all the positions of the other sentence.

Aggregation Layer. The goal of this layer is to aggregate the comparison results from the previous
layer. BiMPM employs another BiLSTM to aggregate the two sequences of matching vectors into fixed-
length vectors.

Prediction Layer. The goal of this layer is to make the final prediction. BiMPM uses a two layer
feed-forward neural network to consume the fixed-length vectors from the previous layer, and apply the
softmax function to get the final score.

Even though specific details vary from model to model, other Compare-Aggregate models for an-
swer selection (Bian et al., 2017; Shen et al., 2017; Tran et al., 2018) have a similar structure to the
BiMPM model. The Compare-Aggregate architectures can capture more interactive features between
input sentences than the Siamese architectures and the Attentive architectures, therefore typically have
better performance when evaluated on public datasets such as TrecQA (Table 1)

Figure 4: The architecture of the BiMPM model (figure adapted from (Wang et al., 2017))

3 Datasets and Evaluation Metrics

TrecQA, WikiQA, and InsuranceQA datasets have been widely used for benchmarking answer selection
systems.
• The TrecQA dataset (Wang et al., 2007) was created from the TREC Question Answering tracks.

In the literature (Yih et al., 2013; Yu et al., 2014; Severyn and Moschitti, 2015; Wang et al., 2016b;
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dos Santos et al., 2016), we observe two versions of TrecQA: both have the same training set but
their development and test sets differ. The Raw version has 82 development questions and 100 test
questions. The Clean version removed questions in development and test sets with no answers or
only positive/negative answers, reducing the development and test set’s sizes to 65 and 68 questions,
respectively. Relevant statistics are shown in Table 2. The data provided for training come as two
sets: a small set of 94 questions (TRAIN) that were manually judged and a more noisy set of 1229
questions (TRAIN-ALL) that comes with automatic judgements.

Split # Questions # QA pairs % Correct
TRAIN 94 4718 7.4%
TRAIN-ALL 1229 53417 12.0%
Raw DEV 82 1148 19.3%
Raw TEST 100 1517 18.7%
Clean DEV 65 1117 18.4%
Clean TEST 68 1442 17.2%

Table 2: Statistics of the TrecQA dataset

• The WikiQA dataset (Yang et al., 2015) is an open-domain question answering dataset that was
constructed from real queries of Bing and Wikipedia. Relevant statistics are shown in Table 3.
There are 3047 questions and 29258 candidate answer sentences in the dataset, and 1473 sentences
were labeled as correct answer sentences to their corresponding questions. In the WikiQA dataset,
there are questions with only incorrect answers. All questions with no correct answers are usu-
ally removed when the dataset is used to train and evaluate answer selection systems (Yang et al.,
2015; Bian et al., 2017; Shen et al., 2017). The excluded WikiQA has 873/126/243 questions and
8627/1130/2351 question-answer pairs for train/dev/test split.

Train Dev Test Total
# Questions 2118 296 633 3047
# Candidate Answers 20360 2733 6165 29258
# Correct Answers 1040 140 293 1473
# Questions w/o Correct Answers 1245 170 390 1805

Table 3: Statistics of the WikiQA dataset

• The InsuranceQA dataset (Feng et al., 2015) is a large-scale domain specific answer selection
dataset in which all question and candidate pairs are in the insurance domain. The original dataset
consists of four parts: train, development, test1 and test2. Relevant statistics are shown in Table 4.
There could be multiple correct answers for some questions so that the number of correct answers
is larger than the number of questions. The released dataset contains 24981 unique answers in total.
For each question, the candidate answer pool size is set to be 500. These candidate pools were con-
structed by including the correct answer(s) and randomly selecting candidates from the complete
set of unique answers.

Split # Questions # Correct Answers
TRAIN 12887 18540
DEV 1000 1454
TEST1 1800 2616
TEST2 1800 2593

Table 4: Statistics of the original InsuranceQA dataset

Community Question Answering (cQA) platforms such as Stack Overflow 1 and Yahoo Answers 2

have become an important resource of information for many Web users. A person posts a question on
1http://stackoverflow.com
2https://answers.yahoo.com
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a specific topic and other users post their answers. The techniques developed for answer selection can
be potentially used to improve various aspects of a cQA platform. For example, in a cQA platform, it is
not unusual for a question to have hundreds of answers, the vast majority of which would not satisfy a
user’s information needs. Therefore, using answer selection techniques to find relevant answers can be
very beneficial. In the literature, the SemEval-2016 cQA dataset (Nakov et al., 2016) has been widely
used to test different answer selection systems.
• In the SemEval-2016 cQA challenge (Nakov et al., 2016), there are three subtasks for English. Sub-

task A (Question-Comment Similarity): Given a question and its first ten comments in the question
thread, the goal is to rank these ten comments according to their relevance with respect to the ques-
tion. Subtask B (Question-Question Similarity): Given a new question and the set of the first ten
related questions from the forum retrieved by a search engine, the goal is to rank the related ques-
tions according to their similarity with respect to the new question. Subtask C (Question-External
Comment Similarity): Given a new question and the set of the first ten related questions from the fo-
rum retrieved by a search engine, each associated with its first ten comments appearing in its thread,
the goal is to rank the 100 comments according to their relevance with respect to the new question.
The data of the three subtasks was extracted from the community-created Qatar Living Forums 3.
Answer selection techniques can be directly applied to each of the subtask. All the information
related to the dataset can be found on the SemEval-2016 Task 3 website4.

Table 5 shows examples from the datasets. Each example consists of a question with a positive answer
and a negative answer. A major difference between the SemEval-2016 cQA dataset and the other answer
selection datasets is the average length of a question. In WikiQA (Yang et al., 2015) and TrecQA (Wang
et al., 2007), a question is typically a short sentence, while in the cQA dataset, the question body typically
contains quite a few sentences.

Dataset Example
TrecQA Question: Who established the Nobel prize awards?

Positive Answer: The Nobel Prize was established in the will of Alfred Nobel, a Swede who
invented dynamite and died in 1896.
Negative Answer: The awards aren’t given in specific categories.

WikiQA Question: How many albums has Eminem sold in his career?
Positive Answer: He has sold more than 100 million records worldwide, including 42 million
tracks and 49.1 million albums in the United States.
Negative Answer: Eminem is one of the best-selling artists in the world and is the best-selling artist
of the 2000s.

InsuranceQA Question: Does Medicare cover my spouse?
Positive Answer: If your spouse has worked and paid Medicare taxes for the entire required 40
quarters, or is eligible for Medicare by virtue of being disabled or some other reason, your spouse
can receive his/her own medicare benefits. If your spouse has not met those qualifications, if you
have met them, and if your spouse is age 65, he/she can receive Medicare based on your eligibility.
Negative Answer: If you were married to a Medicare eligible spouse for at least 10 years, you
may qualify for Medicare. If you are widowed, and have not remarried, and you were married to
your spouse at least 9 months before your spouses death, you may be eligible for Medicare benefits
under a spouse provision.

SemEval-2016 cQA Question:Hi;Can any one tell me a place where i can have a good massage drom philipinies?????
yesterday i had a massage in Bio-Bil they charged me 300qr for 01 hour bt it is totally waste... pls
advice me if theres any philipinos....
Positive Answer: Try Magic Touch in Abu Hamour (beside Abu Hamour Petrol Stn)it will just cost
you 60QR per hour and I’ve seen a lot of Qataris as their customers.
Negative Answer: I dont know the name; you can call them. Do it fast; they have sooooo many
reservations ;)

Table 5: Examples from different datasets

Typically, the performance of an answer selection system is measured in Mean Reciprocal Rank
(MRR) and Mean Average Precision (MAP), which are standard metrics in Information Retrieval and

3http://www.qatarliving.com/forum
4http://alt.qcri.org/semeval2016/task3
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Question Answering. Given a set of questions Q, MRR is calculated as follows:

MRR =
1

|Q|

|Q|∑
i=1

1

ranki
(4)

where ranki refers to the rank position of the first correct candidate answer for the ith question. In other
words, MRR is the average of the reciprocal ranks of results for the questions in Q. On the other hand, if
the set of correct candidate answers for a question qj ∈ Q is {d1, d2, ..., dmj} and Rjk is the set of ranked
retrieval results from the top result until you get to the answer dk, then MAP is calculated as follows:

MAP =
1

|Q|

|Q|∑
j=1

1

mj

|mj |∑
k=1

Precision(Rjk) (5)

When a relevant answer is not retrieved at all for a question, the precision value for that question in the
above equation is taken to be 0.

Whereas MRR measures the rank of any correct answer, MAP examines the ranks of all the correct
answers. In general, MRR is higher than MAP on the same list of ranked outputs, except that they are
the same in the case where each question has exactly one correct answer. Table 1 shows the performance
of several deep learning methods when trained and evaluated on the Raw TrecQA dataset or the Clean
TrecQA dataset.

4 Discussion and Future Directions

Answer selection is an important problem in natural language processing, and many deep learning meth-
ods have been proposed for the task. In this paper, we give a comprehensive and systematic review
of various deep learning methods for answer selection along two dimensions: (i) learning approaches
(pointwise, pairwise, and listwise) (ii) neural network architectures (Siamese architecture, Attentive ar-
chitecture, and Compare-Aggregate architecture). In addition, we examine the most popular datasets
and the evaluation metrics for answer selection. Below we discuss several promising future research
directions.

Transfer learning (Pan and Yang, 2010) has achieved success in domains such as speech recognition
(Huang et al., 2013), computer vision (Razavian et al., 2014), and natural language processing (Zhang et
al., 2017). Its applicability to question answering and answer selection has recently been studied (Min
et al., 2017; Chung et al., 2017). Min et al. (2017) created SQuAD-T, a modification of the original
large-scale SQuAD dataset (Rajpurkar et al., 2016) to allow for directly training and evaluating answer
selection systems. Through a basic transfer learning technique from SQuAD-T, the state-of-the-art result
in the WikiQA dataset can be improved. This demonstrates the potential of developing novel transfer
learning techniques for the answer selection task.

Many deep learning methods for answer selection are applicable to other sentence pair modeling tasks
such as natural language inference (He and Lin, 2016; Wang et al., 2017), paraphrase identification (He
and Lin, 2016; Wang et al., 2017), or measuring semantic relatedness (Shen et al., 2017). Extending
existing methods for answer selection to achieve state-of-the-art results on other sentence pair modeling
tasks can be an interesting research direction, and vice versa.

In addition to its applications in open domain question answering and community question answering,
answer selection has many other applications. Lai et al. (2018) formulated the task of answering ques-
tions related to product facts and specifications as an answer selection problem. Given a question and a
set of candidate product specifications, an answer selection technique was used to identify the specifica-
tion that is most relevant to the question. Applying answer selection techniques to real-world problems
can be an interesting research direction. For example, answer selection techniques can be potentially
used to enhance truth discovery methods (Li et al., 2017; Zhang et al., 2018).
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