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Abstract

We reproduce the Structurally Constrained Recurrent Network (SCRN) model, and then regular-
ize it using the existing widespread techniques, such as naïve dropout, variational dropout, and
weight tying. We show that when regularized and optimized appropriately the SCRN model can
achieve performance comparable with the ubiquitous LSTMmodel in language modeling task on
English data, while outperforming it on non-English data.

Title and Abstract in Russian

Воспроизведение и регуляризация SCRN модели

Мы воспроизводим структурно ограниченную рекуррентную сеть (SCRN), а затем
добавляем регуляризацию, используя существующие широко распространенные методы,
такие как исключение (дропаут), вариационное исключение и связка параметров. Мы
показываем, что при правильной регуляризации и оптимизации показатели SCRN
сопоставимы с показателями вездесущей LSTM в задаче языкового моделирования на
английских текстах, а также превосходят их на неанглийских данных.

1 Introduction

Recurrent neural networks (RNN) have demonstrated tremendous success in sequence modeling in gen-
eral and in language modeling in particular. The most basic RNN (Elman, 1990) suffers from the problem
of vanishing and exploding gradients (Bengio et al., 1994) and is hard to train efficiently. One of the most
widespread and efficient alternatives to the basic RNN is the Long-Short Term Memory (LSTM) model
(Hochreiter and Schmidhuber, 1997), which effectively addresses the problem of vanishing gradients.
However, LSTM is a fairly complex model with excessive number of parameters and its inner function-
ality is not obvious. This complexity has motivated some of the researchers to find more apparent and
less complex alternatives. One of such alternative models is a Structurally Constrained Recurrent Net-
work (SCRN) proposed by Mikolov et al. (2015). They encouraged some of the hidden units to change
their state slowly by making part of the recurrent weight matrix close to identity, thus forming a kind of
longer term memory and showed that their SCRN model can outperform the simple RNN and achieve
the performance comparable with the LSTM under no regularization and small parameter budget. It is
natural to try to regularize the SCRN model under larger budgets: Will it approach the performance of
LSTM? Our experiments show that (1) under naïve dropout the SCRN demonstrates performance close
to that of the LSTM, but (2) under variational dropout and weight tying the LSTM demonstrates better
performance.

2 Related Work

There has been several attempts on simplifying the ubiquitous LSTM model while not losing in perfor-
mance. E.g., Ororbia II et al. (2017) introduced Delta-RNN architecture for which SCRN serves as a
This work is licensed under a Creative Commons Attribution 4.0 International License. License details: http://
creativecommons.org/licenses/by/4.0/.
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predecessor. They showed that, when regularized using naïve dropout (Zaremba et al., 2014), Delta-
RNN performs comparably to LSTM and GRU (Chung et al., 2014). However, they did not compare to
regularized SCRN, and they did not consider more recent regularization techniques, such as variational
dropout (Gal and Ghahramani, 2016) and weight tying (Inan et al., 2017; Press and Wolf, 2017).
Lei and Zhang (2017) proposed the Simple Recurrent Unit (SRU) architecture, a recurrent unit that

simplifies the computation and exposes more parallelism. In SRU, the majority of computation for each
step is independent of the recurrence and can be easily parallelized. SRU is as fast as a convolutional
layer and 5–10x faster than an optimized LSTM implementation. The authors study SRUs on awide range
of applications, including classification, question answering, language modeling, translation and speech
recognition. However, one important thing which needs to be mentioned is that this model also exploits
the idea of highway connections (Zilly et al., 2017) letting the input directly flow into the hidden state.
The use of highway connections could be the main reason why the model achieves high performance,
especially in a multi-stacked setting.
Lee et al. (2017) introduced Recurrent Additive Network (RAN), a new gated RNN which is distin-

guished by the use of purely additive latent state updates. At every time step, the new state is computed
as a gated component-wise sum of the input and the previous state, without any of the non-linearities
commonly used in RNN transition dynamics. The authors show that the model performs on par with
the LSTM, and claim that it has significantly less parameters. However, in their language modeling ex-
periments the authors specify only the number of parameters in the recurrent units, and do not take into
account parameters of the embedding and softmax layers, which actually make up most of the language
model parameters.

3 Baseline SCRN Model

Let W be a finite vocabulary of words. We assume that words have already been converted into in-
dices. Based on one-hot word embeddings x1:k = x1, . . . , xk for a sequence of words w1:k, the base-
line SCRN model (Mikolov et al., 2015) produces two sequences of states, s1:k and h1:k, according to1

Figure 1: SCRN cell.

st = (1− α)xtB+ αst−1, (1)
ht = σ(xtA+ stP+ ht−1R), (2)

where B ∈ R|W|×ds , A ∈ R|W|×dh , P ∈ Rds×dh , R ∈
Rdh×dh , ds and dh are dimensions of st and ht, σ(·) is
the logistic sigmoid function. Mikolov et al. (2015) refer
to st as a slowly changing context state, and to ht as a
quickly changing hidden state. The last couple of states
(sk,hk) is assumed to contain information on the whole
sequencew1:k and is further used for predicting the next
word wk+1 of a sequence according to the probability
distribution

Pr(wk+1|w1:k) = softmax(skU+ hkV), (3)

where U ∈ Rds×|W| and V ∈ Rdh×|W| are output embedding matrices. For the sake of simplicity we
omit bias terms in (2) and (3).
Training the model involves minimizing the negative log-likelihood over the corpus w1:K :

−
∑K

k=1 log Pr(wk|w1:k−1) −→ minΘ, (4)

which is usually done by truncated backpropagation through time (Werbos, 1990). Here Θ denotes the
set of all model parameters.

1Vectors are assumed to be row vectors, which are right multiplied by matrices (xW + b). This choice is somewhat non-
standard but it maps better to the way networks are implemented in code using matrix libraries such as TensorFlow.
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Notice that SCRN is a slight modification of the vanilla RNN model (Elman, 1990), and its simplicity
(see Fig. 1) is in stark contrast with the complexity of the widespread LSTM model.
Dense embeddings: The original model spends

2 · |W| · (ds + dh) (5)

parameters to embed words into dense vectors at input and at output. We believe that it is more beneficial
to first embed words wt into dense vectors wt = xtE ∈ Rdh using only one embedding matrix E ∈
R|W|×dh and then use wt instead of xt in (1) and (2) with the appropriate change of shapes for matrices:
B ∈ Rdh×ds andA ∈ Rdh×dh . In this case, the model spends |W| · (2dh+ds) parameters on input/output
embeddings, which is ds · |W| parameters less than (5). E.g., on the Penn Tree Bank (PTB) dataset
(Marcus et al., 1993), where |W| = 10, 000, the reduction is 1M parameters for the SCRN model with
ds = 100.

4 Stacking and Regularizing the SCRN

4.1 Stacking recurrent cells
It is well known that stacking at least two layers in recurrent neural networks is beneficial, but between
two and three layers the results are mixed (Karpathy et al., 2016; Laurent and von Brecht, 2017). To
make our results comparable to the previous works on LSTM language modeling (Zaremba et al., 2014;
Gal and Ghahramani, 2016; Inan et al., 2017), we experiment with two-layered architectures: the output
of the first layer (1, 2) is concatenated [st;ht] and is fed as input into the second layer.
In what follows the superscript index in round brackets denotes the layer index, ξ(p) = [ξ1, . . . , ξd] is

a random vector (dropout mask) with ξi ∼ Bernoulli(1−p), d is the dimensionality of the corresponding
layer, p is a dropout rate, and ⊙ is the element-wise (Hadamard) product. One time-step of a stacked
SCRN model is fully specified by the following equations:

• Input embedding layer:
wt := yt(0) = xtE. (6)

• Two SCRN layers: for l = 1, 2

st(l) = (1− α)yt(l−1)B(l) + αst−1(l),

ht(l) = σ
(
yt(l−1)A(l) + st(l)P(l) + ht−1(l)R(l)

)
,

yt(l) = [st(l);ht(l)]. (7)

• Softmax prediction:

Pr(wt+1|w1:t) = softmax
(
yt(2)

[
U
V

])
. (8)

In the equations above, the matrices U and V are concatenated along the first dimension to produce a
(ds + dh)× |W| matrix.

4.2 Naïve dropout
Due to high complexity of deep neural networks the regularization techniques are crucial for good gen-
eralization performance. Zaremba et al. (2014) proposed one of the ways how dropout (Srivastava et
al., 2014) can be used to regularize recurrent neural networks. They apply dropout only to non-recurrent
connections, while keeping the recurrent connections without change. This method, usually referred to
as naïve dropout, improves the baseline results of the LSTM model without any other modifications.
Application of the same dropout technique to the SCRN model (6, 7, 8) is specified by

ŷt(0) = yt(0) ⊙ ξt
(0)(pi),

ŷt(l) = yt(l) ⊙ ξt
(l)(po), l = 1, 2

correspondingly, where pi and po are input and output dropout rates.



1708

4.3 Variational dropout
The approach of Zaremba et al. (2014) have led many to believe that dropout cannot be extended to re-
current connections, leaving them with no regularization. However, Gal and Ghahramani (2016) showed
that it is possible to derive a variant of dropout which successfully regularizes recurrent connections. In
their dropout variant, which is usually referred to as variational dropout, they repeat the same dropout
mask at each time step for inputs, recurrent layers, and outputs:

ỹt(0) = yt(0) ⊙ ξ(0)(pi),

ħt(l) = ht(l) ⊙ ξ(l)(ph), l = 1, 2 (9)

ỹt(l) = yt(l) ⊙ ξ(l)(po), l = 1, 2

where ph is a recurrent dropout rate. This is in contrast to the naïve dropout where different masks are
sampled at each time step for the inputs and outputs alone and no dropout is used with the recurrent
connections. Notice that we do not regularize the context state st in horizontal (recurrent) direction.

4.4 Tying word embeddings
Tying input and output word embeddings in word-level RNNLM is a regularization technique, which
was introduced earlier (Bengio et al., 2003; Mnih and Hinton, 2007) but has been widely used relatively
recently, and there is empirical evidence (Press andWolf, 2017) as well as theoretical justification (Inan et
al., 2017) that such a simple trick improves language modeling quality while decreasing the total number
of trainable parameters almost two-fold, since most of the parameters are due to embedding matrices. In
case of the SCRN model, reusing input embeddings at output can be done by setting

V = E⊤

in the softmax layer (8).

5 Experimental setup

We use perplexity (PPL) to evaluate the performance of the language models. Perplexity of a model over
a sequence [w1, . . . , wK ] is given by

PPL = exp
(
− 1

K

∑K
k=1 log Pr(wk|w1:k−1)

)
.

Data sets: The baseline model is trained and evaluated on the PTB (Marcus et al., 1993), while all
regularized and stacked configurations are trained and evaluated on the PTB and the WikiText-2 (Merity
et al., 2017) data sets. For the PTB we utilize the standard training (0-20), validation (21-22), and test
(23-24) splits along with pre-processing per Mikolov et al. (2010). WikiText-2 is an alternative to PTB,
which is approximately two times as large in size and three times as large in vocabulary.
BaselineModel: To reproduce the results of the baseline (single-layer and non-regularized) SCRNmodel
we use the original Torch implementation2 released byMikolov et al. (2015). We have spent fair amount
of time and effort to make their script run, as several of its dependencies have not been updated for
few years, and are not compatible with the up-to-date versions of the others. To simplify the path for
other researchers we release a script3, which installs necessary versions of the dependencies. We use
exactly the same set of hyperparameters reported in the original paper (Table 1). We also implement the
baseline SCRNmodel ourselves4 using TensorFlow (Abadi et al., 2016) which, unlike Torch, uses static
computational graphs, and thus has different style of truncated backpropagation through time5 (BPTT).
Because of this difference, we chose different set of hyperparameters for our implementation (Table 1),

2https://github.com/facebookarchive/SCRNNs
3https://github.com/zh3nis/scrn/blob/master/scrnn_deps.sh
4Our implementation is available at https://github.com/zh3nis/scrn
5https://r2rt.com/styles-of-truncated-backpropagation.html
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Hyperparameter Mikolov et al. (2015) Our implementation

α in (1) 0.95 0.95
batch size 32 20
initial LR 0.05 0.8
LR decay 1/1.5 0.5
LR decayed if valid PPL doesn’t improve valid PPL doesn’t improve
BPTT steps 50 35
BPTT frequency 5 35
gradients renormalized norms clipped at 5
weights initialized over [−0.05, 0.05] [−0.3, 0.3] ([−0.2, 0.2])

Table 1: Hyperparameters of the baseline SCRN model. Abbreviations: LR — learning rate, BPTT —
backpropagation through time. Values in brackets correspond to the (dh, ds) = (300, 40) configuration
when they differ from others.

and this choice is motivated by the previous work on word-level language modeling (Zaremba et al.,
2014), which has an open-source implementation in TensorFlow6.
Stacked and RegularizedModels: In the previous works on regularizing the LSTM, small-sized models
usually had dh = 200 and medium-sized models had dh = 650. The inner simplicity of the SCRN cell
allows us slighlty larger hidden sizes: we use dh = 240 for small models and dh = 750 for medium
models. Context state sizes ds are chosen to be 40 (small) and 120 (medium), so that total number of
parameters does not exceed the budget, which is 5M parameters for small models, and 20M parame-
ters for medium models. We find empirically, that a good ratio between context size and hidden size
in the SCRN model is around 1/6. We optimize hyperparameters separately under naïve dropout and
under variational dropout. Some of the hyperparameters are tuned using random search according to the
marginal distributions:

• pi ∼ U [0.01, 0.6],
• ph ∼ U [0.01, 0.6],
• po ∼ U [0.01, 0.6],

• initial learning rate ∼ U [0.5, 0.99],
• learning rate decay ∼ U [0.5, 0.89],
• initialization scale ∼ U [0.05, 0.3].

where U [a, b] means continuous uniform distribution over the interval [a, b], and initialization scale is a
number r such that all model weights are initialized uniformly over [−r, r]. Other hyperparameters are
tuned manually through trial-and-error. When performing random search we first choose ranges men-
tioned above. After 100 runs the initial ranges are shrinked to the neighborhoods of the values that give
best performances, and the random search is performed again. We repeat this procedure until hyperpa-
rameters converge to their (sub)optimal values. To prevent exploding gradients we clip the norm of the
gradients (normalized by minibatch size) at 5. For training (4) we use stochastic gradient descent.

6 Results

Baseline: To assure that our implementation of the baseline SCRN is adequate, we evaluate it against the
original SCRN code by Mikolov et al. (2015) (Table 2). As one can see, the original SCRN code does
not fully reproduce the results reported in the original paper. Their hyperparameters (Table 1) work well
for the case when (ds, dh) ∈ {(40, 10), (90, 10)}, but are not optimal for the other two configurations.
Our implementation together with our set of hyperparameters (Table 1) brings the validation and test
perplexities of all the configurations closer to those reported in the paper.
Stacked andRegularizedModels: Tuning the stack of two SCRNs results in hyperparameters in Table 3.
The results of evaluating these models against regularized and stacked LSTMs on PTB and WikiText-
2 are provided in Table 4. Regularization does benefit the simple and intuitive SCRN model, which

6https://github.com/tensorflow/models/tree/master/tutorials/rnn/ptb
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Hidden Context Mikolov et al. (2015) Our implementation
size size Valid PPL Test PPL Valid PPL Test PPL

40 10 133.6 (133) 127.5 (127) 134.5 128.0
90 10 125.4 (124) 120.3 (119) 124.9 118.6
100 40 127.6 (120) 122.9 (115) 124.9 118.7
300 40 130.1 (120) 124.4 (115) 127.2 120.6

Table 2: Reproducing the baseline model on PTB data. For the original implementation (columns 3
and 4), values outside brackets were obtained when running the script from https://github.com/
facebookarchive/SCRNNs, and values in brackets were reported in the paper of Mikolov et al. (2015).

Hyperparameter SCRN + ND SCRN + VD
Small Medium Small Medium

pi 0.2 (0.15) 0.55 (0.45) 0.15 (0.1) 0.4 (0.3)
ph — — 0.15 (0.1) 0.4 (0.3)
po 0.2 (0.15) 0.55 (0.45) 0.15 (0.1) 0.4 (0.3)
α 0.9 0.9 0.9 0.9
initial LR 0.8 0.8 0.8 0.6
LR decay 0.5 0.65 0.87 0.9
LR decayed when valid PPL does not improve after 10 epochs after 25 epochs
initialization scale 0.3 0.3 0.3 0.3

Table 3: Tuned hyperparameters: ND – naïve dropout, VD – variational dropout. Values in brackets
correspond to the WikiText-2 in cases when they differ from those used for the PTB.

demonstrates performance comparable to the sophisticated LSTMmodel under the naïve dropout, but lags
behind the LSTMunder the variational dropout regularization. This shows that at some point less complex
models become less competitive, even when regularized and optimized appropriately. It is important to
mention that no architectural modifications were applied to the original SCRN model except stacking.
Our feeling is that a little over-parameterization of the recurrent connections model is needed for the

recent regularization techniques to work well. For example, consider the variational dropout of the re-
current connections (9) in the SCRN: dropping the coordinates i1, . . ., il in the row ht is equivalent to
zeroing out the rows i1, . . ., il in the matrices A, P, R. Now consider one layer of the LSTM model:

ft = σ(xtWf + ht−1Uf + bf)
it = σ(xtWi + ht−1Ui + bi)
ot = σ(xtWo + ht−1Uo + bo)
ct = ft ⊙ ct−1 + it ⊙ tanh(xtWc + ht−1Uc + bc)
ht = ot ⊙ tanh(ct)

When one drops the coordinates i1, . . ., il of ht in LSTM, this can be understood as zeroing out the rows
i1, . . ., il in the matrices Wf, Wi, Wo, Uf, Ui, Uo, i.e. around 3 times more parameters are zeroed out
given the same hidden state size dh. In other words, the number of recurrent weights is 3 times larger in
LSTM than in SCRN. We believe this is one of the reasons why the variational dropout works worse in
SCRN. Roughly speaking, there is nothing much to regularize in the horizontal (recurrent) direction in
SCRN, as most parameters are in the embedding and softmax layers.

6.1 Ablation analysis
We consider removal of some parts or forms of regularization from one of our well-performing configu-
rations, SCRN + ND +WT, to see whether such removal degrades the performance. It also tells us which
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Word-level model PTB WikiText-2
Small Medium Small Medium

LSTM + ND (Jozefowicz et al., 2015) — 79.8 — —
LSTM + ND (Kim et al., 2016) 97.6 85.4 116.8† —
LSTM + ND (Zaremba et al., 2014) — 82.7 — 96.2‡
SCRN + ND 95.8 85.6 115.0 100.8
SCRN + ND + WT 94.1 86.1 112.0 98.5

LSTM + VD (Gal and Ghahramani, 2016) — 78.6 — —
LSTM + VD (Inan et al., 2017) 87.3 77.7 105.9 95.3
LSTM + VD + WT (Inan et al., 2017) 85.1 73.9 100.5 87.7
SCRN + VD 97.2 90.7 120.1 107.6
SCRN + VD + WT 96.8 90.7 112.2 106.0

Table 4: Evaluation of the SCRN against LSTM under different regularization techniques: ND – naïve
dropout, VD – variational dropout, WT – weight tying. †We reproduced the LSTM-Word-Small model
from Kim et al. (2016) on PTB and then evaluated it on WikiText-2. ‡We ran the open-source imple-
mentation from https://github.com/tensorflow/models/tree/master/tutorials/rnn/ptb
at medium config on WikiText-2 data.

parts of the model are more important. The model and dropout variations are listed below.
Removing regularization: To understand how much improvement is gained by the use of regularization
we completely remove dropout and weight tying:

pi = po = 0, V ̸= E⊤

Removing dropout of the context state: According to (1), context state st changes linearly and thus
should not suffer from over-fitting. Thus it seems reasonable to try to not regularize it and apply dropout
only to the hidden states, i.e. replacing the equation (7) by

yt(l) = [st(l);ht(l) ⊙ ξt
(l)(po)], l = 1, 2.

Removing the context state from the softmax layer: As in the case of the SCRN, the inner state of the
LSTM model also consists of two vectors ct and ht, and usually the state ct is not used at softmax. We
do the same for the context state st in our model, i.e. the equation (8) is replaced by

Pr(wt+1|w1:t) = softmax(ht(2)V).

The meaningfulness of removing the context state from the softmax is that, in our opinion, it plays the
role of a long-term memory and thus should not be crucial for predicting the next word of a sequence.
Moreover, such removal reduces the model size by at least ds · |W| parameters, which can be significant
(see Section 3).
The results of the ablation analysis are provided in Table 5. As we can see, without regularization

our SCRN + ND + WT model fails to generalize well on validation and test sets. Regularizing only the
hidden state (and keeping the context state untouched) is less harmful but still degrades the performance
of the model. Finally, not using the context state in the output only slightly worsens the performance but
at the same time leads to a significant reduction in model size.

6.2 Hidden state changes
Weperformed an analysis of the SCRN’s hidden state evolution as in thework of Ororbia II et al. (2017) on
Delta-RNN (see their Figure 2). We found out that the hidden state changes in SCRN are similar to those
in Delta-RNN: the L1-norm of the state change is higher for informative words, such as “government”,
and the difference is in general more pronounced than in LSTM. See the Figure 2.
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Figure 2: L1 norm of deltas between consecutive states of LSTM (left) and SCRN (right) trained on Penn
Treebank plotted over words of example sentences. The main observation is that the norm is in general
lower for low-information content words, such as the article the, and higher for informative words, such
as government, and this difference is more pronounced in SCRN.
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Model Small Medium
Valid Test Valid Test

SCRN + ND +WT 98.2 94.1 90.1 86.1
− regularization 123.3 117.6 146.1 140.2
− dropout of context 108.4 103.6 115.0 109.4
− context in softmax 100.8 96.4 91.7 87.6

Table 5: Model ablations for the small and medium SCRN + ND + WT models on PTB set.

7 Sobolev Regularization

Together with dropout and weight tying techniques we conducted some experiments with a Sobolev-
type regularization. By the Sobolev-type regularization we understand penalization of large gradients
of certain parts of neural architecture treated as functions. The idea of penalizing norm of gradients
can be traced back to the works on double backpropagation (Drucker and Le Cun, 1992). Zilly et al.
(2017) demonstrated that an important property of the hidden vector’s dynamics is its stability, which
they decribe in terms of an upper bound on norm of Jacobian matrix ∂ht

∂ht−1
. Exploiting the latter intuition

we suggest the following regularization term:

LSobolev = β
K∑
t=1

∥∥∥∥ ∂ht
∂ht−1

∥∥∥∥2
F

, (10)

where ∥A∥F =
√
Tr(A⊤A) is the Frobenius norm of a matrix A. Note that we do not specify the layer,

since our regularization can be applied to all layers, as well as to certain layers only. The strength of such
penalty is controlled by the hyperparameter β.
Overall, our experimental results are consistent with conclusions to which we came for variational

dropout, with a perplexity gain even smaller than in the latter case. A typical gain from the Sobolev-type
regularization was up to 1 perplexity point when it was applied on top of naïve or variational dropout, and
up to 7 perplexity points when it was the only regularization used. Based on those results, the conclusion
from Section 6 can be reinforced: probably, the main weakness of SCRNmodel, in comparison with pop-
ular RNNs for which the regularization of recurrent connections is effective, is under-parameterization of
those connections. The latter “does not give a space” for such regularization techniques. For complete-
ness of narrative, let us give some details of implementing the Sobolev term in TensorFlow.
Since ht is a row, then ∂ht

∂ht−1
is understood as

[
∂hj

t

∂hi
t−1

]
(i.e. transposed Jacobian ∂ht⊤

∂ht−1
⊤ ). According

to (2), we have ht = σ(xtA+ stP+ ht−1R). After an application of the matrix chain rule, we obtain:

∂ht
∂ht−1

= R · diag(σ′(at + ht−1R)),

where at = xtA+ stP and diag(v) is a diagonal matrix with its diagonal consisting of the components of
a vector v. Further, we have:∥∥∥∥ ∂ht

∂ht−1

∥∥∥∥2
F

= Tr

(
∂ht
∂ht−1

⊤ ∂ht
∂ht−1

)
= Tr

(
diag(σ′(at + ht−1R)) · R⊤R · diag(σ′(at + ht−1R))

)
.

Using the fact that trace is invariant w.r.t. to the transform A → S−1AS, we can set S = diag(σ′(at +
ht−1R)) and obtain the final formula:∥∥∥∥ ∂ht

∂ht−1

∥∥∥∥2
F

= Tr(R⊤R · diag(σ′(at + ht−1R))2) = (σ′)2(at + ht−1R)v(R),
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where for R = [r1, . . . , rdh ], v(R) is defined as the column
[
∥r1∥2, . . . , ∥rdh∥2

]⊤. Finally, the Sobolev
term (10) can be given as

LSobolev = β

[
K∑
t=1

(σ′)2(at + ht−1R)

]
v(R),

which is a form of a loss function that is suitable for an efficient implementation in TensorFlow (we also
used the standard trick that σ′(x) = σ(x)(1− σ(x))).

8 Performance on non-English data

It is interesting to see the performance of SCRN on texts written in non-English languages. For this
purpose we conduct evaluation of the medium-sized versions of LSTM + VD +WT against SCRN + ND
+WT on non-English data which comes from the 2013 ACLWorkshop onMachine translation7 with pre-
processing per Botha and Blunsom (2014). Hyperparameters tuned on Wikitext-2 (Table 3) were used
for all languages and we did not perform any language-specific tuning. Corpora statistics and the results
of evaluation are provided in Table 6. Surprisingly, the SCRN model performs very well (compared to

French Spanish German Czech Russian

Number of tokens 1M 1M 1M 1M 1M
Vocabulary size 25K 27K 37K 46K 62K

LSTM + ND (Kim et al., 2016) 222 200 286 493 357
LSTM + VD + WT 205 193 277 488 351
SCRN + ND + WT 199 179 258 420 306

Table 6: Evaluation of medium-sized models on non-English data.

LSTM) when it comes to modeling morphologically rich languages. Also, it is noteworthy that the higher
the type-token ratio, the bigger the advantage of SCRN over LSTM. Our hypothesis for this phenomenon
is as follows: in a morphologically rich language one needs less previous words (context) on average to
predict the next word than in English, e.g.

German: Pr(lag | Der, einschlagspunkt)
English: Pr(was | The, location, of, the, impact)

The parameter α in the SCRNmodel (1) controls howmuch of the previous context is stored in the slowly
changing state st. Under the mentioned hypothesis, for the morphologically rich language an optimal
value of α should be lower than for English. To verify this we train the medium-sized SCRN + ND +WT
on all datasets for different values of α, and the results are provided in Table 7. Indeed, as we can see,

α PTB WikiText-2 FR ES DE CS RU

0.85 88.0 101.1 205 184 264 439 313
0.88 87.5 99.5 198 183 262 422 309
0.90 86.1 98.5 199 179 258 420 306
0.95 87.2 97.8 197 179 260 425 307
0.97 86.0 96.5 199 180 261 437 313
0.99 92.4 100.0 213 190 287 479 326

Table 7: Performance of SCRN + ND + WT for different values of α.
7http://www.statmt.org/wmt13/translation-task.html
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α = 0.9 is more beneficial for German, Czech and Russian (TTR > 0.03), but α = 0.97 is better for
English PTB and WikiText-2 (TTR < 0.03), while α = 0.95 is optimal for French and Spanish (TTR ≈
0.03). Also, notice that α = 0.99 brings the SCRN’s results closer to the LSTM’s results on non-English
data. Therefore, we think LSTM stores too much of the long-term memory via its trainable forget gate,
while in SCRN we can directly control this through the α.

9 Conclusion

Being originally implemented in Torch, the SCRN model is fully reproducible in Tensorflow despite
the difference in styles of truncated BPTT in these two libraries. Being conceptually much simpler, the
SCRN architecture demonstrates performance comparable to the widely used LSTM model in language
modeling task under naïve dropout, but it underperforms the LSTM under variational dropout regular-
ization on English data. However, on texts written in morphologically rich languages, the SCRN with
appropriately chosen hyperparameter α outperforms the LSTM.
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