
Proceedings of the 27th International Conference on Computational Linguistics, pages 2033–2043
Santa Fe, New Mexico, USA, August 20-26, 2018.

2033

Adaptive Learning of Local Semantic and Global Structure
Representations for Text Classification

Jianyu Zhao1,2,*, Zhiqiang Zhan1,2,*, Qichuan Yang3, Yang Zhang4,
Changjian Hu4, Zhensheng Li4, Liuxin Zhang4, and Zhiqiang He4

1University of Chinese Academy of Sciences, Beijing 100049, China
2Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China

3Beihang University, Beijing 100103, China
4Lenovo Research, Beijing 100085, China

zhaojy7ict@gmail.com

Abstract

Representation learning is a key issue for most Natural Language Processing (NLP) tasks. Most
existing representation models either learn little structure information or just rely on pre-defined
structures, leading to degradation of performance and generalization capability. This paper fo-
cuses on learning both local semantic and global structure representations for text classification.
In detail, we propose a novel Sandwich Neural Network (SNN) to learn semantic and structure
representations automatically without relying on parsers. More importantly, semantic and struc-
ture information contribute unequally to the text representation at corpus and instance level. To
solve the fusion problem, we propose two strategies: Adaptive Learning Sandwich Neural Net-
work (AL-SNN) and Self-Attention Sandwich Neural Network (SA-SNN). The former learns
the weights at corpus level, and the latter further combines attention mechanism to assign the
weights at instance level. Experimental results demonstrate that our approach achieves competi-
tive performance on several text classification tasks, including sentiment analysis, question type
classification and subjectivity classification. Specifically, the accuracies are MR (82.1%), SST-5
(50.4%), TREC (96%) and SUBJ (93.9%).

1 Introduction

Representation learning plays an important role in various NLP tasks, especially in text classification
(Bengio et al., 2013; Le and Mikolov, 2014). Existing representation models for text classification
can be categorized into four types: bag-of-words representation models, sequence representation mod-
els, structure representation models and attention-based models. Bag-of-words representation models
(Salton et al., 1975) are able to represent the sentence accounting for the different words, but fail to
encode word order and syntactic structures. Sequence representation models (Kim, 2014; Kalchbrenner
et al., 2014) consider word order without using structure information. Structure representation models,
such as Tree-LSTM (Tai et al., 2015) and DSCNN (Zhang et al., 2016), take the structure information
into account. Attention-based models (Yang et al., 2017; Lin et al., 2017) use attention mechanism to
build representations by scoring input words respectively.

However, most structure representation methods either learn little structure information or rely heavily
on parsers, leading to relatively low performance or gradient vanishing problem. Moreover, to our best
knowledge, no one has considered effective fusion of semantic and structure information. These hinder
the performance of sentence representation for text classification.

To address these issues, we propose a novel model named Sandwich Neural Network, which con-
sists of a Convolutional Neural Network (CNN) layer in the middle of two Long Short-Term Memory
(LSTM) layers like a sandwich. We define local semantic representation as n-grams feature and global
structure representation as the dependency relationship between words or phrases in the sentence. SNN
can generate both local semantic representation and global structure representation without relying on
parsers. Then two dynamic fusion methods are developed to make full use of these information.

*They contribute equally to this paper.
This work is licenced under a Creative Commons Attribution 4.0 International Licence. Licence details: http://

creativecommons.org/licenses/by/4.0/



2034

The contributions of this paper can be summarized into two parts:
1) We propose a novel SNN to extract semantic and structure representations, which enriches infor-

mation of sentence representation. Thus SNN improves the performance of text classification.
2) In order to make full use of these two representations, we design and implement two fusion methods

to learn the weights of semantic and structure representations at corpus and instance level respectively.
The former employs adaptive learning strategy to automatically learn a pair of weights for the whole
corpus. The latter integrates attention mechanism to adjust the weights subtly for each single instance.

The rest of our paper is organized as follows: Section 2 elaborates the related work about structure
representation and attention mechanism. Section 3 details the proposed SNN and two fusion methods.
Section 4 conducts experiments on four datasets to verify the effectiveness of our model. Section 5 draws
a conclusion and discusses the future work.

2 Related Work

Text classification develops from rule-based method, statistical machine learning method to deep learn-
ing method (Aggarwal and Zhai, 2012). Many researches on text classification focus on the sentence
representation (Liu et al., 2018). Structure representation and attention mechanism are important for
sentence representation.

2.1 Sentence Structure Representation

Current researches about sentence representation pay much attention to structure representation. Struc-
ture representation models can be divided into three types: hierarchical models, tree-based models and
reinforcement learning (RL) models. Hierarchical models combine CNN and RNN to learn structure
representation, such as C-LSTM (Zhou et al., 2015) and DSCNN (Zhang et al., 2016). C-LSTM utilizes
CNN to extract a sequence of higher-level phrase representations. Then the representations are fed into
an LSTM to obtain sentence representation with long dependency structure. DSCNN utilizes CNN to
extract features from hidden states of an LSTM layer, which is able to catch long dependency structure at
a certain level. Tree-based models, such as Tree-LSTM (Tai et al., 2015) and TBCNN (Mou et al., 2015),
rely on existing parsers. Tree-LSTM utilizes LSTM along the tree structure and treats root as sentence
representation. TBCNN combines CNN with tree structure and uses pooling results as sentence repre-
sentation. More recently, RL models are attempted in structure representation, such as ID-LSTM (Zhang
et al., 2018) and HS-LSTM (Zhang et al., 2018), which are integrated seamlessly with a policy network
and a classification network. These works contribute significantly to sentence structure representation.

However, hierarchical models are not able to learn adequate structure information and lack effective
fusion of semantic and structure representations; tree-based models are time-consuming and rely on
parsers which are unable to guarantee an accurate syntactic structure; RL models require much experience
to initialize and design reward function, which yields moderate performance.

2.2 Attention Mechanism

Attention mechanism for NLP is first proposed by Bahdanau et al. (2014) to improve machine translation
task. The neural machine translation model consists of two RNNs: an encoder and a decoder. When
decoding the hidden state si, the decoder calculates attention distribution α on the whole source sentence.
The attention mechanism is defined as follows:

αij = exp(eij)/

Tx∑
k=1

exp(eik)

eij = σ(si−1,hj)

(1)

where x is the source sentence, Tx is the length of source sentence, σ is an activation function, si−1

is the hidden state of the decoder RNN at time step i − 1, hj is the hidden state of the encoder RNN at
time step j.



2035

Figure 1: SNN and fusion methods.

Because of its promising performance, attention mechanism attracts lots of attention. For example,
Rush et al. (2015) apply it to solve sentence summarization. Xu et al. (2015) utilize it to generate caption
of images. Tan et al. (2017) employ it to handle reading comprehension task.

3 Proposed Model

In order to address problems as discussed in Section 2.1, we are inspired by Section 2.2 to propose
our novel methods. As shown in Figure 1, there exists three major parts: (1) SNN model: build the
semantic and structure representations through SNN; (2) Fusion methods: fuse the semantic and structure
representations with different methods; (3) Loss function: train the model with cross-entropy objective
function. The core of our methods can be formulated as M = ϕ(se, st), where ϕ is a fusion function
which combines the semantic representation se with the structure representation st.

3.1 Obtaining the semantic and structure representations

As shown in Figure 1, SNN consists of three parts: First LSTM layer, CNN layer and Second LSTM
layer. The first LSTM layer utilizes the hidden states of LSTM as tuned word representations to take
the context into account and the tuned representations are the input of CNN layer. The CNN layer
is designed to learn local n-gram high-level semantic representations like standard CNN (Kim, 2014)
through convolution and max pooling. The second LSTM layer feeds results from the convolution into
LSTM and use the last hidden state of LSTM to obtain global structure representations.
First LSTM layer
Let the input of our model be a sentence of length s : [w1, w2, ..., ws], c be the total number of word em-
bedding versions and x

(j)
i is the ith word’s embedding of the jth version. The common word embedding

versions are Word2vec (Mikolov et al., 2013) and Glove (Pennington et al., 2014).
The first layer of our model consists of LSTM networks processing multiple versions of word embed-

dings. For each version of word embedding, we construct an LSTM network where the input xt ∈ Rd

is the d-dimensional word embedding for wt. The LSTM layer will produce a hidden state ht ∈ Rd at
each time step. We collect hidden states as the output of LSTM layers:

h(i) = [h
(i)
1 ,h

(i)
2 , ...,h

(i)
t , ...,h(i)

s ] (2)

for i = 1, 2, ..., c.

Then these hidden states are fed into CNN layer as input.
CNN layer
To utilize multiple kinds of word embeddings, we apply a filter F ∈ Rc×d×l, where l is the window size.
Hidden state sequence h(i) produced by the ith version of word embedding forms one channel of the
feature maps. Then these feature maps are stacked c-channel feature maps X ∈ Rc×d×s. Afterwards,



2036

Sentence Ground truth Reason
What is the conversion rate between dollars
and pounds ?

numeric key word “rate”

What does target heart rate mean ? describe
key structure “what does ... mean”
and word “rate” is a disturbance

Table 1: Examples of TREC classification

filter F convolves with the window vectors (l-gram) at each position to generate a feature map c ∈
Rs−l+1; ck is the element of the feature map c for window vector Xk:k+l−1 at position k and it is
produced as follows:

ck = f(
∑
i,j,r

(F ⊙Xk:k+l−1)i,j,r) (3)

where ⊙ denotes element-wise multiplication.
The n feature maps generated from n filters can be rearranged through column vector concatenation

method to form a new representation,

W = [c1; c2; ...; cn] (4)

Each row W j of W ∈ R(s−l+1)×n is the feature map generated from n filters for the window vector at
position j. The new successive higher-level representations are then fed into the second LSTM layer.

Here, a max-over-time pooling layer is added after the convolution neural network. The pooling result
of the feature map c is :

p = max(c1, c2, ..., cs−l+1) (5)

These pooling results are used as our local semantic representation se ∈ Rn:

se = [p1, p2, ..., pn] (6)

Second LSTM layer
This layer feeds the high-level phrase representation W generated from CNN into LSTM. We use the
same number of filters n to denote the dimension in this LSTM layer for simple and fair fusion and use
the last hidden state of LSTM as global structure representation st ∈ Rn.

Thus, we get the local semantic representation se and the global structure representation st. Then we
combine se and st to get the concatenated weighted sentence representation.

3.2 Fusion methods
To make better use of semantic and structure representations and address the fusion problems discussed
in Section 1, we explore three different fusion ways to learn the weights of semantic and structure repre-
sentations.
Static weights
Combine semantic and structure representations to get the sentence representation. That is to say, this
method gives equal weights to these two kinds of representations.
Adaptive learning at corpus level
Different properties (i.e. semantic and structure property) of a sentence contribute unequally according
to the specific corpus. Table 1 shows examples of this phenomenon. To take the above observation
into account, we design an adaptive learning method to learn the semantic weight gse and the structure
weight gst at corpus level. To reflect the difference of these two properties, we use a simple but elegant
and effective method: set gse to be α and gst to be 1 − α. They are parameters that can be learned
automatically during the training process. Each element in the semantic representation se will multiply
α to get the weighted semantic representation. It is the same with structure representation st and 1− α.
Figure 2 shows the adaptive learning method.



2037

Figure 2: Adaptive learning at corpus level.

Self-attention at instance level
With the adaptive learning strategy, the weights are learned based on the whole corpus. However, the
weights of semantic and structure information vary according to the sentence itself. For instance, “The
dog the stick the fire burned beat bit the cat” is rich in structure information, and we should pay more
attention to its structure. Motivated by the attention mechanism, we propose the self-attention strategy
to learn weights at instance level. First, we average the word embeddings of the sentence to get a simple
but useful sentence representation S. Second, linear transformations are used to transform the represen-
tations into semantic space representation Sse and structure space representation Sst. The transformed
dimension is d. Third, we compute the similarity of representations through inner product. Last, softmax
is used to normalize weights. Figure 3 shows the whole process. The computational procedure is as
follows:

(attse, attst) = softmax(pse, pst)

pse = ρ(Sse, se)

pst = ρ(Sst, st)

Sse = W se × S + bse

Sst = W st × S + bst

S = (x1 + x2 + ...+ xs)/s

(7)

where xi is the word embedding, size of d; S is a representation of the sentence, calculated by aver-
aging the word embeddings, size of d; Sse and Sst are the transformed semantic and structure represen-
tations, size of n; W se and W st are the projection matrixes, size of n× d; bse and bst are the projection
biases, size of d; ρ is an average inner product operator; attse and attst are the attention weights.

Figure 3: Self-attention at instance level.

In the above fusion methods, the adaptive learning strategy and self-attention strategy can learn
weights on the two representations. Then, we concatenate weighted semantic and structure represen-



2038

Data Class Len Max Len Size Test
MR 2 20 56 10662 CV
SST-5 5 18 53 11855 2210
TREC 6 10 37 9592 500
SUBJ 2 23 120 10000 CV

Table 2: Statistics for experiment datasets. Class: number of classes. Len: average length of sentence. Max: max length of
sentence. Size: Dataset size. Test: test set size (CV means no standard train/test split and thus 10-fold CV is used).

tations to get the final sentence representation.

M =


[se; st], for fixed weights
[gse ∗ se; gst ∗ st], for adaptive weights
[attse ∗ se; attst ∗ st], for self-attention

(8)

where M is the sentence representation, and operator [v1;v2] denotes concatenation of vector v1
and v2.

3.3 Training Models

After getting both semantic and structure representations, a fully-connected layer follows. To learn the
model parameters, we minimize a cross-entropy objective function as follows:

Loss = − 1

m

m∑
i=1

yi × log(ŷi) (9)

where yi is the one-hot vector representation of real label of the i-th sentence, ŷi is the predicted proba-
bility representation in the neural network, and m is the number of samples.

4 Experiments

4.1 Datasets

We test our model on several datasets. The detailed information is listed in Table 2.
• Movie Review (MR) proposed by Pang and Lee (2005) is a dataset for sentiment analysis of movie

reviews. It contains two classes: positive and negative.
• Stanford Sentiment Treebank with Five Labels (SST-5) is another popular sentiment classification

dataset proposed by Socher et al. (2013). The sentences are labeled in a fine-grained way: very negative,
negative, neutral, positive, very positive.
• Text REtrieval Conference (TREC) dataset proposed by Li and Roth (2002) contains sentences

that are questions in the following 6 classes: abbreviation, entity, description, location, numeric, human.
• SUBJectivity (SUBJ) classification dataset released by Pang and Lee (2004) contains two classes:

subjective and objective.

4.2 Experimental Configuration

Literature usually adopts 100-300 as the dimension of word embedding. Here, we use two versions
of word embeddings, Word2vec and Glove, with dimension 300. We use 100 convolution filters each
for window sizes of 3,4,5. Rectified Linear Units (RELU) is chosen as the nonlinear function in the
convolutional layer. For the second LSTM, we set the dimension to be 100. For regularization, both
word-embedding and the penultimate layer use dropout (Hinton et al., 2012) with rate 0.5. We don’t
impose L2 regularization at each layer. We use the gradient-based optimizer Adam (Kingma and Ba,
2014) to minimize the loss between the predicted and true distributions, and the training is early stopped
when the accuracy on validation set starts to drop. Additionally, we use the same configuration for all
datasets.



2039

Method MR SST-5 TREC SUBJ
Standard-RNN (Socher et al., 2013) – 43.2 – –
Standard-LSTM (Tai et al., 2015) 77.4 46.4 – 92.2*
bi-LSTM (Tai et al., 2015) 79.7 49.1 – 92.8*
CNN (Kim, 2014) 81.5 48 93.6 93.4
DCNN (Kalchbrenner et al., 2014) – 48.5 93 –
MVCNN (Yin and Schütze, 2016) – 49.6 – 93.9
Tree-LSTM (Tai et al., 2015) 80.7 50.1 – 93.2*
TBCNN (Mou et al., 2015) – 51.4 96 –
Dep-CNN (Ma et al., 2015) 81.9 49.5 95.4 –
DSCNN (Zhang et al., 2016) 81.5 49.7 95.4 93.2
C-LSTM (Zhou et al., 2015) – 49.2 94.6 –
ID-LSTM (Zhang et al., 2018) 81.6 50.0 – 93.5
HS-LSTM (Zhang et al., 2018) 82.1 49.8 – 93.7
Self-Attentive (Lin et al., 2017) 80.1 47.2 – 92.5
SNN 81.7 49.8 95.6 93.8
AL-SNN 81.9 50 95.8 93.9
SA-SNN 82.1 50.4 96 93.9

Table 3: Experiment results of our methods compared with other models. Performance is measured in accuracy(%). The
results with * is from Zhang et al. (2018). Models are categorized into 7 classes. The first block is RNN and its variants. The
second is CNN and its variants. The third is tree-based model. The forth is the hierarchical model. The fifth is RL model.
The sixth is attention-based model. And the last is our models. Standard-RNN: Standard Recursive Neural Network (Socher
et al., 2013). Standard-LSTM: Standard Long Short-Term Memory Network (Tai et al., 2015). bi-LSTM: Bidirectional
LSTM (Tai et al., 2015). CNN: Convolutional Neural Network (Kim, 2014) . DCNN: Dynamic Convolutional Neural Network
with k-max pooling (Kalchbrenner et al., 2014). MVCNN: Multichannel Variable-Size Convolution Neural Network (Yin and
Schütze, 2016). Tree-LSTM: Tree-Structured LSTM (Tai et al., 2015). TBCNN: Tree-Based Convolutional Neural Network
(Mou et al., 2015). Dep-CNN: Dependency-based Convolutional Neural Network (Ma et al., 2015). DSCNN: Dependency
Sensitive Convolutional Neural Network (Zhang et al., 2016). C-LSTM :Convolutional LSTM (Zhou et al., 2015). ID-LSTM:
Information Distilled LSTM (Zhang et al., 2018). HS-LSTM: Hierarchical Structured LSTM (Zhang et al., 2018). Self-
Attentive: Structured Self-Attentive model (Lin et al., 2017).

4.3 Results and Discussion

As shown in Table 3, the results demonstrate effectiveness of our model in comparison with other state-
of-the-art methods. Among the models without relying on parsers, the other models get the highest
accuracy in one certain task (e.g. HS-LSTM in MR and MVCNN in SUBJ), but our models get the
highest accuracy on all datasets: MR, SST-5, TREC and SUBJ. It shows strong generalization capability.
Additionally, compared with TBCNN, which relies heavily on parsers, our models get the same highest
accuracy on TREC and are on a par with TBCNN’s performance on SST-5.

The benefit of SNN is attributed to its ability to capture both semantic and structure representations.
The benefit of adaptive learning is attributed to its ability to learn the weights of both representations
according to the specific corpus. The benefit of self-attention is attributed to its ability to adjust the
weights of both representations at instance level. In the following, we first give visualization of our
models to show the learned structure. Then, we give some examples to show how our models make
progress from SNN, adaptive learning to self-attention. At last, we make quantitative analysis to show
the correlation between structure attention value and structure complexity.

4.3.1 Visualization of learned structure

The input gate value of LSTM is able to show how much a word representation contributes to the final
sentence representation (Palangi et al., 2016). We draw a heat map of input gates of the second LSTM
layer to show the learned structure. Figure 4 gives two examples from TREC. The color represents
the values (from 0 to 1) of input gate. The higher means the n-gram part contributes more to the final
sentence representation.



2040

(a) In sentence “What New York City structure is also
known as the Twin Towers”, structure “What New York
City” – “the Twin Towers” is learned. It is very related to
sentence class “location”.

(b) In sentence “What is the name of the satellite that the
Soviet Union sent into space in 1957”, structure “What
is the name of” is important and related to sentence class
“entity”. More amazing, attributive clause structure “that”
is learned. The content before “that” contributes more
than the content after “that”, which makes the represen-
tation focus more on what is related to the classification.

Figure 4: Visualization of learned structure.

Sentence Dataset Ground truth DSCNN SNN
What does your spleen do ? TREC describe abbreviation describe
Some actors have so much charisma that
you’d be happy to listen to them reading
the phone book.

SST-5 positive negative positive

Table 4: Examples that SNN makes right while DSCNN fails.

4.3.2 SNN analysis

SNN can learn both semantic and structure representations. As shown in Table 4: in the first sen-
tence, word “spleen” does not appear in the train data, but its topically related words in medical domain
like “AIDS”, “HIV”, “BPH”, “SIDS” appear in abbreviation class frequently. Traditional models (e.g.
DSCNN) ignore the structure “what does ... do” and misclassifies it into abbreviation class. In contrast,
our model captures the structure and correctly classifies it into entity class.

4.3.3 AL-SNN analysis

AL-SNN can learn the weights of semantic and structure representations at corpus level. As shown in
Table 5: gse denotes semantic weight and gst denotes structure weight as mentioned in Section 3. In the
first sentence, the structure “what is ... the name of” appears with almost the same frequency (67 and 66
times) in human and entity class and appears very little in the other classes. Thus, more weights should
be added on semantic representation. Through adaptive learning at corpus level, AL-SNN achieves it.

Sentence Dataset Ground
truth SNN AL-SNN gse gst

What was the name of the plane
Lindbergh flew solo across the Atlantic?

TREC entity human entity 0.94 0.06

The acting is stiff, the story lacks all
trace of wit, the sets look like they were
borrowed from gilligan’s inland, and
– the cgi scooby might well be the worst
special-effects creation of the year.

SST-5
very
negative

negative
very
negative

0.56 0.44

Table 5: Examples that AL-SNN makes right while SNN fails.



2041

Sentence Dataset Ground
truth AL-SNN SA-SNN gst attst

What is Hawaii ’s state flower ? TREC entity location entity 0.06 0.33
The director byler may yet have a great
movie in him, but charlotte sometimes
is only half of one .

SST-5 negative positive negative 0.44 0.57

Table 6: Examples that SA-SNN makes right while AL-SNN fails.

4.3.4 SA-SNN analysis
SA-SNN can adjust weights at instance level. As shown in Table 6: gst denotes structure weight and attst
denotes structure attention as mentioned in Section 3. In the first sentence, AL-SNN gives more weight
to semantic representation at corpus level, focuses on word “Hawaii” and misclassifies the sentence into
location class. Through self attention, SA-SNN gives more weight to structure, focuses on structure
“what is ... ?” and correctly classifies the sentence into entity class.

4.3.5 Quantitative analysis
It is obvious that more complicated structure means higher structure weight. We use four statistics to
represent structure complexity: dependency length (dl), average dependency length (adl), max depen-
dency length (mdl) and sentence length (sl). Among them, average dependency length is dependency
length divided by the number of dependency relationships of the sentence. Figure 5 depicts the correla-
tion between the average structure attention (asa) of SA-SNN and the four statistics on SST-5. It shows
a strongly positive correlation apart from a few small random variations caused by a limited sample size.
Thus, it proves that our attention mechanism is very reasonable.

(a) the correlation between asa and dl (b) the correlation between asa and adl

(c) the correlation between asa and mdl (d) the correlation between asa and sl

Figure 5: The correlation between structure attention of SA-SNN and structure complexity on SST-5.



2042

5 Conclusion

In this paper, we propose a novel SNN model and two effective fusion methods, i.e. AL-SNN and
SA-SNN. By capturing and fusing both local semantic information and global structure information
effectively, our model achieves state-of-the-art in several text classification tasks among the methods
without relying on parsers, which verifies its great performance and strong generalization capability.
Additionally, we give examples, visualization and quantitative analysis to make explanations in detail. In
the future, we will pay more attention to knowledge-embedded methods to speed up training and improve
performance.

Acknowledgements

We would like to thank the anonymous reviewers for their insightful comments and suggestions, which
are helpful in improving the quality of the paper.

References
Charu C Aggarwal and ChengXiang Zhai. 2012. A survey of text classification algorithms. In Mining text data,

pages 163–222. Springer.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. 2014. Neural machine translation by jointly learning to
align and translate. arXiv preprint arXiv:1409.0473.

Y Bengio, A Courville, and P Vincent. 2013. Representation learning: a review and new perspectives. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 35(8):1798–1828.

Geoffrey E Hinton, Nitish Srivastava, Alex Krizhevsky, Ilya Sutskever, and Ruslan R Salakhutdinov. 2012. Im-
proving neural networks by preventing co-adaptation of feature detectors. arXiv preprint arXiv:1207.0580.

Nal Kalchbrenner, Edward Grefenstette, and Phil Blunsom. 2014. A convolutional neural network for modelling
sentences. arXiv preprint arXiv:1404.2188.

Yoon Kim. 2014. Convolutional neural networks for sentence classification. arXiv preprint arXiv:1408.5882.

Diederik Kingma and Jimmy Ba. 2014. Adam: A method for stochastic optimization. Computer Science.

Quoc Le and Tomas Mikolov. 2014. Distributed representations of sentences and documents. In International
Conference on Machine Learning, pages 1188–1196.

Xin Li and Dan Roth. 2002. Learning question classifiers. In Proceedings of the 19th international conference on
Computational linguistics-Volume 1, pages 1–7. Association for Computational Linguistics.

Zhouhan Lin, Minwei Feng, Cicero Nogueira dos Santos, Mo Yu, Bing Xiang, Bowen Zhou, and Yoshua Bengio.
2017. A structured self-attentive sentence embedding. arXiv preprint arXiv:1703.03130.

Li Liu, Jie Chen, Paul Fieguth, Guoying Zhao, Rama Chellappa, and Matti Pietikainen. 2018. A survey of recent
advances in texture representation. arXiv preprint arXiv:1801.10324.

Mingbo Ma, Liang Huang, Bing Xiang, and Bowen Zhou. 2015. Dependency-based convolutional neural net-
works for sentence embedding. arXiv preprint arXiv:1507.01839.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. 2013. Distributed representations of
words and phrases and their compositionality. In Advances in neural information processing systems, pages
3111–3119.

Lili Mou, Hao Peng, Ge Li, Yan Xu, Lu Zhang, and Zhi Jin. 2015. Discriminative neural sentence modeling by
tree-based convolution. arXiv preprint arXiv:1504.01106.

Hamid Palangi, Li Deng, Yelong Shen, Jianfeng Gao, Xiaodong He, Jianshu Chen, Xinying Song, and Rabab Ward.
2016. Deep sentence embedding using long short-term memory networks: Analysis and application to informa-
tion retrieval. IEEE/ACM Transactions on Audio, Speech and Language Processing (TASLP), 24(4):694–707.

Bo Pang and Lillian Lee. 2004. A sentimental education: Sentiment analysis using subjectivity summarization
based on minimum cuts. In Proceedings of the 42nd annual meeting on Association for Computational Linguis-
tics, page 271. Association for Computational Linguistics.



2043

Bo Pang and Lillian Lee. 2005. Seeing stars: Exploiting class relationships for sentiment categorization with
respect to rating scales. In Proceedings of the 43rd annual meeting on association for computational linguistics,
pages 115–124. Association for Computational Linguistics.

Jeffrey Pennington, Richard Socher, and Christopher Manning. 2014. Glove: Global vectors for word represen-
tation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP),
pages 1532–1543.

Alexander M Rush, Sumit Chopra, and Jason Weston. 2015. A neural attention model for abstractive sentence
summarization. arXiv preprint arXiv:1509.00685.

Gerard Salton, Anita Wong, and Chung-Shu Yang. 1975. A vector space model for automatic indexing. Commu-
nications of the ACM, 18(11):613–620.

Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D Manning, Andrew Ng, and Christopher
Potts. 2013. Recursive deep models for semantic compositionality over a sentiment treebank. In Proceedings
of the 2013 conference on empirical methods in natural language processing, pages 1631–1642.

Kai Sheng Tai, Richard Socher, and Christopher D Manning. 2015. Improved semantic representations from
tree-structured long short-term memory networks. arXiv preprint arXiv:1503.00075.

Chuanqi Tan, Furu Wei, Nan Yang, Weifeng Lv, and Ming Zhou. 2017. S-net: From answer extraction to answer
generation for machine reading comprehension. arXiv preprint arXiv:1706.04815.

Kelvin Xu, Jimmy Ba, Ryan Kiros, Kyunghyun Cho, Aaron Courville, Ruslan Salakhudinov, Rich Zemel, and
Yoshua Bengio. 2015. Show, attend and tell: Neural image caption generation with visual attention. In
International Conference on Machine Learning, pages 2048–2057.

Zichao Yang, Diyi Yang, Chris Dyer, Xiaodong He, Alex Smola, and Eduard Hovy. 2017. Hierarchical attention
networks for document classification. In Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies, pages 1480–1489.

Wenpeng Yin and Hinrich Schütze. 2016. Multichannel variable-size convolution for sentence classification.
arXiv preprint arXiv:1603.04513.

Rui Zhang, Honglak Lee, and Dragomir Radev. 2016. Dependency sensitive convolutional neural networks for
modeling sentences and documents. arXiv preprint arXiv:1611.02361.

Tianyang Zhang, Minlie Huang, and Li Zhao. 2018. Learning structured representation for text classification via
reinforcement learning.

Chunting Zhou, Chonglin Sun, Zhiyuan Liu, and Francis Lau. 2015. A c-lstm neural network for text classifica-
tion. arXiv preprint arXiv:1511.08630.


