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Abstract

Extracting location names from informal and unstructured social media data requires the identifi-
cation of referent boundaries and partitioning compound names. Variability, particularly system-
atic variability in location names (Carroll, 1983), challenges the identification task. Some of this
variability can be anticipated as operations within a statistical language model, in this case drawn
from gazetteers such as OpenStreetMap (OSM), Geonames, and DBpedia. This permits evalua-
tion of an observed n-gram in Twitter targeted text as a legitimate location name variant from the
same location-context. Using n-gram statistics and location-related dictionaries, our Location
Name Extraction tool (LNEx) handles abbreviations and automatically filters and augments the
location names in gazetteers (handling name contractions and auxiliary contents) to help detect
the boundaries of multi-word location names and thereby delimit them in texts.

We evaluated our approach on 4,500 event-specific tweets from three targeted streams to compare
the performance of LNEx against that of ten state-of-the-art taggers that rely on standard seman-
tic, syntactic and/or orthographic features. LNEx improved the average F-Score by 33-179%,
outperforming all taggers. Further, LNEx is capable of stream processing.1

1 Introduction

In context-aware computing, location is a fundamental component that supports a wide-range of appli-
cations (Hazas et al., 2004; Licht et al., 2017). During natural disasters, location is crucial for situational
awareness during disaster response (Son et al., 2008). When available, targeted streams of social me-
dia data are therefore particularly valuable for disaster response (Munro, 2011)2. For example, the tweet
“water level in Ganapathy Colony is around 2 m” refers to a location. But, unless we know where “Gana-
pathy Colony” is, the water level data cannot enhance situational awareness and inform disaster response
applications such as storm surge modeling or forecasting.

However, pragmatic influences on writing style shorten names to reduce redundant content in social
media. We call this the location name contraction problem. For example, “Balalok School”, appears
in the Chennai flood tweets in contrast to the full gazetteer name–“Balalok Matriculation Higher Sec-
ondary School”. Carroll (1983) examined the complex phenomenon of alternate name forms (called
Nameheads). He distinguishes between four shortening processes: (1) Appellation Formation, (2) Ex-
plicit Metonomy, (3) Category Ellipsis, and (4) Location Ellipsis.

Appellation Formation occurs when, for example, the author refers to the location name “The Erie
Canal” as “The Canal”. People may also refer to the only airport in the affected area as just “The
Airport”. Referring to “University of Michigan” as “Michigan” is an example of Explicit Metonomy.
Common ground or shared understanding between the author and the recipient establishes the referent
(Resnick et al., 1991). Both Appellation formation and Metonomy pose disambiguation problems, and
require context such as the author’s location to resolve.

This work is licensed under a Creative Commons Attribution 4.0 International License. License details: http://
creativecommons.org/licenses/by/4.0/

1Data and the tool is available at https://github.com/halolimat/LNEx
2We define a targeted stream as a set of tweets that has the potential to satisfy an event-related information need (Piskorski

and Ehrmann, 2013) crawled using keywords and hashtags, to contextualize the event (e.g., “#HarveyFlood”).
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In contrast, Category Ellipsis and Location Ellipsis pose delimitation problems that can be resolved
with a statistical language model. Category Ellipsis occurs when the author strips words related to the
location category (e.g., “City” from “Houston City” to become “Houston”). Location Ellipsis occurs
when an author drops the specific location reference in the location name (e.g., when “New York Yankee
Stadium” becomes “Yankee Stadium” or “Cars India - Adyar” becomes “Cars India”).

This distinction between delimitation and disambigution is important in the location extraction litera-
ture. Entity delimitation is typically the first step of location extraction, to identify the boundaries of a
location mention in the text. To address this problem, previous research (Liu et al., 2014; Malmasi and
Dras, 2015; Hoang and Mothe, 2018) has applied both syntactic heuristics (using lexical cues, e.g., “in
New Orleans”) as well as semantic heuristics (i.e., content-based, for different types of locations such as
buildings and streets). These heuristics have serious limitations, such as failing to delimit metonyms and
location names that begin sentences (i.e., outside locative expressions, e.g., “New Orleans is flooded”)
and they cannot assist in hashtag segmentation (needed to extract locations from hashtags). Moreover,
simply identifying a location name still leaves open the problem of linking the entity to a corresponding
gazetteer record for geocoding. Simple fixed phrase matching with gazetteers entries, as in (Middleton et
al., 2014; Malmasi and Dras, 2015), solves the linking problem, but remains vulnerable in two respects.
With simple fixed phrase matching, the tendency for authors to shorten names while the gazetteers extend
names, creates conflicting conditions causing poor recall. On the other hand, simply relaxing matching
criteria exacerbates the disambiguation problem.

To address delimitation, we treat location names as a sequence of ordered words known as colloca-
tions (Manning and Schütze, 1999). Collocations are neither strictly compositional nor always atomic.
We cannot identify them with grammatical rules, and fixed phrase matching is not reliable for longer
names. Fortunately, the gazetteer provides a resource to establish region-specific naming regularities.
Given a region-specific gazetteer, which retains the same location-context as the text, we can construct
a statistical model of the token sequences it contains. However, current gazetteers are overly specific
in two respects. First, consistent with (Carroll, 1983), they do not always represent Category Ellipsis
and Location Ellipsis. To mimic these processes, we judiciously apply a skip-gram method to token
sequences in the gazetteers, thereby including, for example, “Balalok School” as a variant of the com-
plete name (which is a special case of Category Ellipsis where we retain only the last category token
and drop the other ones). Second, we eliminate auxiliary or ambiguous gazetteer content (e.g., “George,
Washington”) that would otherwise threaten recall.

Here we answer the research question: Can we accurately and rapidly spot location mentions in
text solely relying on a statistical language model synthesized from augmented and filtered region-
specific gazetteers? Although LNEx works on a targeted Twitter stream collected using event-specific
keywords, it does not rely on rarely available tweets geo-coordinates and it does not need any supervision
(i.e., training data). It is well-suited for stream processing, and needs only freely available data. Our
contributions include:

1. A method for preparing high-quality gazetteers from online open data, such as OSM, Geonames,
and DBpedia, and deriving a language model from them; and a comprehensive analysis of the
contribution of gazetteer quality to overall performance.

2. A referent corpus representing the full scope of location name extraction challenges and a challenge-
based categorization of place names found in the corpora resulting from targeted streams. We
annotate three different Twitter streams from flooding events in three different locations: the 2015
Chennai flood, the 2016 Louisiana flood, and the 2016 Houston flood, for our own evaluation and
also for use by others.

3. A demonstration that LNEx convincingly outperforms commercial-grade NER and Twitter-specific
tools with at least a 33% improvement on average F-Score. Examples reveal the true challenges of
location name extraction and the locus of tool failure in the face of these challenges.

LNEx provides the foundation for localizing information, and with increased availability of open data,
we expect our approach based on region-specific knowledge to be widely applicable in practice.
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2 The LNEx Method

We discuss the details of LNEx in four subsections. First, we present the general idea of statistical
inference via n-gram models; the core of LNEx is a statistical language model consisting of a probability
distribution over sequences of words (collocations) that represent location names in preexisting, region-
specific gazetteers. Then we separately discuss several modifications to both gazetteers and text samples,
including gazetteer augmentation and filtering, and tweet preprocessing. Finally, we illustrate the full
location analysis and matching process that reliably spots location names.

2.1 Statistical Inference via n-gram Models

LNEx constructs an n-gram model from the collocations that exist in the gazetteer to determine the valid
location names (LNs) that might appear in tweets. Given tweet content such as “texas ave is closed”, the
model can then check the validity of one to n-grams. From the gazetteer, “texas” and “ave” are valid
gazetteer unigrams but “is” and “closed” are not. Similarly, “texas ave” is a valid and preferred bigram
(over two unigrams).

Specifically, as shown in Algorithm 1, we first tokenize all location names in the gazetteer to construct
the n-gram model and then save the resulting lists of unigrams, bigrams, and trigrams (Lines 2-5). Next,
for bigrams and trigrams, in Lines 6-9 we create conditional frequency distributions (CFD) to count the
collocations (i.e., c(·) in equations 1-2). Conditional probability distributions (CPD) are then constructed
from the recorded n-grams using maximum likelihood estimation (MLE). We make the assumption that
only the previous two words determine the probability of the next word (Markovian assumption of order
two)3. MLE assumes zero probability values to tokens missing from the gazetteers. This data sparsity
problem is mitigated by augmenting the gazetteers with location name variants (see Section 2.2). In lines
11-13, we determine the validity of an n-gram (the string s) using the boolean function VALID-N-GRAM

with the help of equations 1-4, where c(wy
x) ≡ c(wxwx+1 . . . wy), w

y
x is the collocation count (i.e., the

occurrences of the consecutive words, wx to wy), P (wz|wy
x) is the conditional probability of a word wz

given previous collocation wy
x, and the chain of probabilities P1 (for unigrams), P2 (for bigrams), and P3

(for tri or larger grams).

P (wz|wy
x) =

c(wz
x)

c(wy
x)

(1)

P1 = P (w1
1) =

c(w1)∑|unigrams|
i=1 c(wi)

(2)

P2 = P (w2
1) = P1 × p(w2 | w1

1) (3)

P (wn
1 ) = P2 ×

n∏
i=3

P (wi | wi−1
i−2), n ≥ 3 (4)

2.2 Gazetteer Augmentation and Filtering

Algorithm 1 Language Model Generation
1: procedure COMPUTE-MODEL(Gazetteer)
2: for ln ∈ Gazetteer do
3: unigrams← tokenize(ln);
4: bigrams, trigrams← generate from unigrams;
5: end for
6: for n-grams ∈ {bigrams} ∪ {trigrams} do
7: CFD← create CFD using n-grams;
8: CPD← create CPD using CFD;
9: end for
10: end procedure

11: procedure VALID-N-GRAM(string = s): boolean
12: wn

1 = (w1, . . . , wn)← tokenize(s);
return P (wn

1 ) > 0 . calculated using the equations (1-4);
13: end procedure

We faced two primary challenges when building our language model using raw gazetteers, which are not
adequately explored in (Middleton et al., 2014; Weissenbacher et al., 2015):

1. Conditional Collocation Contractions: Some atomic n-gram location names (collocations) can-
not be shortened, e.g., “New York”. However, contraction does preserve the meaning of some
longer names, especially when the first and the last words denote a specific part and a generic part
respectively, such as in “Balalok School”.

2. Auxiliary and Spurious Content: Gazetteer entries may contain extraneous content that can cause
location matching to fail. Cleaning such entries can improve matching reliability (see Table 1).

3We found in our dataset that roughly 98% of location mentions in tweets have less than three words.
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To address these challenges, we took inspiration from Category Ellipsis (for collocation contraction)
and Location Ellipsis (for filtering the auxiliary content) as follows:

1. Skip-grams: Given a location name t1 . . . tn, we retain t1 and tn while varying t2 . . . tn−1. To
avoid adding “City York” as a legitimate variant of the location name “City College of New York”,
we require tn to be a location category name (e.g., building, road). Therefore, “Balalok Matric-
ulation Higher Secondary School” generates {Balalok School, Balalok Secondary School,

...}. This technique results in a small number of contractions that are either useful collocations or
are too random to cause many false positives (Guthrie et al., 2006).

2. Filtering: To address bracketed auxiliary content, we compiled a generic list of phrases to remove
specific words on a case-by-case basis (e.g., 1-2 in Table 1). The remaining bracketed names are
deemed legitimate alternatives (e.g., 3-4 in Table 1). We treat hyphenated location names as Loca-
tion Ellipsis and split them on the hyphen and add the two splits (e.g., 5 in Table 1). We expect that
the majority of these location names represent a partonomy relationship where the hyphen may be
read as a “part of” relation between split tokens. We do not add the second token as a variant when
it already exists in the gazetteer on its own as location name entity (e.g., “Hammond” in “Pilot -
Hammond”).

Content Description Example Gazetteer Record

1 Descriptive Tags (Private Road)

2 Life-cycle/Status Tags Little Rock School (historical)

3 Alternative/Old Names Scenic Road (Frontage Road)

4 Acronyms International House of Pancakes (IHOP)

5 Hyphenations Cars India - Adyar, Pilot - Hammond

Table 1: Extraneous text in raw gazetteers

These two methods augment and filter partial OSM,
Geonames, and DBpedia gazetteers sliced from the origi-
nal sources using a bounding box. Further, we can attach
the metadata of the original location name to the gener-
ated variants. Moreover, by treating derived names as syn-
onyms for existing names, we avoid creating additional
demands on disambiguation or equivalencing. We add the
derived, variant location name to the gazetteer as long as it does not collide with an existing location
name. Additional filtering of proposed variants is required to prevent false alarms. Similar to the use
case in (Weissenbacher et al., 2015; Gelernter and Balaji, 2013), we compiled a list of 11,203 words
including 678 inseparable bigrams, such as “Building A”, as gazetteer stop words. This list also includes
unusual location names (e.g., “Boring” in Maryland and “Why” in Arizona) and proper nouns (e.g.,
“James” in Mississippi) that could appear as non-location tokens. We then eliminate from all gazetteers
the location names that overlap with our gazetteer stop words to reduce false positives.

2.3 Tweet Preprocessing

To complement the gazetteer preprocessing, we also require potentially non-trivial tweet preprocessing.
We start by removing the retweet handles, URLs, non-ASCII characters, and all user mentions. Then,
we tokenize tweets using TweetMotif’s Twokenizer (O’Connor et al., 2010), which treats hashtags, men-
tions, and emoticons as a single token. We do not tokenize on periods (e.g., “U.S.”).

Hashtag Segmentation: In our datasets, on average, around 29% of the hashtags include location
names. Excluding hashtags used to crawl the data, around 17% of the unique hashtags contain locations.
As the number of locations in hashtags is significant, similar to (Malmasi and Dras, 2015), we adopted a
statistical word segmentation algorithm to break hashtags for location spotting (Norvig, 2009).

Spelling Correction: We consider a tweet token as misspelled if it is an out-of-vocabulary token,
where the vocabulary is gazetteer words and a large English vocabulary word list4. LNEx corrects
all misspelled tokens using the Symmetric Delete Spelling Correction algorithm (SymSpell)5 that is six
orders of magnitude faster than Norvig’s spelling corrector (Norvig, 2009), which was used by (Gelernter
and Zhang, 2013) in their location extraction tool. As we shall see, spelling correction has only a small
influence on system accuracy.

4https://github.com/norrissoftware/words3
5https://github.com/wolfgarbe/symspell
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2.4 Extracting Location Names using LNEx

new avadi rd

road

new avadi avadi road

new avadi road

chennai

New Avadi Rd is closed #chennaiflood

rd

road
new avadi chennai

a

b

vectors

Figure 1: Extracting Locations using LNEx

After the modifications to gazetteers and texts,
LNEx extracts locations as illustrated in Fig. 1.
In a , LNEx reads the raw tweet text, prepro-
cesses it (as in Section 2.3) starting with case-
folding. After tokenizing the tweet, the hash-
tag segmenter breaks hashtags into tokens. Later,
stop words are used to split a tweet into consec-
utive word fragments where each tweet split of size n can have zero to n potential location names. We
custom build the tweet stop list starting with around 890 words6 excluding the gazetteer unigrams.

LNEx now takes each tweet split and converts its tokens into a vector of tokens v using two dictio-
naries: the USPS street suffixes dictionary7 and the English OSM abbreviations dictionary8. This adds
possible expansions and abbreviations of a token (e.g., “Rd” to “Road”, and vice versa). This overcomes
the lexical variations between location mentions in tweets and their corresponding gazetteer entries.

In b , the language model is used to find the valid n-grams from the Cartesian product of the con-
secutive vectors. It builds a bottom up tree for each tweet split starting from 1 to n-grams by gluing
the consecutive tokens together if they represent a valid segment in the gazetteer. We improve the speed
of the algorithm significantly by splitting the tweet and eliminating invalid n-grams (i.e., n-grams with
zero probability values). LNEx then selects a subset of valid n-grams from the tree; for the overlapping
n-grams, we prefer the longest full mentions (e.g, “New Avadi Road” over “Avadi Road”) and keep both
if they are of the same length. When full location names appear inside partial ones, we keep only full
names (e.g., extracting “Louisiana” from “The Louisiana”).

Time and Space Complexities: LNEx extracts and links a full location mention to its corresponding
gazetteer entry through a simple dictionary lookup that takes constant timeO(1). The location extraction
time is bounded by the time for creating the bottom up tree of tokens which takes O(|v|s) where |v| is
the length of the longest vector of token synonyms (i.e., all the expansions and abbreviations of a token)
and s is the largest number of tokens with synonyms in a location name. Luckily, splitting the tweet into
smaller fragments using stop words significantly lowers the asymptotic growth of the algorithm, thereby
enabling stream processing. In practice, for our dictionaries and gazetteers, |v| ≤ 4 and s ≤ 3. So, a
pessimistic upper bound on the number of candidates for each location (though rarely realized) is 43.
The space complexity of the method is bounded by the product of number of gazetteer entries, L, and the
number of variants of a location name (Skip-gram method 1), that is, 2m−2, where m is the number of
tokens in a location name. Effectively, the space complexity is O(L.2m−2) where typically, 2 ≤ m ≤ 5.
Further, according to our tests, LNEx needed only up to 650 MB of memory to initialize and is able to
process, on average, 200 tweets per second.

3 Experimental Results

To demonstrate the effectiveness of our context-aware location extractor, we used a set of event-specific
hashtags and keywords to collect 4,500 geographically limited, disaster-related tweets from three differ-
ent targeted streams corresponding to floods in Chennai, Louisiana, and Houston. Below, we categorize
and annotate these tweets used for benchmarking each component of LNEx, and for comparing LNEx
with other state-of-the-art tools for the location extraction task.

3.1 Benchmarking and Annotations

Consistent with the problem of determining whether a location mention is inside the area of interest, our
benchmark categorization scheme is not content based as in (Matsuda et al., 2015; Gelernter and Balaji,
2013). To better identify and characterize the challenges in extracting location names accurately, our

6http://www.ranks.nl/stopwords
7http://pe.usps.gov/text/pub28/28apc\_002.htm
8wiki.openstreetmap.org/wiki/Name\_finder:Abbreviations
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annotation scheme is based on where these locations lie in relation to the area of interest. For example,
with respect to Chicago, IL, USA:

1. inLOC: Locations inside the area of interest, (e.g., Millennium Park or Burlington Ave.)
2. outLOC: Locations outside the area of interest, (e.g., Central Park, 5th Ave, New York.)
3. ambLOC: Ambiguous locations that need context for identification, (e.g., “our house”)
In contrast to (Matsuda et al., 2015; Gelernter and Balaji, 2013), our categorization is not based on

location types (e.g., buildings, facilities, schools) but on the relative position (i.e., inLOC or outLOC)
and the nature of the location mention (i.e., inLOC or ambLOC). This approach identifies the true scope
of challenges in extracting location names. Other schemes that annotate for a limited set of location
types, such as “Geoparse Twitter Benchmark Dataset” (Middleton et al., 2014), miss obvious location
mentions in tweets, such as “New Zealand” and “Christchurch”, making the dataset incompatible for
testing the tools mentioned in this paper including LNEx.9

RT @GraceLimWeather: Evangeline Parish Sherif

20 people evacuated from flooded homes in Ville Platte. #lawx

Toponym

1

2

brat/HazardSEES-BRAT/Louisiana/final_set/764483789040918529

OKLogin required to perform "searchT

ambLoc inLoc inLoc

Figure 2: Example Annotations using BRAT

Tweet Annotations Figure 2 shows an example
of manual annotation from the Louisiana flood
tweets using the BRAT tool (Stenetorp et al.,
2012). It allows us to define search functionali-
ties and additional resources for the annotators to use such as Google Maps.

The annotators annotated three datasets: the 2015 Chennai flood, the 2016 Louisiana flood, and the
2016 Houston flood. In Chennai, they spotted 4,589 location names (75% inLOC, 4% outLOC, and 21%
ambLOC); in Louisiana, 2,918 (66% inLOC, 13% outLOC, and 22% ambLOC); and in Houston, 4,177
(66% inLOC, 7% outLOC, and 27% ambLOC). We randomly selected 1,000 tweets (500 each from
Chennai and Louisiana) as a development set and the remaining 3,500 as the test set for evaluation.

3.2 Evaluation Strategy
Because BRAT records the start and the end character offsets of the annotated LNs, we evaluate the
extraction task by checking the character offsets of the spotted location name in comparison with the
annotated data. We used the standard comparison metrics: Precision, Recall, and the balanced F-Score.
In the case of overlapping or partial matches, we penalize all tools by adding 1

2FP (False Positive)
and 1

2FN (False Negative) to the precision and recall equations (e.g., if the tool spots “The Louisiana”
instead of “Louisiana”).

We evaluate all tools based on the category of the extracted location in our annotation scheme. For
the inLOC mentions, we count all hits and misses of a tool and ignore all hits when the category of the
extracted location is outLOC or ambLOC. However, we take a particularly conservative approach and
additionally penalize LNEx for extracting location names of outLOC and ambLOC categories, counting
them as false positives (FPs) as our tool is not supposed to extract these.

Spell Checking: This led to 1% increase in recall but the F-Score decreased by 2% on average due
to the influence of increased false positives on precision. In the final system, we excluded the spelling
corrector component.

Hashtag Breaking: We evaluated the performance of the hashtag breaking component only on the
hashtags that contain locations. The accuracies were 97%, 87%, and 93% for Chennai, Louisiana, and
Houston respectively, reduced due to examples such as “#lawx”, which was broken into “law” and “x”.

Picking a Gazetteer: The augmentation and filtering of gazetteers improved the F-Scores (see Figure
3-a). After this process, combinations of gazetteer sources had similar performance where the difference
between the worst and the best was around 0.02 F-Score units (see Figure 3-b). In the final system,
we relied on OSM, which performed the best. Moreover, DBpedia is not focused on geographical in-
formation; therefore, it does not contain the metadata useful for the system’s future use (e.g., extents
and full addresses). Also, OSM has more fine-grained locations and more accurate geo-coordinates than
Geonames (Gelernter et al., 2013).

9Our dataset can be used to test any location extraction tool by ignoring the optional additional expressivity, which makes
our dataset more compatible than other available ones.
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Figure 3: (a) Raw vs. augmented and filtered (AF) gazetteers combinations. (b) Combinations Perfor-
mance. Each of the seven combinations is a subset of {OSM Geonames DBpedia}.

Google NLP Location, Organization

OpenCalais
City, Company, Continent, Country, Facility,

Organization, ProvinceOrState, Region, TVStation

DBpedia Spotlight Place, Organization

OSU TwitterNLP Geo-Location, Company, Facility

TwitIE-Gate Location, Organization

Table 2: Types considered as Locations per tool
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Figure 4: Random Sample Evaluation.

Comparing LNEx with other tools: We compared LNEx with the following tools:

1. Commercial Grade: Google NL10, OpenCalais11, and Yahoo! BOSS PlaceFinder12. All of these
tools have REST APIs and are black box tools that use Machine Learning.

2. General Purpose NER: Stanford NER and OpenNLP Name Finder. Stanford NER learns a linear
chain Conditional Random Field (CRF) sequence model (Finkel et al., 2005), while OpenNLP uses
the maximum entropy (ME) framework (Bender et al., 2003). We trained both tools interchange-
ably on our annotated datasets in addition to all the data from W-NUT ’1613 while retaining the
annotations and unifying the classes we consider as locations (i.e., geo-loc, company, facility) into
one type. We used LNEx-OSM gazetteer’s features while training Stanford NER. Additionally, we
used DBpedia Spotlight (Mendes et al., 2011).

3. Twitter NLP: OSU Twitter NLP (Ritter et al., 2011) and TwitIE-Gate (Bontcheva et al., 2013). Both
are pipelined systems of POS-tagging followed by NER. TwitIE-GATE also supports normalization,
gazetteer lookup, and regular expression-based tagging. For fair comparison, we also augmented
them with LNEx OSM gazetteers.

4. Twitter Location Extraction: Geolocator 3.0 (Gelernter and Zhang, 2013) and Geoparsepy (Mid-
dleton et al., 2014). Geolocator 3.0 uses a tweet-trained CRF classifier and other rule-based models
to extract street names, building names, business names, and unnamed locations (i.e., location names
containing a category such as “School”).

Chennai Louisiana Houston AVG

P R F P R F P R F F

Google NLP 0.40 0.49 0.44 0.55 0.75 0.64 0.39 0.51 0.44 0.51

OpenCalais 0.43 0.10 0.17 0.81 0.77 0.78 0.62 0.35 0.45 0.47

DBpedia Spotlight 0.31 0.44 0.36 0.57 0.88 0.70 0.35 0.53 0.42 0.50

Yahoo! PLaceFinder 0.67 0.39 0.49 0.83 0.80 0.81 0.64 0.42 0.50 0.61

Stanford NER 0.72 0.29 0.41 0.78 0.42 0.55 0.74 0.32 0.45 0.47

OpenNLP 0.55 0.15 0.24 0.62 0.19 0.29 0.60 0.23 0.34 0.29

OSU TwitterNLP 0.74 0.40 0.52 0.84 0.69 0.76 0.66 0.39 0.49 0.59

TwitIE-Gate 0.51 0.36 0.43 0.66 0.84 0.74 0.35 0.39 0.37 0.52

Geolocator 3.0 0.43 0.54 0.48 0.32 0.71 0.44 0.38 0.58 0.46 0.46

Geoparsepy 0.41 0.28 0.33 0.45 0.72 0.55 0.44 0.46 0.45 0.45

LNEx-RawGaz 0.80 0.78 0.79 0.51 0.80 0.62 0.63 0.66 0.64 0.69

LNEx-AFGaz 0.91 0.80 0.85 0.83 0.81 0.82 0.87 0.67 0.76 0.81

Table 3: Tools vs. LNEx with a raw (RawGaz) or
augmented and filtered gazetteer (AFGaz).

All tools have been evaluated using the same
metrics and on the same annotated data. In the
case of hashtags, we count all hits for all tools and
when a tool missed, we penalized only the ones
that were designed to break hashtags (namely,
TwitIE-Gate and LNEx). Additionally, we con-
sider all spotted mentions from PlaceFinder, Ge-
olocator 3.0, Geoparsepy, Stanford NER, and
OpenNLP as location names but, for other tools,
we consider only the entity types in Table 2 as lo-
cation entities.

Fig. 4 shows that the prevalence of various
challenges differ in the three corpora. Neverthe-

10https://cloud.google.com/natural-language/
11http://www.opencalais.com/
12https://developer.yahoo.com/boss/geo/
13http://noisy-text.github.io/2016
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less, LNEx outperformed all other tools on all datasets in terms of F-Score, and the average F-Score
(see Table 3). LNEx showed stability on the test and development sets from Louisiana with only a 0.2%
F-Score reduction and around a 2.6% reduction on the test set from Chennai.

The augmentation and filtering method significantly improved the average F-Score from 0.69 to 0.81
(See Table 3). However, limitations of the gazetteer augmentation and filtering methods did contribute to
lowering precision. For example, on average, around 5% of the extracted location names were outLOC

and ambLOC, mistakenly extracted from Chennai, Louisiana, and Houston tweets. Example errors in-
clude the augmentation of location names such as “The x Apartments” to “The Apartments”, causing
LNEx to extract the phrase “The Apartments” as an actual full location name. Fixing such limitations
should contribute to around 2% F-Score improvement on average.

Original
Text

sou th kr koil street near Oxford school.west mambalam..

We r lucky where I am in New Iberia. #PrayForLouisiana #lawx

Didn’t Houston have a bad flood last year now again poor htown

Manual
Annotations
& Types

(

misspelling︷ ︸︸ ︷
sou th kr︸︷︷︸

T6

koil street) near

T6︷ ︸︸ ︷
(Oxford school).(west mambalam)..

We r lucky where I am in

T1︷ ︸︸ ︷
(New Iberia).

T3︷ ︸︸ ︷
#PrayFor(Louisiana)

T4︷ ︸︸ ︷
#( la︸︷︷︸

T5

)wx

Didn’t (Houston)︸ ︷︷ ︸
T1

have a bad flood last year now again poor (htown)︸ ︷︷ ︸
T5

Google
NLP

sou th kr (koil street) near (Oxford) school.west (mambalam)..

We r lucky where I am in (New Iberia). #PrayForLouisiana #lawx

Didn’t (Houston) have a bad flood last year now again poor htown

OpenCalais

sou th kr koil street near (Oxford school).west mambalam..

We r lucky where I am in New Iberia. #PrayForLouisiana #lawx

Didn’t (Houston) have a bad flood last year now again poor htown

DBpedia
Spotlight

sou th kr koil street near (Oxford) school.west (mambalam)..

We r lucky where I am in (New Iberia). #PrayForLouisiana #lawx

Didn’t (Houston) have a bad flood last year now again poor htown

Yahoo!
PlaceFinder

sou (th) kr koil street near (Oxford) school.west mambalam..

We r lucky where I am in (New Iberia). #PrayForLouisiana #lawx

Didn’t Houston have a bad flood last year now again poor htown

Stanford
NER

sou th kr koil street near Oxford school.west mambalam..

We r lucky where I am in (New Iberia). #PrayForLouisiana #lawx

Didn’t Houston have a bad flood last year now again poor htown

OpenNLP

sou th kr (koil street) near (Oxford) school.west mambalam..

We r lucky where I am in (New Iberia.) #PrayForLouisiana #lawx

Didn’t Houston have a bad flood last year now again poor htown

OSU
TwitterNLP

sou th kr koil street near (Oxford) school.west mambalam..

We r lucky where I am in (New Iberia). #PrayForLouisiana #lawx

Didn’t Houston have a bad flood last year now again poor htown

TwitIE-Gate

sou th kr koil (street) near (Oxford) school.(west mambalam)..

We r lucky where I am in New Iberia. #PrayForLouisiana #lawx

Didn’t Houston have a bad flood last year now again poor htown

Geolocator
3.0

(sou th) (kr) (koil) street near (Oxford school).(west mambalam)..

We r lucky where I am in (New Iberia). #PrayForLouisiana #lawx

Didn’t (Houston) have a bad flood last year now again poor (htown)

Geoparsepy

sou (th) (kr) koil street near (Oxford) school.west mambalam..

We r lucky where I am in (New (Iberia)). #PrayForLouisiana #lawx

Didn’t (Houston) have a bad flood last year now again poor htown

sou th kr koil street near (Oxford school).(west mambalam)..

LNEx We r lucky where I am in (New Iberia). #PrayFor(Louisiana) #lawx

Didn’t (Houston) have a bad flood last year now again poor htown

Table 4: Example tool outputs: bracketed bold
text are the identified LNs and braces highlights
the types from Fig. 4.

We trained Stanford NER and OpenNLP to emu-
late their use in other studies mentioned in Section
4. Their performances were calculated by inter-
changeably training them using three datasets at a
time and testing on the fourth one (the gazetteer of
the area of the test data was also used in training
the Stanford NER models). We always used the
W-NUT ’16 dataset to train the models with more
than 10,000 tweets each time.

We observed that the ill-formatted text of tweets
with ungrammatical text and missing orthographic
features impact the F-Score of tools we com-
pared with LNEx. While the performance of each
tool differs, we observed that Google heavily re-
lies on orthographic features and expects gram-
matical texts (even though it scored a 0.38 av-
erage F-Score). Additionally, TwitIE-GATE was
not always successful in extracting location names
from hashtags or text even if these location names
were part of the tool’s gazetteers. Finally, Open-
Calais extracts only well-known location names of
coarser granularity than street and building levels
unless a location has an attached location category
(e.g., school or street).

Illustrative Examples: Table 4 shows the com-
parative handling of three tweets one each from
Chennai, Louisiana, and Houston datasets, cover-
ing most challenging cases for all the tools. The
location name “Oxford school” allowed us to ex-
amine if a tool relies on capitalization for delimita-
tion. Only OpenCalais, Geolocator and LNEx were
able to extract the name correctly while the rest ei-
ther partially extracted it or missed it. For exam-
ple, PlaceFinder extracted “Oxford” and geocoded
it with the geocodes of Oxford city in England. Al-
though Stanford NER and OpenNLP were trained
on the same datasets, OpenNLP extracted Oxford
while Stanford NER did not, which suggests that
the cue word “near” was insufficient evidence for
Stanford NER to spot at least Oxford. Correspond-
ingly, since “New Iberia” is a correctly capitalized full location name, almost all tools were able to
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extract it. However, TwitIE-Gate missed it although it is part of the gazetteer we added to the tool, and
Geoparsepy extracted Iberia in addition to the full mention, not favoring the longest mention as LNEx.
OpenCalais is a black box so we don’t know why it failed.

Regarding T3-T5 annotations, LNEx and TwitIE-Gate are designed to break hashtags but TwitIE-Gate
was not able to extract any locations from the hashtags in the table. LNEx extracted “Louisiana” but
was not able to extract “la” from “#lawx” due to the statistical method which broke the hashtag into
“law” and “x” since this combination is more probable. Only Geolocator was able to extract the Houston
nickname “htown”. In the future, a dictionary of region-specific acronyms, abbreviations, and nicknames
can augment LNEx’s region-specific gazetteers.

Google NLP does not handle T6. Adding space between the dot and “west” to create “. . . school.
west . . . ”, results in the extraction of “west mambalam” but omits “Oxford school”. Google NLP relies
on capitalization, so changing the case of “s” to create “Oxford School” does help. OpenCalais cannot
extract “west mambalam” despite fixing all grammatical mistakes, normalizing the orthographic features,
and even introducing cue words. The tool only extracts well-known location names of coarser granularity
than street and building levels unless they have an attached location category (e.g., school or street).
PlaceFinder, on the other hand, tries to find geocodable location names in text. Therefore, the tool
extracts “th” as the country code of Thailand and “Oxford” as the city in England. Hence, geocoding is
influencing some of the mistakes of the tool.

4 Related Work

Twitter messages (tweets) lack features exploited by main stream NLP tools. Informality, ill-formed
words, irregular syntax and non-standard orthographic features of tweets challenge such tools (Kauf-
mann and Kalita, 2010). We agree with (Baldwin et al., 2013) that some issues might be exaggerated.
Indeed we found that spelling corrections only contributed to 1% recall improvement. Nevertheless, text
normalization alone is insufficient for NER (Derczynski et al., 2015). Specially designed tools such as
(Ritter et al., 2011; Gelernter and Zhang, 2013) use pipelined systems of POS tagging followed by NER.
The latter also perform Regex tagging, normalization, and gazetteer lookup.

Relying on the orthographic features for POS tagging or Regex tagging, previous methods extract
locations from the text chunks and phrases of sentences using the following techniques:

1. Gazetteer search or n-gram matching: Li et al. (2014) and Gelernter and Zhang (2013) use a
gazetteer matching technique that relies on a segment-based inverted index. Sultanik and Fink
(2012) use an exhaustive n-gram technique. Middleton et al. (2014) use location-specific gazetteers
for matching phrases from tweets. TwitIE-GATE uses a gazetteer lookup component. All of these
techniques do not deal with the important issue of the gazetteers’ auxiliary content and noise.

2. Handcrafted rules: Weissenbacher et al. (2015) and Malmasi and Dras (2015) use pattern and
Regex matching which rely on cue words or orthographic features for POS-tagging. TwitIE-GATE
adapts rules from ANNIE (Cunningham et al., 2002) for extraction.

3. Supervised Methods: Tweet-trained models: The majority of the methods trained Stanford NER
on tweets (Gelernter and Zhang, 2013; Yin et al., 2014) or retrained OpenNLP (Lingad et al., 2013).
News-trained models: Malmasi and Dras (2015) use tools like Stanford NER and OpenNLP.

4. Semi-supervised methods: Ji et al. (2016) use beam search and structured perceptron for extraction
and linking to Foursquare entities. However, they did not address the noise that is prevalent in such
sources (e.g., “my sofa” or “our house”) (Dalvi et al., 2014).

The closest works to ours are TwiNER (Li et al., 2012) and LEX (Downey et al., 2007). Both use
Microsoft Web n-grams (which capture language statistics) for chunking but the former uses DBpedia
for entity linking. However, our method exploits a region-specific gazetteer for delimitation and linking.
Moreover, LEX worked with web data and relies heavily on capitalization.

Finally, few other methods extract locations from hashtags. Malmasi and Dras (2015) uses a statistical
hashtag breaker technique similar to ours. Ji et al. (2016) removes only the # symbol and treats the hash-
tag as a unigram. Yin et al. (2014) uses a greedy maximal matching method for breaking. TwitIE-GATE
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uses two methods for hashtag breaking: a dynamic programming-based method for finding subsequences
and a camel-case-based method for tokenization.

5 Conclusions and Future Work

LNEx accurately spots locations in text relying solely on statistical language models synthesized from
augmented and filtered region-specific gazetteers. It outperforms state-of-the-art techniques and main-
stream location name extractors. By exploiting the knowledge in the gazetteer, we extract (delimit)
location mentions and then materialize them as location metadata for future/further processing. LNEx
does not employ any training and does not depend on syntactic analysis or orthographic conventions. We
compensate for limitations in fixed phrase matching with gazetteer augmentation and filtering. Although
we do not solve the disambiguation problem here, still the geo/geo ambiguity is reduced by preserving
the spatial context through location-specific gazetteers. Furthermore, systematic gazetteer augmentation
ties legitimate variants to known locations, minimizing potential ambiguity.

Certainly, LNEx does not solve all location extraction problems. It actually presents an effective
precision-recall trade-off apparent in the F-Score. But as the method is driven by the linking procedure,
it does not extract location names missing from gazetteers (e.g., “our house”). However, in the future,
we might consider extracting them at a reduced cost by integrating LNEx with an incremental learning
method (Al-Olimat et al., 2018). Additionally, a more sophisticated name model that ignores the generic
parts and retains the specific parts when augmenting a location name (e.g., adding “Sam’s” as a variant
of “Sam’s Club”) can be used (Dalvi et al., 2014).
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