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Abstract

Learning social media content is the basis of many real-world applications, including information
retrieval and recommendation systems, among others. In contrast with previous works that focus
mainly on single modal or bi-modal learning, we propose to learn social media content by fus-
ing jointly textual, acoustic, and visual information (JTAV). Effective strategies are proposed to
extract fine-grained features of each modality, that is, attBiGRU and DCRNN. We also introduce
cross-modal fusion and attentive pooling techniques to integrate multi-modal information com-
prehensively. Extensive experimental evaluation conducted on real-world datasets demonstrates
our proposed model outperforms the state-of-the-art approaches by a large margin.

1 Introduction

The popularity of the social media (e.g., Twitter, Weibo) over the last two decades has led to increas-
ing demands for learning the content of social media, which may be beneficial to many real-world ap-
plications, such as sentiment analysis (Wang et al., 2015), information retrieval (Li et al., 2017), and
recommendation systems (Wu et al., 2017). However, the task is non-trivial and challenging, because
social media content is commonly multi-modal and involves several types of data, including text, audio,
and image (an example is illustrated in Fig. 1). Each representation of the individual modality encodes
specific knowledge and complementary, which can be explored to facilitate understanding of the entire
meaning of the content. Therefore, gaining comprehensive knowledge from learning arising out of so-
cial media requires deliberate exploration of single-modal information and joint learning of the intrinsic
correlation among various-modalities.

Figure 1: An example of multi-modal social media content, organized by a textual passage, a clip of the
song “Muhammad Ali”, and a picture of Muhammad Ali’s famous victory.
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Previous works on learning social media content have focused mainly on single modality, e.g., textual
information (Wu et al., 2017) and image information (Garimella et al., 2016). To our best knowledge, no
studies have focused on mere acoustic information analysis for social media. These previous works cope
with data in the early stage of social media, because users are limited to posting single-modal content.
In contrast, today’s social media content usually includes textual, acoustic, and visual ingredients simul-
taneously, and requires multi-modal learning strategies to integrate rich information from all modalities.

Many researchers have studied the bi-modal utilization to address the issue of incomplete information
exploration. This utilization can be classified into two kinds of approaches. The first is bi-modal retrieval,
which utilizes one modality to find similar content in the other modality, such as finding the most relevant
texts to a given image (Li et al., 2017). This kind of approach is similar to machine translation tasks to
some extent, for instance, the input is fine-grained features of one modality, the objective of which is to
minimize the distance between the output vectors with fine-grained features of the target modality. The
second is bi-modal unification (Park and Im, 2016), which seeks to integrate individual information of
the two modalities together. The process of this kind of approach can be divided into two stages: (a)
feature extraction, in which the two modalities are encoded into their corresponding vectors or matrices
via embedding approaches; and (b) bi-modal feature aggregation, in which the extracted features are
mapped into a shared latent space through multilayer perceptrons or directly into the target spaces of
tasks through classifiers (Chen et al., 2017).

Learning representations of multi-modal data, which contains features of more than two modalities,
is a more challenging task. The main reason is that the fine-grained features of the modalities can be
difficult to obtain because of the lack of annotated labels for every modality. Previous studies lack the
appropriate strategies to aggregate various kinds of information effectively. It’s easy to imagine that
bi-modal aggregation models might be extended to multi-modal learning with linear operations, e.g., the
concatenation operation. However, this technique may generate inappropriate integral representation of
the multiple features and lacks further exploration in the previous work.

We address the abovementioned issues by introducing effective strategies to represent the individual
features for the three modalities. A general unified framework is proposed to integrate multi-modalities
seamlessly. Specifically, we begin by encoding single modal parts into dense vectors. For textual con-
tent, we design an attention-based network (i.e., attBiGRU), to incorporate various textual information.
For acoustic content, we introduce an effective DRCNN approach to embed temporal audio clips locally
and globally. For visual content, we fine-tune a state-of-the-art general framework, DenseNet (Huang
et al., 2017). We propose a novel fusion framework, which involves the cross-modal fusion and the
attentive pooling strategies, to aggregate various modal information. Extensive experimental evalua-
tions conducted on real-world datasets demonstrate that our proposed model outperforms state-of-the-art
approaches by a large margin. The contributions of this paper are presented as follows:

• We introduce effective strategies to extract representative features of the three modalities, includ-
ing the following. (1) For textual information, we design an attention based network, named as
attBiGRU, to integrate various textual parts. The independent textual parts are considered as two
separate roles, namely, the protagonist and the supporting players. The supporting players are en-
coded into an attention weight vector on the protagonist. (2) For acoustic information, we propose
the DCRNN strategy based on the densely connected convolutional and recurrent networks. The
densely connected convolutional networks are used to learn the acoustic features both locally and
globally. The recurrent networks are designed to learn the temporal information. (3) For visual
information, we introduce state-of-the-art strategies from (Simonyan and Zisserman, 2015; He et
al., 2016; Huang et al., 2017).

• We propose a general multi-modal feature aggregation framework, JTAV, to learn information
jointly. The framework considers the textual, acoustic, and visual contents to generate a unified
representation of social media content with the help of the optimized feature fusion network, CMF-
AP, which can learn inner and outer cross-modal information simultaneously.

• We conduct comprehensive experiments on two kinds of tasks, sentiment analysis and information
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retrieval, to evaluate the effectiveness of the proposed JTAV framework. The experiments demon-
strate that JTAV outperforms state-of-the-art approaches remarkably, that is, about 2% higher than
the state-of-the-art approaches on all metrics in the sentiment analysis experiment and more than
ten times better than the baseline on main metrics in music information retrieval experiment.

2 Related Work

Over the past decades, social media learning has gained considerable attention in related research litera-
ture. Social media content is utilized as raw material for recommendation (Wang et al., 2013), informa-
tion retrieval (Agichtein et al., 2008), and so forth.

The dominance of the single-modal content in social media in the early stages, however, has caused
most previous works to position themselves in single-modal exploration, e.g., natural language process-
ing and image processing. (Han et al., 2013) focused on the short text messages in social media, and
normalized lexical variants to their canonical forms. In (Hutto and Gilbert, 2014), combined lexical
features of social media text were proposed for expressing and emphasizing sentiment intensity. An ex-
ample of image processing was (Garimella et al., 2016), social media images, particularly geo-tagged
images, were studied in predicting county-level health statistics.

In recent years, users have come to prefer presenting more attractive ingredients, such as image and
audio in addition to natural words. Therefore, literature on social media analysis has been shifting its
focus from single-modal to multi-modal learning. For example, (Wang et al., 2015) assume that visual
and textual content have a shared sentiment label space, and the optimization problem can be converted
to the minimization between the derivatives of both modalities. In (Li et al., 2017), the images and lyrics
are mapped into a shared tag space. The lyrics, which have the smallest mean squared error with a given
image, emerged as the matching object. (Chen et al., 2017) present a new end-to-end framework for
visual and textual sentiment analysis; they began with the co-appearing image and text pairs that provide
semantic information for each other, and use the concatenation of the vectors generated from the original
image and text, in the shared sentiment space. However, the drawback of these works is that they utilized
only partial information.

An intuitive idea to gain a comprehensive learning of the entire meaning of social media is to integrate
more modalities effectively. The reason is that each representation of the individual modality encodes
specific knowledge and is complementary, an aspect that can be explored to facilitate understanding on
the entire meaning of the content. However, this task could be extremely challenging because we need to
explore single-modal information deliberately and jointly learn the intrinsic correlation among various
modalities. This work is the first study that focuses on the seamless integration of the three modali-
ties (i.e., text, audio, and image), into a general framework to jointly learn the social media content.

3 Model Description

The architecture of our proposed framework is illustrated in Fig. 2. It has two main modules, the feature
extraction and the feature aggregation. Let t, a, and v denote the textual, acoustic, and visual features,
which are encoded from the feature extraction module, respectively. Let u denote the target unified
representation of the multi-modal content. The feature aggregation module is designed to generate u
from t, a, and v effectively and comprehensively. The example in Fig. 1 is utilized to ground our
discussion and to illustrate the intuitive idea of this work.

3.1 Feature Extraction
Fine-grained features, which are related to the qualities of the input of the aggregation processing di-
rectly, are the foundation of multi-modal representation learning. The proposed strategies for generating
appropriate features for text, audio, and image will be presented in the following subsections.

3.1.1 Text modeling
The purpose of text modeling is to encode raw textual parts into a latent representation t. We design a
bidirectional gated recurrent neural network (BiGRU) based attentive network (i.e., attBiGRU), to extract
sufficient textual features carrying the long-range dependencies, as illustrated in Fig. 3.
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Figure 2: The architecture of the proposed JTAV framework

Figure 3: The attBiGRU strategy for modeling textual content

Generally, social media content contains more than one textual part, such as the lyrics and reviews of a
song. It is reasonable to assume that a protagonist and supplying players exist among these textual parts.
Intuitively and for sake of simplicity, we can regard the part with the maximum number of words as the
protagonist and the other parts as the supplying players. Let Tlarge denote the protagonist and Tsmall

denote the supplying roles. Inspired by (Li et al., 2017) to reduce the gap between image and text, we
use a pre-trained word embedding model, e.g., FastText (Bojanowski et al., 2017), to encode Tsmall into
a word matrix (i.e., T small). T small is computed aswsmallWe, wherewsmall is the words in Tsmall

and We is a pre-trained embedding matrix. tatt is an attention vector generated from T small with an
average pooling layer, and works on every word vector of T large through the element-wise product. We
obtain an attented word matrix, denoted as T .

The BiGRU encoder is utilized to encode every word vector in the sequence into a latent representation
and receive the aid of the other textual parts. Subsequently, we feed the attended word matrix T into a
BiGRU network. The output of the BiGRU encoder is a 2M × N matrix, where M is the number of
hidden units of a layer, and N is the number of words in T large. We denote the output matrix as H.

The attention with context part is a simplified version of (Yang et al., 2016) without the sentence
attention part. It is introduced to balance the importance among all words and is defined as follows:

ĥi = tanh(Wuhi + bu),

αi =
exp

(
ĥi
>ĥc

)
∑N−1

j=0 exp
(
ĥj
>ĥc

) ,
t =

N−1∑
j=0

αjhj ,

(1)
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Figure 4: The DRCNN strategy for modeling acoustic content

where hi(0 ≤ i ≤ N − 1) is the ith column of H, ĥi is a latent vector computed from hi using the tanh
function, αi is the attention weight scalar computed from ĥi and a random initialized context vector ĥc,
Wu and bu are parameters learned from training. The final textual representation t is a weighted sum of
hj(0 ≤ j ≤ N − 1) on αj(0 ≤ j ≤ N − 1).

3.1.2 Audio modeling
In this paper, we focus on polyphonic audio, such as music clips. To capture useful acoustic features,
we design a densely connected convolutional recurrent neural network called DCRNN, which takes
raw audio as input, and generates a distributed representation a to effectively represent the acoustic
information. DCRNN consists of five phases, as illustrated in Fig. 4.

The first phase is named as 2D transformation, which transfers raw audio into two-dimensional vectors.
Following the majorities of the deep learning approaches in music information retrieval (Choi et al.,
2017b), we use two dimensional spectrograms instead of the discrete audio signals. We choose two
kinds of spectrograms (i.e., mel-spectrogram (Boashash, 1996) and constant-Q transform (Brown and
Puckette, 1992)). A mel-spectrogram (MelS) is a visual representation of the spectrum of frequencies of
audio and is optimized for human auditory perception. A constant-Q transform (CQT) is computed with
the logarithmic-scale of the central frequencies. The CQT is well suited with the frequency distribution
of music pitch. MelS and CQT have been used frequently in various acoustic tasks (Zhu et al., 2017;
Jansen et al., 2017), and are utilized as coarse-grained features in the current paper. We use A0 to
indicate the 2D spectrograms.

The second phase is a convolutional neural network (CNN) based block (called CNN block). A0

is used as the input of the block. According to (Choi et al., 2017a), early layers of CNN have the
ability to capture local information such as pitch and harmony, whereas deeper layers can capture global
information such as melody. We introduce the densely connected CNN, which has been proved powerful
at learning both local and global features of images (Huang et al., 2017). The CNN block is composed
of several densely connected “CNN-BN-MP” sub-blocks, where “BN” represents batch normalization
layers, and “MP” indicates max pooling layers. Suppose there are N densely connected “CNN-BN-MP”
sub-blocks in the CNN block, each can be defined as:

A1
h = CNN −BN −MP (AT−1),

A2
h = CNN −BN −MP (A1

h),

A3
h = CNN −BN −MP (A2

h),

AT = CNN −BN −MP (A1
h ⊕A3

h),

(2)
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where T ∈ (1, N), AT−1 represents the output of the (T − 1)th densely connected “CNN-BN-MP”
sub-block, A∗h indicate the latent variables learned by the CNN block, ⊕ denotes the concatenation
operation, and AT is the output of the T th sub-block.

The permute block is adopted from the technique introduced in (Panwar et al., 2017). The output of
the CNN block is permuted to time major form, and fed into the following recurrent neural network.

The recurrent neural network (RNN) block is built based on bidirectional RNN. The stacked RNN
layers are used to learn the long-short term temporal context information. We take the concatenation of
the last hidden state (in vector format) in the forward direction and the first hidden state in the backward
direction as the output of this phase.

Several fully connected dense layers constitutes the fully connected dense (i.e., FCD) block. We use
the output of the last dense layer as the acoustic representation a. Note that all the parameters presented
in this section, e.g., number of layers, are optimally tuned and will be clarified in the experiment section.

3.1.3 Image modeling

Extracting rewarding features from images is a well explored problem; hence, following the tradition of
other image-related tasks (Li et al., 2017; Chen et al., 2017), we use pre-trained approaches on external
visual tasks.

VGG (Simonyan and Zisserman, 2015) is a deep convolutional network with nineteen weight layers,
ResNet (He et al., 2016) is a residual learning framework with 101 weight layers, and DenseNet is a deep
densely connected convolutional network with 121 weight layer. All these models are pre-trained on the
ImageNet dataset 1, and are fine-tuned on the experimental datasets by modifying the final densely-
connected layers. The last dense layer is used as the visual representation v.

3.2 Feature Aggregation

In this section, we propose a feature aggregation network, which consists of the cross-modal fu-
sion (CMF) and the attentive pooling (AP) strategies to generate a unified representation of multi-modal
information, as shown in the bottom part of Fig. 2. We call the feature aggregation approach as CMF-AP.

The first phase is cross-modal fusion. We introduce the concepts of the inner and outer information.
The inner information refers to information remaining in single modality, like the visual information of an
image or the acoustic information of a song clip. The outer mutual information cross modalities refers to
the relevant information between two modalities. In addition to the inner information generated from the
feature extraction module, we compute the matrix product (×) pairwise on all modal vectors to calculate
the cross-modal aware matrices. The cross-modal aware matrices contain outer mutual information cross
modalities and the inner information.

However, handling the cross-modal aware matrices directly is not feasible, and thus, we reconstruct t,
a, and v from the cross-modal aware matrices. The attentive pooling strategy is adapted from Eq. 1 to
conduct row pooling and column pooling.

After the above procedure, two reconstructed t, two reconstructed a, and two reconstructed v are
obtained. For instance, from the text-image matrix, we can obtain a text-enhanced visual vector and
an image-enhanced textual vector. The reconstructed vectors carry both inner and outer information.
Densely connected layers are deployed for dimensionality reduction purpose. The final unified represen-
tation u is the concatenation of the reconstructed vectors.

The feature aggregation module is formulated as follows:

1http://www.image-net.org.
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Cmn =m× n>;
Cm = tanh(WmCmn + bm),

αm = softmax(C>mum),

m̂ = σ(ŴmCmnαm + b̂m);
Cn = tanh(WnC

>
mn + bn),

αn = softmax(C>n un),

n̂ = σ(ŴnC
>
mnαn + b̂n);

umn = m̂⊕ n̂;

(3)

where m,n ∈ {t,a,v} and m 6= n, σ represents an activation function, m̂ and n̂ refer to the recon-
structed vectors ofm andn, respectively, and the remaining variables stand for latent parameters learned
from training. The final unified representation u is defined as u = utv ⊕ uta ⊕ uav.

3.3 Training and Optimization
The Adam algorithm (Kingma and Ba, 2015) is used as optimizer to minimize the binary cross entropy
function. The binary cross entropy is defined as follows:

L = − 1

N

N∑
n=1

[yn log ŷn + (1− yn) log(1− ŷn)], (4)

where N denotes the number of target values, yn denotes the nth(1 ≤ n ≤ N) true value, and ŷn
denotes the corresponding predicted value. For the information retrieval task, given a query, we ran-
domly generate a fake candidate along with the correct candidate from the candidate corpus for effective
training.

4 Experimental Evaluation

Evaluation is conducted on two kinds of tasks, sentiment analysis and music information retrieval, as
presented in Sections 4.1 and 4.2, respectively2.

4.1 Sentiment Analysis
Task Description. Sentiment analysis is a task that deals with the computational detection and extraction
of opinions, beliefs, and emotions in given content (Paltoglou and Thelwall, 2017). In this paper, we
analyze posts from a social media platform ShutterSong. Given a post, which includes the visual (image),
textual (song lyrics and user defined caption), and acoustic (song clip) parts, the goal is to tag a “positive”
or “negative” label for the multi-modal content. We use “1” to indicate the positive label, and “0” to
indicate the negative label. The sentiment analysis task can be regarded as a binary classification task.
Dataset and Parameter Settings. We sort a sub dataset from the ShutterSong dataset3 to conduct the
sentiment analysis task. The user-defined mood tags are used as labels, and 3260 items have available
moods. After removing duplications, we obtain 272 mood tags. We divide these mood tags into “pos-
itive” and “negative” on the basis of the related meaning manually. We obtain 2297 positive and 963
negative samples, with each including a user posted image, a song clip, and its corresponding lyrics, part
of the samples have available captions. We call this dataset as MoodShutter, and separate it into train
(80%), validation (10%), and test (10%) sets.

The song lyrics are truncated at 100 words, and captions are cleaned into five words according to
a caption corpus. We use a 300 dimensional embedding matrix, which is pre-trained on the English

2The source code and more details on the experimental settings are available at http://github.com/mengshor/
JTAV

3https://drive.google.com/file/d/0B2N8XiDRrEgISXFJSXBEMWpUMDA/view.
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Wikipedia dataset4 through FastText, as We. The number of the hidden units of the BiGRU encoder is
set as 50. Raw song clips are transformed into spectrograms with the librosa tool (McFee et al., 2017).
We cut all the audio files into 10-second-segments. Audio sample rates are set as 22050Hz, hop lengths
are 1024, and the numbers of frequency bins are 96. The parameter N of DCRNN is set as N = 2. The
images are sized to 224× 224× 3.
Baseline approaches. We compare our JTAV framework with:

• doc2vec (Le and Mikolov, 2014), a paragraph embedding approach;

• lyricsHAN (Alexandros, 2017), a hierarchical attention network which encodes songs into vectors;

• BiGRU, a bidirectional GRU network which utilizes the song lyrics as input;

• attBiGRU, our novel text modeling approach which adds the available captions as the supplying
role based on BiGRU;

• MFCC (McFee et al., 2017), a type of cepstral representation of the audio clip generated by librosa;

• convnet (Choi et al., 2017a), an acoustic feature learning method based on transfer learning;

• DCRNN-MelS, our novel audio modeling approach which takes MelSs as input;

• DCRNN-CQT, our novel audio modeling approach which takes CQTs as input;

• F-VGG (Simonyan and Zisserman, 2015), a VGG network pre-trained on the ImageNet dataset and
fine tuned on the MoodShutter dataset;

• F-ResNet (He et al., 2016), a ResNet pre-trained on the ImageNet dataset and fine tuned on the
MoodShutter dataset;

• F-DenseNet (Huang et al., 2017), a DenseNet pre-trained on the ImageNet dataset and fine tuned
on the MoodShutter dataset; and

• early fusion, a method which combines features learned by our methods before classification or
regression tasks, and is very popularly used (Chen et al., 2017; Oramas et al., 2017).

Evaluation Metrics. The positive and negative samples are unbalanced and the ratio is about 7 : 3.
The weighted average area under the curve (AUC) score, F1 score, and precision score are chosen as
evaluation metrics5.
Results and Discussion. Table 1 presents the results between JTAV and the baseline approaches. For fair
comparison, all feature vectors are obtained through optimized training; the classic logistic regression
approach is utilized as the classier; and the reported results are the average values of 10 runs.The values
in boldface represent the best results among all the approaches. The proposed JTAV performed the best
on all metrics, with 0.623 AUC score, 0.691 F1 score, 68.8% precision score.
Observations on single modality. For textual content, attBiGRU obtained the best results, and was supe-
rior to doc2vec with about 7 percentage points promotion of AUC score, 11 percentage points promotion
of F1 score, and 6 percentage points promotion of precision score. These results demonstrate the pro-
posed BiGRU approach extracts more powerful features than doc2vec and lyricsHAN. And taking the
omni textual component into consideration, the attBiGRU approach can generate better results. For
acoustic content, DCRNN outperforms MFCC and convnet because it can learn acoustic information
both locally and globally. Long-term temporal context dependency is also retained.We also observe that
CQT works better than MelS. DenseNet is the best choice for encoding images into vectors as compared
with VGG and ResNet.

4https://en.wikipedia.org/wiki/Wikipedia:Database_download#English-language_
Wikipedia.

5We utilize the implementation in sklearn, http://scikit-learn.org/.
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Table 1: Results of the sentiment analysis task
modal materials approaches AUC score F1 score precision score

text
lyrics

doc2vec (Le and Mikolov, 2014) 0.513 0.545 0.593

lyricsHAN (Alexandros, 2017) 0.518 0.575 0.596

BiGRU 0.572 0.602 0.640

lyrics+caption attBiGRU 0.581 0.652 0.650

audio song clip

MFCC (McFee et al., 2017) 0.505 0.549 0.586

convnet (Choi et al., 2017a) 0.518 0.614 0.621

DCRNN-MelS 0.536 0.635 0.634

DCRNN-CQT 0.559 0.651 0.643

image image

F-VGG (Simonyan and Zisserman, 2015) 0.546 0.594 0.619

F-ResNet (He et al., 2016) 0.578 0.618 0.645

F-DenseNet (Huang et al., 2017) 0.588 0.627 0.653

text+audio
lyrics+caption+
song clip

early fusion 0.586 0.660 0.656

CMF-AP 0.597 0.673 0.668

text+image
lyrics+caption+
image

early fusion 0.593 0.663 0.661

CMF-AP 0.611 0.688 0.683

audio+image image+song clip
early fusion 0.589 0.624 0.653

CMF-AP 0.603 0.654 0.665

text+audio+image
lyrics+caption+
image+song clip

early fusion 0.602 0.671 0.669

CMF-AP 0.623 0.691 0.688

JTAV=attBiGRU+(F-DenseNet)+(DCRNN-CQT)+(CMF-AP)

Observations on multiple modalities. When more modalities emerge, more information is included, and
better results are obtained. For example, the performance of combining textual and acoustic information
is much better than that of using texts or audio solely. Our CMF-AP approach works steadily better
than the baseline approach, because it not only extracts the inner features inside single modality, but also
the the outer information cross modalities. Moreover, the best results are presented when we utilize all
modalities and all available materials (i.e., JTAV). The AUC score is 0.623, representing an improvement
of 2.1 percentage points to the early fusion approach. The F1 score is 0.691, performing an improvement
of 2 percentage points over the best baseline approach. The precision score is 0.688, representing about
1.9 percentage points improvement to the best baseline approach. It seems like that the promotions of
the proposed JTAV over the best baseline approach is not that huge. As a matter of fact, the early fusion
approach utilizes the effective features generated by our proposed work (i.e., attBiGRU, DCRNN-CQT,
and F-DenseNet). We believe that, if compared to the original version of early fusion method which only
uses the previous features, the margin would be larger. For the sake of space limitation, in Table 1 the
early fusion approach on previous features are omitted.

4.2 Music Information Retrieval

We conduct an extended experiment, which is can be explained as given an image query and named
as image2song (Li et al., 2017), to verify the general effectiveness of JTAV. Image2song is a music
information retrieval task and aims to find the most relevant song.

We perform the image2song task on two benchmark datasets, they are the Shuttersong† dataset and
the Shuttersong§ dataset (Li et al., 2017). Both datasets include no-repeat 620 songs with 3100 images,
that is, each song is related to five images. Part of the images are attached with user-defined captions, and
each song has an acoustic song clip and corresponding song lyrics. The difference lies in the partition
strategy of the train and test dataset. In Shuttersong†, 100 songs and related images are selected randomly
for testing, and the rest for training. While in Shuttersong§, the train and test set share the whole song
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Figure 5: Results of image2song on Shuttersong† Figure 6: Results of image2song on Shuttersong§

set, while one of the five images of each song is chosen randomly for testing. The preprocessing settings
of images, captions, song lyrics and song clips is the same as that of the sentiment analysis task.

We utilize the rank-based evaluation metrics to compare the results. For fair comparison, we adopt
the evaluate metrics in (Li et al., 2017). Med r represents the medium rank of the ground truth retrieved
song, and lower values indicate better performance. Recall@k (R@k for short), is the percentage of a
ground truth song retrieved in the top-k ranked items, and higher values indicate better performance. In
dataset†, k = {1, 5, 10}, and 1 ≤ Med r ≤ 100; whereas in Shuttersong§, k = {10, 50, 100}, and 1 ≤
Med r ≤ 620.

We compare the proposed JTAV with the state-of-the-art approach (Li et al., 2017). For a more com-
prehensive comparison, we design several baseline approaches based on our proposed strategies: I+L
uses images as queries and song lyrics as candidates with a suit of BiGRU, F-DenseNet and CMF-AP;
I+C+L uses images and available captions as queries while song lyrics as candidates with a suit of at-
tBiGRU, F-DenseNet and CMF-AP; I+S uses images as queries and song clips as candidates with a suit
of DCRNN-CQT, F-DenseNet and CMF-AP; and I+C+S uses images and available captions as queries
while song clips as candidates with a suit of DCRNN-CQT, F-DenseNet and CMF-AP. In JTAV, the
images and available captions form the queries, the song clips and lyrics form the candidates.

Fig. 5 and Fig. 6 display the results on Shuttersong† and Shuttersong§, respectively. Both prove JTAV
is the most powerful one among all testing approaches. JTAV turns the image2song task from finding
the most similar item to finding the most relevant item, which is nearer the real situation in cross-modal
retrieval tasks. Notably, JTAV exceeds the state-of-the-art approaches soundly. In Shuttersong†, the Med
r is no more than 5, and the R@1 score is more than 95%, which is more than 90% better than that
obatined in (Li et al., 2017). In Shuttersong§, the Med r is no more than 20, which is less a tenth of that
obtained in (Li et al., 2017), the R@10 score is more than 83%, and the R@100 score is more than 97%.

5 Conclusion

In this paper, we aim to address the issue of learning social media content from the multi-modal view.
We have designed effective approaches (i.e., attBiGRU) for textual content, F-DenseNet for visual con-
tent, and DCRNN for acoustic content, to extract fine-grained features. We have introduced CMF-AP
to generate cross-modal aware matrices and reconstructed modal vectors, which are used to produce an
unified representation of the multi-modal content. The proposed framework has been intensively evalu-
ated, and the experimental results have demonstrated the general validity of JTAV by comparing with the
state-of-the-art approaches.
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