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Abstract

Recently, deep reinforcement learning (DRL) has been used for dialogue policy optimization.
However, many DRL-based policies are not sample-efficient. Most recent advances focus on
improving DRL optimization algorithms to address this issue. Here, we take an alternative route
of designing neural network structure that is better suited for DRL-based dialogue management.
The proposed structured deep reinforcement learning is based on graph neural networks (GNN),
which consists of some sub-networks, each one for a node on a directed graph. The graph is
defined according to the domain ontology and each node can be considered as a sub-agent. Dur-
ing decision making, these sub-agents have internal message exchange between neighbors on
the graph. We also propose an approach to jointly optimize the graph structure as well as the
parameters of GNN. Experiments show that structured DRL significantly outperforms previous
state-of-the-art approaches in almost all of the 18 tasks of the PyDial benchmark.

1 Introduction

A task-oriented spoken dialogue system (SDS) is a system that can continuously interact with a human to
accomplish a predefined task, e.g. finding a restaurant or booking a flight. Dialogue management (DM)
is the core of an SDS. It has two missions: one is to maintain the dialogue state, and another is to decide
how to respond according to a dialogue policy. In this paper, we focus on the dialogue policy.

A dialogue policy can be viewed simply as a set of hand-crafted mapping rules from dialogue states
to dialogue actions. This is referred to as a rule-based policy. However, in real-world scenarios, un-
predictable user behavior, inevitable automatic speech recognition, and spoken language understanding
errors make it difficult to maintain the true dialogue state and make the decision. Hence, in recent years,
there is a research trend towards statistical dialogue management. A well-founded theory for this is the
partially observable Markov decision process (POMDP) (Kaelbling et al., 1998).

Under the POMDP-based framework, a distribution of possible states – belief state b is maintained in
every dialogue turn. Then reinforcement learning (RL) methods automatically optimize the policy π, i.e.
a mapping function from belief state b to dialogue action a = π(b) (Young et al., 2013). Initially, linear
RL-based models are adopted, e.g. least-squares policy iteration (LSPI) and natural actor-critic (NAC).
However, these linear models have a poor ability of expression and suffer from slow training. Recently,
nonparametric algorithms, e.g. Gaussian process reinforcement learning (GPRL), which can optimize
policies from a minimal number of dialogues have been proposed. However, the computation cost of
GPRL increases with the increase of the number of data. It is therefore questionable as to whether GPRL
can scale to support commercial wide-domain SDS.

More recently, deep reinforcement learning (DRL) methods are adopted for dialogue policies
(Cuayáhuitl et al., 2015; Fatemi et al., 2016; Zhao and Eskenazi, 2016; Williams et al., 2017; Chen
et al., 2017b; Chang et al., 2017). These policies are often represented by fully connected deep neu-
ral networks including deep Q-networks and actor-critic networks. DRL-based models are often more
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expressive and computational effective. However, these deep models are not sample-efficient and not
robust to errors from input modules of SDS. So the focus of these recent advances has been on designing
improved RL algorithms to improve the sample-efficiency, e.g. eNAC (Su et al., 2017), BBQ (Lipton et
al., 2018).

In this paper, we take an alternative but complementary approach of focusing primarily on innovating
a structured neural network architecture that is better suited for dialogue policy. This approach has the
benefit that the new network can be easily combined with most existing methods for DRL, which results
in structured deep reinforcement learning.

The proposed structured DRL is based on graph neural networks (GNN) (Scarselli et al., 2009), which
consists of some sub-networks, each one corresponding to a node in the directed graph. The graph has
two types of nodes: slot-dependent node and slot-independent node. The same types of nodes partially
share parameters. This can speed up the learning process. In order to model the interaction between sub-
networks, they have internal message exchanges between neighbors when doing forward computation.

The main contribution of this paper is three-fold: (1) We proposed a unified structured dialogue policy
based on GNN. To the best of our knowledge, this is the first work to introduce the graph-based approach
for dialogue policy optimization. (2) We introduced a novel method to optimize the graph structure along
with the parameters of GNN. (3) Our proposed framework achieves state of the art in PyDial benchmark.

2 Related Work

Recent mainstream studies on statistical dialogue management have been modeling dialogue as a par-
tially observable Markov decision process (POMDP), where reinforcement learning (RL) can be applied
to realize automatic dialogue policy optimization (Young et al., 2013).

To achieve efficient policy learning, (Gašić et al., 2010) proposed Gaussian process reinforcement
learning (GPRL), where the prior correlations of the objective function given different belief states are
defined by the kernel function (Gašić et al., 2010; Gašić and Young, 2014). Recently, deep reinforce-
ment learning (DRL) (Mnih et al., 2015) has been applied in dialogue policy optimization, including
value function approximation methods, like deep Q-network (DQN) (Cuayáhuitl et al., 2015; Zhao and
Eskenazi, 2016; Fatemi et al., 2016; Chen et al., 2017a; Chang et al., 2017; Peng et al., 2017), and policy
gradient methods, e.g. REINFORCE (Williams et al., 2017), advantage actor-critic (A2C) (Fatemi et al.,
2016). However, compared with GPRL, most of these models are not sample-efficient. More recently,
some methods are proposed to speed up the learning process based on improved DRL algorithms, e.g.
eNAC (Su et al., 2017), BBQ (Lipton et al., 2018). In contrast, our proposed method is based on a
structured neural architecture, which is complementary to various DRL algorithms.

The most related work is the recently proposed multi-agent dialogue policy (MADP) (Chen et al.,
2018). In MADP, the dialogue policy is decomposed into some slot-dependent sub-policies and a slot-
independent sub-policy. While MADP is proposed under the view of multi-agent reinforcement learning,
it’s can be interpreted as the special instance of our proposed graph-based policy with a fully connected
graph structure. That is, our proposed framework is more general. Moreover, the graph structure can be
jointly optimized with the parameters of neural networks in our methods.

Graph-based approaches are previously adopted for dialogue state tracking, such as the Bayesian up-
date of dialogue state (BUDS) model (Thomson and Young, 2010), structured discriminative model (Lee,
2013). However, they have not been explored for dialogue policy optimization.

3 Proposed Framework

3.1 DRL-based Dialogue Policy
Task-oriented dialogue systems are typically designed according to a structured ontology which consists
of some concepts (or slots) that a user might wish to use to frame a query. Each slot possesses two
attributes: whether it is requestable and informable. A slot is requestable if the user can request the value
of it. An informable slot is one that the user can provide a value for to use as a constraint on their search.

At each dialogue turn, the dialogue state tracker maintains a belief state for each informable slot.
Generally, the belief state is a distribution of candidate values for the slot. After the update of belief state,
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Figure 1: (a) An example of directed graph G with 5 nodes and 10 edges. There are two types of nodes:
nodes 1∼4 (blue) are slot-dependent nodes (S-nodes) and node 0 (red) (I-node) is slot-independent node.
Accordingly, there are 3 type of edges. (b) The adjacency matrix of G. (c) An example of sending
messages. S-node 2 sends messages to its out-going neighbors, i.e. S-nodes 1, 4 and I-node 0. (d)
An example of aggregating messages. S-node 4 aggregates messages from its in-coming neighbors, i.e.
S-nodes 2, 3 and I-node 0.

the values with the largest belief for each informable slot are used as a constraint to search the database.
The matched entities in the database as well as the belief state for slots are concatenated as whole belief
dialogue state, which is the input of dialogue policy. Therefore, the dialogue state b usually can be
decomposed into some slot-dependent states and a slot-independent state, i.e. b = b1 ⊕ · · · ⊕ bn ⊕ b0.
bj(1 ≤ j ≤ n) is the belief state corresponding to j-th informable slot, and b0 represents the slot-
independent state, e.g. database search results.

The output of dialogue policy is a summary action. Similarly, the summary actions can be divided
into n+ 1 sets including n slot-dependent action sets Aj(1 ≤ j ≤ n), e.g. request slotj , confirm slotj ,
select slotj , and one slot-independent action set A0, e.g. repeat, inform, reqmore, bye, restart.

Most of previous DRL-based policies don’t take advantage of the structure of belief dialogue state and
summary actions. The focus in these recent advances has been on designing improved RL algorithms,
e.g. eNAC, BBQ. Here, we take an alternative but complementary approach of focusing primarily on
innovating a structured neural network architecture that is better suited for dialogue policy. This approach
has the benefit that the new network can be easily combined with existing and future algorithms for RL.
That is, this paper advances a new network, but uses already published algorithms. In this paper, we
adopt deep-Q-networks (DQN). In the next two sections, we will first give the background of DQN and
then introduce the proposed structured policy based on graph neural networks (GNN).

3.2 Deep-Q-Networks (DQN)

A Deep Q-Network (DQN) is a multi-layer neural network which maps a belief state b to the values of
the possible actions a at that state, Q(b, a; θ), where θ is the weight vector of the neural network. Neural
networks for the approximation of value functions have long been investigated (Lin, 1993). However,
these methods were previously quite unstable (Mnih et al., 2013). In DQN, two techniques were proposed
to overcome this instability, namely experience replay and the use of a target network (Mnih et al., 2013;
Mnih et al., 2015).

At every turn, the transition τ including the previous state b, previous action a, corresponding reward
r and current state b′ is put in a finite pool D. Once the pool has reached its maximum size, the oldest
transition will be deleted. During training, a mini-batch of transitions is uniformly sampled from the
pool, i.e. τ ∼ U(D). This method removes the instability arising from strong correlation between the
subsequent transitions of a dialogue. Additionally, a target network with weight vector θ̂ is used. This
target network is similar to the Q-network except that its weights are only copied every K steps from
the Q-network, and remain fixed during all the other steps. The loss function for the Q-network at each
iteration takes the following form:
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Figure 2: A Q-network with graph neural network (GNN). GNN consists of three modules: input, com-
munication, and output. ⊕ denotes concatenation of vectors.

LTD(θ) = Eτ∼U(D)

[
(y −Qθ(b, a))2

]
, (1)

where y = r + γmaxa′ Qθ̂(b
′, a′) and γ ∈ [0, 1] is the discount factor.

Most of the previous work adopts fully connected deep neural networks for Q-networks. Here we
propose a new network architecture for Q-networks based on structured graph neural networks.

3.3 Graph Neural Networks (GNN)

Before delving into details of GNN, we first introduce our notation. We denote the graph structure as
G = (V,E) with nodes vi(0 ≤ i ≤ n) ∈ V and directed edges eij ∈ E. Nin(vi) denotes the in-coming
neighbors of node vi, andNout(vi) denotes the out-going neighbors of node vi. Z is the adjacency matrix
of G. The element zij of Z is 1 only and only if there is a directed edge from i-th node vi to j-th node
vj , otherwise zij is 0. Each node vi has an associated node type ci. Similarly, each edge eij has an edge
type ue, which is determined by node type ci and node type cj , i.e. two edges have the same type if and
only if their starting node type and their ending node type both are the same.

For dialogue policy, it has two types of nodes: a slot-independent node (I-node) and n slot-dependent
nodes (S-nodes). Accordingly, there are 3 types of edges. Each S-node corresponds to an informable slot
in the ontology, while I-node is responsible for slot-independent aspects. Fig.1(a) shows an example of
directed graph G with 5 nodes and 10 edges. Nodes 1∼4 (blue) are S-nodes for 4 slots and node 0 (red)
is I-node. Fig.1(b) is the corresponding adjacency matrix.

GNN is a deep neural network defined on the graphG. As shown in Fig.3, it consists of three modules:
input module, communication module, and output module.

3.3.1 Input Module
At each dialogue turn, each node vi(0 ≤ i ≤ n) will receive the belief dialogue state bi, which goes
through an input module to obtain a state vector h0

i as follows:

h0
i = fci(bi), (2)

where fci is a function for node type ci, which may be a multilayer perceptron (MLP).
Usually, different slots have different number of candidate values, therefore the dimensions of the

inputs of two S-nodes are different. However, in practice, for dialogue policy the probabilities of top
K values of each slot play a more important role. Therefore, the whole belief state of each slot is
often approximated by the probabilities of sorted top K values (Gašić and Young, 2014), which can be
implemented by sorted K-max pooling (Kalchbrenner et al., 2014).
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3.3.2 Communication Module
The communication module takes h0

i as the initial state for node vi, then update state from one step to
the next with following operations.
Sending Messages At l-th step, each node vi will send messages ml

ij to node vj if there is a directed
edge from vi to vj ,

ml
ij = ml

ue(h
l−1
i ), (3)

whereml
ue is a function for edge type ue at l-th step. For simplicity, we only considerml

ue in the form of
a linear embedding: ml

ue(h
l−1
i ) = Wl

ueh
l−1
i , where Wl

ue is a weight matrix to be learned. Fig.1(c) is
an example of sending messages for S-node 2. It sends messages to its out-going neighbors, i.e. S-nodes
1, 4 and I-node 0.
Aggregating Messages After sending messages, each node vj will aggregate messages from its in-
coming neighbors,

alj =
∑

vi∈Nin(vj)

k̂lue(h
l−1
i ,hl−1j )ml

ij =
∑

1≤i≤n
zij k̂

l
ue(h

l−1
i ,hl−1j )ml

ij , (4)

where the function k̂lue computes a normalized scalar representing relationship between node vi and node
vj . There are various versions of k̂lue . Here we introduce two instantiations:

• Mean-Comm: All messages from in-coming neighbors are treated equally, i.e. k̂lue(h
l−1
i ,hl−1j ) =

1
|Nin(vj)| .

• Attention-Comm: In practice, some messages are more important than others. Inspired by self-
attention model for machine translation (Vaswani et al., 2017), here we first compute the similarity
of two states in an unified space, i.e.

klue(h
l−1
i ,hl−1j ) = (Wl

1ueh
l−1
i )T(Wl

2ueh
l−1
j ), (5)

then normalize it with softmax:

k̂lue(h
l−1
i ,hl−1j ) =

e(W
l
1ue

hl−1
i )T(Wl

2ue
hl−1
j )∑

i e
(Wl

1ue
hl−1
i )T(Wl

2ue
hl−1
j )

. (6)

Fig.1(d) is an example of aggregating messages for S-node 4. It aggregates messages from its in-
coming neighbors, i.e. S-nodes 2, 3 and I-node 0.
Updating State After aggregating messages from neighbors, every node vi will update its state from
hl−1i to hli,

hli = glci(h
l−1
i ,ali), (7)

where glci is the update function for node type ci at l-th step, which may be a non-linear layer in practice,
i.e.

hli = σ(Wl
cih

l−1
i + ali), (8)

where σ is an activation function, e.g. RELU, and Wl
ci is the transition matrix.

3.3.3 Output Module
After updating state L steps, based on the last state hLi each node vi will compute the Q-values qi for the
actions corresponding to vi:

qi = oi(h
L
i ), (9)

where oi is a function for node i, which may be a MLP in practice. Note that, in input module and
communication module, the same types of nodes share parameters, which may speed up the learning
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process. However, in output module, in oder to capture the specific characteristics of each node, they
don’t share parameters.

When making decision, the outputs of all nodes are first concatenated, i.e. q = q0 ⊕ q1 ⊕ · · · ⊕ qn,
then the action is chosen according to q as done in vanilla DQN.

3.4 Inference of Graph Structure
In the previous section, we assume that the structure of graph G, i.e. the adjacency matrix Z, is known.
However, usually the graph is not known in practice, and the hypothetical structure is not guaranteed
to be optimal. Therefore, it’s better to optimize the structure along with the parameters of GNN. We
assume that Z is a latent variable, and follows a factorized Bernoulli distribution, i.e. each element zij ∼
Bern(φij). The exact posterior distribution of Z is hard to inference and we can obtain the approximate
posterior qφ(Z) via variational inference. The loss function in equation (1) will be reformulated as
follows:

L(θ, φ) =Eτ∼U(D),Z∼qφ(Z)

[
(y −Qθ(b, a;Z))2

]
+ λKL(qφ(Z)||p(Z))

=LE(θ, φ) + λLC(φ),
(10)

where p(Z) is the prior, and also follows a factorized Bernoulli distribution.
As shown in the equation, the loss function L(θ, φ) consists of two terms LE(θ, φ) and LC(φ).
LE(θ, φ) corresponds to the error loss that measures how well the model is fitting the current dataset,
whereas LC(φ) refers to the complexity loss that measures the flexibility of the model. For a uniform
Bernoulli prior distribution, LC(φ) can be written following:

LC(φ) =
∑
i,j

KL(qφij (zij)||p(zij))) =
∑
i,j

[−log0.5 + φij logφij + (1− φij)log(1− φij)] . (11)

Minimising the KL divergence between qφij (zij) and the prior is equivalent to maximising the entropy
of the Bernoulli random variable with probability φij . This pushes the probability towards 0.5.

While LC(φ) is straightforward to minimize, LE(θ, φ) does not allow for efficient gradient based op-
timization due to the discrete nature of Z. To obtain the Q-valuesQθ(b, a;Z), we need first to sample the
discrete graph structure Z according to the factorized Bernoulli distribution with parameters φ. There-
fore, the loss function LE(θ, φ) is non-differential w.r.t. φ. While in principle a score function estimator
such as the REINFORCE (Williams, 1992) could be employed, it suffers from high variance in practice.
An alternative is to replace the discrete Bernoulli distribution with its continuous relaxation, i.e. the Con-
crete distribution as done at Concrete dropout (Gal et al., 2017). Instead of sampling the random variable
from the discrete Bernoulli distribution we sample realisations from the following Concrete distribution
with some temperature t:

z̃ij = sigmoid

(
1

t
(logφij − log(1− φij) + logεij − log(1− εij))

)
, (12)

where εij is the noise sampled from a uniform distribution, i.e. εij ∼ U(0, 1). The Concrete distribution
concentrates most mass on the boundaries of the interval 0 and 1. With the continue relaxation z̃ij of the
Bernoulli random variable zij , the loss function will be reparameterized as follows:

L(θ, φ) =Eτ∼U(D),ε∼U(0,1)

[(
y −Qθ(b, a; Z̃)

)2]
+ λKL(qφ(Z)||p(Z)), (13)

where ε ∼ U(0, 1) denotes that every εij is sampled from the uniform distribution independently. Every
element zij of Z̃ is calculated with equation (12). Note that whereas the sampling still exists, the sampled
noise ε is independent of the parameters φ. Therefore the loss function L(θ, φ) is differential w.r.t. φ and
it can be straightforward to minimize.

Note that the procedure of sampling according to equation (12) is approximately equivalent to sam-
pling the neighbors of every node vi according to the probability φij . It is a variant of dropout and
adopted in self-attention models (Tan et al., 2018) and graph convolutional networks (Kipf and Welling,
2017).
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task Env.1 Env.2 Env.3 Env.4 Env.5 Env.6
SER 0% 0% 15% 15% 15% 30%

Masks On Off On Off On On
User Standard Standard Standard Standard Unfriendly Standard

Table 1: The set of benchmarketing tasks

4 Experiments

4.1 PyDial Benchmark

Dialogue management research is typically evaluated on a small set of environments. Fortunately, a
set of extensive simulated dialogue management environments is published in (Casanueva et al., 2017),
which can test the capability of models in different environments. These environments are implemented
in an open domain toolkit: PyDial. With providing domain-independent implementations of all the
dialogue system modules, simulated users and simulated error models, PyDial has the potential to create
a set of benchmark environments to compare different models in the same conditions. In this paper, we
evaluate our proposed approaches on these environments, which will be briefly introduced next and are
summarized in Table 1.

Firstly, there are three different domains: information seeking tasks for restaurants in Cambridge
(CR) and San Francisco (SFR) and a generic shopping task for laptops (LAP). They are slot-based,
which means the dialogue state is factorized into slots.

The second different dimension of variability is the semantic error rate (SER), which simulates
different noise levels in the speech understanding input channel.

In addition, env.5’s user model is defined to be an Unfriendly distribution, where the users barely
provide any extra information to the system, while others’ are all Standard.

Finally, in order to test the learning capability of the models, the action masking mechanism is dis-
abled in two of the tasks: env2 and env4.

The metrics in the next section has presented the average success rate and average reward for each
applied model. The success rate is defined as the percentage of dialogues which are completed success-
fully.The reward is defined as 20 × 1(D) − T , here 1(D) is the success indicator and T is the dialogue
length in turns.

4.2 Results

We evaluate four variants of our proposed structured DRL-based dialogue policy:

• GNN-M: GNN-based dialogue policy with fully connected graph. The communication method
between nodes is Mean-Comm described in section 3.3.2.

• GNN-M-C: It is similar to GNN-M except that the graph structure is jointly optimized with the
parameters of GNN as described in section 3.4. The hyperparameter λ in equation (13) is 4× 10−4.

• GNN-A: GNN-based dialogue policy with fully connected graph. The communication method be-
tween nodes is Attention-Comm described in section 3.3.2.

• GNN-A-C: It is similar to GNN-A except that the graph structure is jointly optimized with the
parameters of GNN as described in section 3.4. The hyperparameter λ in equation (13) is 4× 10−4.

These models are compared with three baselines1 presented in (Casanueva et al., 2017): GP-Sarsa, DQN,
and eNAC. The results in the 18 tasks after 1000/4000 training dialogues are shown in Table 2. For each
task, the result is the mean over 10 different random seeds.

1Due to the limitation of space, the results of A2C is omitted. The performance of A2C is worst among these baselines.
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Baselines Structured DRL
GP-Sarsa DQN eNAC GNN-M GNN-A GNN-M-C GNN-A-C

Task Suc. Rew. Suc. Rew. Suc. Rew. Suc. Rew. Suc. Rew. Suc. Rew. Suc. Rew.
after 1000 training dialogues

E
nv

.1 CR 98.0 13.0 88.6 11.6 93.0 12.2 95.2 13.0 97.7 13.5 96.3 13.0 98.8 13.7
SFR 91.9 10.0 48.0 2.7 85.8 9.9 70.1 8.6 66.6 6.3 89.0 10.2 85.8 9.6
LAP 78.9 6.7 61.9 5.5 84.2 8.8 71.0 7.2 79.0 8.7 92.3 10.8 87.0 9.8

E
nv

.2 CR 91.1 10.8 67.6 6.4 78.8 6.6 94.0 12.4 94.7 12.3 95.8 12.6 94.5 12.0
SFR 82.1 7.4 64.2 5.4 67.5 2.7 85.4 10.9 76.2 7.5 83.8 8.4 77.8 6.7
LAP 68.4 3.1 70.8 5.8 57.8 -0.5 78.2 8.0 80.7 8.5 83.4 6.6 83.4 7.1

E
nv

.3 CR 91.9 10.4 79.5 9.2 85.7 10.0 88.4 10.8 97.1 12.5 95.9 12.2 95.8 12.2
SFR 76.6 5.5 42.4 1.0 73.6 6.2 78.6 7.5 80.4 7.8 80.9 7.1 81.5 7.0
LAP 65.0 2.8 51.9 3.1 71.0 5.5 68.2 5.5 71.1 6.1 80.0 7.1 79.2 6.2

E
nv

.4 CR 88.2 9.3 73.5 6.9 73.6 4.4 91.3 10.8 88.9 10.2 91.2 10.4 86.6 9.3
SFR 73.6 4.9 65.9 4.5 60.4 0.8 81.3 8.2 79.0 7.4 71.5 3.9 80.9 7.1
LAP 61.3 0.3 53.2 2.7 46.9 -2.9 66.1 4.5 65.8 4.1 65.8 2.1 67.6 1.7

E
nv

.5 CR 90.2 9.0 60.1 4.1 81.2 8.1 94.8 11.2 95.1 11.1 92.9 10.3 95.2 11.0
SFR 65.3 1.3 32.5 -2.0 54.0 0.9 53.8 1.3 74.3 5.0 74.5 3.6 77.6 4.3
LAP 44.9 -2.8 31.4 -1.8 61.3 1.7 51.4 1.3 67.1 2.8 70.7 2.7 76.6 3.1

E
nv

.6 CR 84.9 8.3 72.3 6.9 73.6 6.7 87.7 9.9 88.8 10.1 86.9 9.0 87.3 9.2
SFR 59.7 0.7 35.6 -1.2 55.2 1.4 51.2 1.4 65.6 3.6 67.2 2.8 71.1 3.1
LAP 52.0 -1.5 47.5 1.4 56.3 1.9 57.0 2.7 60.1 2.8 71.4 3.3 65.4 1.6

M
ea

n

CR 90.7 10.1 73.6 7.5 81.0 8.0 91.9 11.4 93.7 11.6 93.2 11.3 93.0 11.2
SFR 74.9 5.0 48.1 1.7 66.1 3.6 70.1 6.3 73.7 6.3 77.8 6.0 79.1 6.3
LAP 61.7 1.4 52.8 2.8 62.9 2.4 65.3 4.9 70.7 5.5 77.3 5.4 76.5 4.9
ALL 75.8 5.5 58.2 4.0 70.0 4.7 75.8 7.5 79.4 7.8 82.8 7.6 82.9 7.5

after 4000 training dialogues

E
nv

.1 CR 99.4 13.5 93.9 12.7 94.8 12.4 96.1 13.3 99.2 14.0 98.6 13.7 99.1 13.9
SFR 96.1 11.4 65.0 5.9 94.0 11.7 86.8 10.2 88.7 10.7 93.5 10.8 94.5 11.4
LAP 89.1 9.4 70.1 6.9 91.4 10.5 85.4 9.9 86.6 9.8 92.2 10.6 93.7 10.8

E
nv

.2 CR 96.8 12.2 91.9 12.0 83.6 9.0 98.5 13.6 96.4 12.7 96.6 12.8 90.5 11.3
SFR 91.9 9.6 84.3 9.2 65.6 3.7 93.6 11.6 87.4 9.5 91.8 10.3 89.2 10.3
LAP 82.3 7.3 74.5 6.6 55.1 1.5 83.3 8.8 92.2 11.3 89.1 9.0 83.9 7.5

E
nv

.3 CR 95.1 11.0 93.4 11.9 90.8 11.2 96.4 12.6 95.3 12.1 95.6 12.1 96.3 12.3
SFR 81.6 6.9 60.9 4.0 84.6 8.6 84.1 8.3 84.2 8.5 88.2 8.2 83.0 7.1
LAP 68.3 4.5 61.1 4.3 76.6 6.7 77.7 6.9 78.5 7.0 85.6 6.8 79.6 5.6

E
nv

.4 CR 91.5 9.9 90.0 10.7 85.3 9.0 93.5 11.5 93.9 11.4 93.4 11.0 92.0 10.9
SFR 81.6 7.2 77.8 7.7 61.7 2.0 77.7 7.2 79.8 7.5 80.9 7.2 85.8 8.4
LAP 72.7 5.3 68.7 5.5 52.8 -0.8 85.3 8.8 77.5 7.7 72.9 3.5 75.6 4.0

E
nv

.5 CR 93.8 9.8 90.7 10.3 91.6 10.5 95.1 11.2 94.7 10.9 95.0 10.8 93.4 10.2
SFR 74.7 3.6 62.8 2.9 74.4 4.5 88.8 7.9 81.6 6.3 83.9 5.4 79.9 4.3
LAP 39.5 -1.6 45.5 0.0 75.8 4.1 73.0 4.2 64.7 1.7 75.2 1.5 76.9 2.6

E
nv

.6 CR 89.6 8.8 87.8 10.0 79.6 8.0 89.0 10.0 89.3 9.8 90.4 9.9 89.4 9.8
SFR 64.2 2.7 47.2 0.4 66.7 3.9 72.8 4.9 69.3 4.0 67.3 1.7 74.4 3.7
LAP 44.9 -0.2 46.1 1.0 64.6 3.6 64.1 3.6 69.4 4.1 72.0 1.8 69.8 2.0

M
ea

n

CR 94.4 10.9 91.3 11.3 87.6 10.0 94.8 12.0 94.8 11.8 94.9 11.7 93.5 11.4
SFR 81.7 6.9 66.3 5.0 74.5 5.7 84.0 8.4 81.8 7.8 84.3 7.3 84.5 7.5
LAP 66.1 4.1 61.0 4.1 69.4 4.3 78.1 7.0 78.2 6.9 81.2 5.5 79.9 5.4
ALL 80.7 7.3 72.9 6.8 77.2 6.7 85.6 9.1 84.9 8.8 86.8 8.2 86.0 8.1

Table 2: Reward and success rates after 1000/4000 training dialogues. The results in bold blue are the
best success rates, and the results in bold black are the best rewards.

We can find that our models can achieve the best performance in almost all of the tasks. In the
two larger domains (SFR, LAP), the performance boost is more clear. For our four models, there is
no significant difference in their performance, which indicates our proposed framework is not sensitive
to these variants. However, through further analysis of these results, some interesting phenomena are
observed.

After 1000 training dialogues, on average, two models (GNN-A and GNN-A-C) with Attention-Comm
achieve the best reward and the best success rate respectively. It shows that Attention-Comm may benefit
the sample-efficiency in the early learning stage. The potential reason is that models with Attention-
Comm can quickly adjust their parameters to pay more attention on most important messages.

It is interesting to observe that two models with optimization of graph structure obtain better success
rate than the other two (GNN-M-C vs. GNN-M, GNN-A-C vs. GNN-A). As described in section 3.4,
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our proposed approach for structure optimization is a variant of dropout, i.e dropout neighbors. Dropout
introduces some noise in the neural networks and can improve exploration in DRL (Gal and Ghahramani,
2016; Gal et al., 2017). Here, GNN-A-C and GNN-M-C also do more exploration, resulting in long
dialogues which have more potential for success.

4.3 Analysis and Discussion

Figure 3: An example of dialogue on semantic level with a policy of GNN-A in CR domain (Env.1).

Fig.3 is an example of dialogue with a policy of GNN-A in CR domain (Env.1). The confusion
matrices show the attention weights in the first communication step computed by equation (6). The
elements in the i-th row represent the weights node vi sending messages to other nodes. And each
column is normalized by softmax. We can find that if the final action comes from the action sets Ai,
which is corresponding to node vi, then the weights in the i-th row will be larger, as if to say:“ Hey, it’s
my duty to making decision at this turn, and you should make the Q-values for your action sets smaller!”.

The confusion matrix in Fig.4 in Appendix A is the optimized graph structure in LAP domain (Env.3),
i.e. the parameter φij represents the probability of the existence of edge from node vi to node vj . We can
find that all probabilities are in the range [0.7,0.9]. However, the probabilities associated with I-node is
much larger than others, which means the communication between I-node and S-node is more important
than the communication between S-node and S-node.

5 Conclusion

In this paper, we propose a structured dialogue policy, which is represented by a graph neural network
(GNN). It consists of some sub-networks, each one for a node in a directed graph. The graph has
two types of nodes: a slot-independent (I-node) node and n slot-dependent nodes (S-nodes). Each S-
node corresponds to a slot. The same types of nodes partially share parameters. In order to model
the interaction between sub-networks, they have internal message exchanges between neighbors in the
graph when doing forward computation. We evaluate our framework on PyDial benchmark. Our models
achieve state of the art in almost all of 18 tasks.
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Figure 4: The confusion matrix of graph structure in LAP domain (Env.3). Each element denotes the
probability that there is a edge from node vi to vj .
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