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Abstract

Machine reading comprehension (MRC) has recently attracted attention in the fields of natural
language processing and machine learning. One of the problematic presumptions with current
MRC technologies is that each question is assumed to be answerable by looking at a given text
passage. However, to realize human-like language comprehension ability, a machine should also
be able to distinguish not-answerable questions (NAQs) from answerable questions. To develop
this functionality, a dataset incorporating hard-to-detect NAQs is vital; however, its manual con-
struction would be expensive. This paper proposes a dataset creation method that alters an exist-
ing MRC dataset, the Stanford Question Answering Dataset, and describes the resulting dataset.
The value of this dataset is likely to increase if each NAQ in the dataset is properly classified with
the difficulty of identifying it as an NAQ. This difficulty level would allow researchers to evalu-
ate a machine’s NAQ detection performance more precisely. Therefore, we propose a method for
automatically assigning difficulty level labels, which basically measures the similarity between a
question and the target text passage. Our NAQ detection experiments demonstrate that the result-
ing dataset, having difficulty level annotations, is valid and potentially useful in the development
of advanced MRC models.

1 Introduction

Language understanding is one of the ultimate goals of artificial intelligence. Because the machine
understanding of human language is hard to define, one often presumes that if a machine can answer a set
of questions under given circumstances, then it understands language. Machine reading comprehension
(MRC) developed along this direction and has recently attracted a great deal of attention in natural
language processing (NLP) and machine learning.

The tasks of MRC are defined in various ways (Richardson et al., 2013; Mostafazadeh et al., 2017;
Weston et al., 2015; Chen et al., 2016; Rajpurkar et al., 2016). Some tasks (Chen et al., 2016; Hill et al.,
2016) provide a set of fill-in-the-blank style questions. The most prominent tasks (Rajpurkar et al., 2016),
however, allow a machine to locate an answer span in given text passages. It is a highly efficient scheme,
because the task can be formulated by the recognition of the start and end positions of the passage.
This model facilitates the development of machine learning approaches and the automatic evaluation of
performances. However, as criticized by (Jia and Liang, 2017), a machine can succeed in a task of this
kind by remembering and recalling linguistic patterns that are prominent in a target dataset. This means
that machine comprehension of this type would be an insufficient measure for assessing the degree of
machine understanding of language.

To tackle this issue, Jia and Liang (2017) developed a dataset, in which passages were altered to include
adversarial sentences that could lead to wrong answers. Contrary to their approach, which modified text
passages, this paper proposes to extend MRC by incorporating questions for which relevant answers
cannot be found in the given text passages. These questions are called not-answerable questions (NAQs).
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This partly meets our expectation, which can be stated as, “a good MRC system, given text passages,
should properly detect and reject NAQs.”

To develop an appropriate functionality, a dataset that accommodates NAQs and answerable questions
is mandatory. Furthermore, each NAQ in the dataset should not be easily detected. However, the man-
ual construction of such a dataset would be very costly. Therefore, this paper proposes an automatic
dataset creation method for incorporating NAQs by making use of an existing MRC dataset. We created
such a dataset by modifying a popular MRC dataset, the Stanford Question Answer Dataset (SQuAD)
(Rajpurkar et al., 2016).

The value of such a dataset would increase if each NAQ in the dataset were to be graded according to
the difficulty level used to determine question as not-answerable. These difficulty level annotations would
allow us to choose a subset where the difficulty levels of NAQs could be adjusted as required. Therefore,
we propose a method for automatically assigning difficulty level labels to NAQs. The proposed method
employs a set of similarity features that are highly effective in determining the not-answerability of a
question. NAQ detection experiments, employing an answerable/not-answerable binary classifier and
a “null-answer detector” are conducted, showing that the resulting dataset with its respective difficulty
level labels can be effectively used in the study of the genuine machine understanding of a language.

2 Related Work

Recently, several MRC datasets have been developed. The characteristics of each MRC dataset varies,
depending on the purpose. For example, the Childrens Book Test dataset (Hill et al., 2016) was built
from books for children, where the 21st sentence that follows the preceeding 20 sentences is employed
as a “question.” Additionally, the CNN/Daily dataset (Chen et al., 2016) collects news articles with
bullet-pointed summaries, in which each summary is converted into a question. Among the many MRC
datasets, this section introduces two datasets, WIKIQA (Yang et al., 2015) and SQuAD (Rajpurkar et al.,
2016). Of these, the latter is used in this work. Additionally, we address potential problems with SQuAD.

2.1 Related MRC Datasets
WIKIQA: WIKIQA is one of the few MRC datasets that contains questions without answers, which is
a main concern of this paper. WIKIQA was created to capture the characteristics of natural queries asked
by people in the real world. Each question in this dataset was taken from a search engine’s actual query
log, and the corresponding Wikipedia summary paragraph is employed as a text passage, where each of
the contained sentences is treated as an answer candidate. This means that a machine is only required to
infer the positive or negative status of each sentence. This problem can be often solved by only looking
at the questions; the ability of reading comprehension is not necessarily required. WIKIQA maintains
3,047 questions, of which about two thirds are NAQs, as they never have a positive sentence in the
corresponding paragraphs. Moreover, 20.3% of the answers share no content words with the questions,
contributing to the elevated difficulty level of the dataset. Unfortunately, this dataset is relatively small,
and the amount of training data is inevitably limited.

SQuAD: SQuAD is an MRC dataset accommodating 107,785 question-and-answer (QA) pairs on 536
Wikipedia articles. A passage is associated with, at most, five QA pairs, and each question has the
corresponding answer, forming a span in the associated passage. The evaluation metrics are exact match
(EM) and F1. An EM score measures the percentage of predictions that match any one of the ground
truth answers exactly. An F1 score is a metric that measures the average overlap between the prediction
and the ground truth answer. Figure 1, adopted from (Rajpurkar et al., 2016), exemplifies three QA pairs
taken from a paragraph in a Wikipedia article, whose topic is precipitation. Note that each of the three
questions refers to the same passage, and the corresponding answer can be found as a span within the
passage. As detailed in the next section, we create an MRC dataset with NAQs by modifying an existing
dataset. If a good source dataset is properly chosen, this strategy could prevent the shortage of QAs and
enjoy the advantages of the existing dataset. Among the many MRC datasets, we choose SQuAD as the
source, because it is a rather large-scaled dataset of the answer-in-the-text style, which functions as a
good starting point to pursue the study of genuine machine understanding of a language.
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Figure 1: Example of QA pairs on a text passage in SQuAD.

2.2 Potential Problems with SQuAD

Jia and Liang (2017) make a point that the extent to which MRC systems truly understand language
remains unclear. To reward systems that have real language understanding abilities, they proposed an
adversarial evaluation method for SQuAD. Their method challenges the MRC system by altering the
passages to include adversarial sentences that could lead to wrong answers. The results of their experi-
ments proved that current MRC systems are easily affected by inserted adversarial sentences, concluding
that the machines need to understand language more precisely. Their approach can be contrasted with
ours, in that they modify text passages, whereas we propose to incorporate NAQs. However, both share
the same objective of extending the conventional MRC framework.

Sugawara et al. (2017) evaluated a published MRC dataset for ascertaining its quality. They adopted
two metrics: prerequisite skills and readability. Prerequisite skills include abilities, such as object track-
ing, coreference resolution, and logical reasoning. Readability was evaluated based on NLP metrics,
such as average sentence length in words and adverb variation. Their evaluation analyses revealed that
the prerequisite skills correlated more with dataset quality than readability. They concluded that SQuAD
passages were not very readable, whereas the questions were relatively easy to answer. Although this
insight does not have any direct connection with the present work, it should be noted, because it provided
considerable analyses of SQuAD.

3 Dataset Creation

We propose an automatic method for creating a dataset that is useful in the development of an NAQ
detection mechanism. The proposed method modifies an existing popular MRC dataset (i.e., SQuAD),
which avoids the manual construction of a dataset from scratch. This section first describes the dataset
creation method and then proposes a method for grading the difficulty level of an NAQ. Here the “diffi-
culty level” signifies how difficult a question is for a machine to identify as an NAQ1. The description of
the resulting dataset concludes this section.

1A set of Python scripts for creating an NAQ dataset from SQuAD is available at https://github.com/nknsh0000/
createNAQs.
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Figure 2: Creation of NAQ with our proposed creation strategy.

3.1 Devising NAQs

3.1.1 The Strategy

The priority in the creation of an applicable dataset is to incorporate hard-to-detect NAQs. It seems rather
easy to devise an NAQ. Randomly selected or generated questions can cater to the most fundamental
requirements. However, the questions gathered by this manner could be easily detected by a machine.
Thus, they are an inadequate device for assessing the degree of machine language comprehension.

The similarity between a question and the corresponding text passage plays a key role in the creation
of NAQs. More specifically, an NAQ is created by simply taking a question that was originally associated
with another text passage that is highly similar to the text passage of the current target. This practical
method can be applied to any MRC datasets, where the answer to a question is restricted to a span in the
corresponding text passage.

3.1.2 Creation of NAQs using SQuAD

Adjacent text passages in SQuAD are taken from Wikipedia articles, meaning that these passages are very
likely to share a topic and thus be similar. This pattern allows us to simply select an adjacent passage as
the target text passage of an NAQ. Figure 2 illustrates the procedure for NAQ creation from two pairs of
a text passage and a question. The question, “which company produces the iPod?,” originally associated
with the left passage, is taken as an NAQ of the right passage. Notice here that the entity, “iPod,” resides
in the passage, potentially confusing a machine. Questions that accidentally have the corresponding
answers in a shifted passage are thus removed2.

3.2 Grading NAQ Difficulties

Although the difficulty levels of created NAQs may vary, their proper annotations can be effectively uti-
lized. We can extract a subset of the entire dataset by choosing the difficulty levels and by enabling more
detailed evaluation of a machine’s NAQ detection performance. Difficulty levels should be automatically
determined by referring to mechanically-extractable features, rather than relying on human assessments.

3.2.1 Feature Detection

The selection of a feature to well-estimate the difficulty level of an NAQ is not trivial. To accomplish
this sub-task, we first collect potentially useful features and train an answerable/not-answerable binary
classifier. We then conduct ablation tests to find the most effective feature among the candidates.

Potentially useful features can be divided into two feature groups: Individual features and Similarity
features.

Individual features: To represent a passage and a question individually, an averaged word embed-
ding vector and its TF-IDF weighted version are respectively computed for each of the passages and

2We removed 1,825 questions.
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each of the questions. We employed pre-trained 100-dimensional GloVe (Pennington et al., 2014) word
embedding vectors3.

Similarity features: A largely irrelevant NAQ that is easy-to-detect is expected to have lower similarity
to the given passage. We thus compute five types of similarity features as listed below.

• (a) max word sim: the maximum similarity between a word in the question q =
(wq
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• (b) ave word sim: the averaged similarity between a word in the query and its most similar word
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• (c) the BLEU score (Papineni et al., 2002);

• (d) tcos: the cosine similarity between each of the TF-IDF bag-of-words vectors; and

• (e) gtcos: the cosine similarity between the averaged TF-IDF weighted word embedding vectors.

In the calculation of all features, we treat all out-of-vocabulary words as ”unknown”, which means
that these words are simply skipped.

Binary classification: We conducted answerable/not-answerable binary classification experiments by
employing the above-mentioned feature groups. In the experiments, we compared four classification
algorithms (i.e., random forest (RF), linear regression (LR), support vector machine (SVM), and Ad-
aBoost). Each were trained with 45,000 NAQs and the same number of answerable questions, randomly
chosen from the created dataset. A 10-fold cross validation was applied in each run. As Table 1 clearly
shows, similarity features could be utilized as a relatively good indicator.

Classifier RF LR SVM AdaBoost
Individual Features 0.597 0.563 0.565 0.554
Similarity Features 0.847 0.852 0.851 0.852

Table 1: Accuracy results of the binary classification.

Ablation tests: Based on the experimental results, we employed similarity features with the LR clas-
sifier. We then conducted ablation tests, where each similarity feature was ablated under the same exper-
imental settings. Table 2 summarizes the results. As indicated by the greatest degradation, the feature of
average similarity between words in the question and the passage, ave word sim, contributed the most.
Given these results, we simply exploited the ave word sim feature as the indicator of difficulty level.

Ablated feature max word sim ave word sim BLEU tcos gtcos
Accuracy 0.851 0.812 0.830 0.852 0.851

Table 2: Accuracy results from the ablation tests (comparing accuracy: 0.852).

3.3 Created Dataset
We finally completed our dataset by integrating the created NAQs with the original answerable questions
from SQuAD. Table3 measures the number of questions in the created dataset.

Furthermore, we assigned a difficulty level label to each NAQ in the dataset by using the similarity
feature, ave word sim, with the following criteria. Table 4 classifies the distribution of assigned diffi-
culty levels. Note that the NAQs creation and the difficulty level assignment were individually conducted
for train set and dev set.

3http://nlp.stanford.edu/data/glove.6B.zip
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Train Dev
#passages #questions #passages #questions

Answerable questions 18,896 87,599 2,067 10,570
NAQs 17,071 75,155 2,065 9,762

Table 3: The number of questions in the created dataset.

• LEVEL1 (easy): 0.0 ≤ ave word sim < 0.5

• LEVEL2 (moderate): 0.5 ≤ ave word sim < 0.7

• LEVEL3 (difficult): 0.7 ≤ ave word sim ≤ 1.0

Ranges of ave word sim Train Dev
ALL 0.0 ≤ ave word sim ≤ 1.0 75,155 9,762

LEVEL1 0.0 ≤ ave word sim < 0.5 9,686 823
LEVEL2 0.5 ≤ ave word sim < 0.7 57,730 4,636
LEVEL3 0.7 ≤ ave word sim ≤ 1.0 7,739 4,303

Table 4: Distribution of NAQ difficulty levels.

For reference, Figure 3 and Figure 4 respectively exemplify a LEVEL3 (difficult) and a LEVEL1
(easy) questions.

Figure 3: An example of difficult NAQ.

Figure 4: An example of an easy NAQ.
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4 NAQ Detection Experiments and the Results

We conducted two types of NAQ detection experiments: primary experiments for comparing model
architectures, and additional experiments for confirming the validity of the difficulty levels.

4.1 Comparing Model Architectures

In Section 3.2, answerable/not-answerable binary classification experiments were described. They were
conducted to explore efficient features for the difficulty-level grading. However, the model architecture
for NAQ detection was not necessarily limited to the described one. Rather, we adopted an existing MRC
answering model for the present purpose. Namely, we exploited BiDAF (Min et al., 2016), a popular
neural network model for MRC/QA in the present NAQ detection experiments.

Figure 5 overviews two BiDAF-based architectures for NAQ detection: (a) binary classification model
with answer span confidences, and (b) “null-answer” question detection model.

Figure 5: BiDAF-based model architectures for NAQ detection experiments: (left) binary classification
model; (right) “null-answer” detection model.

(a) Binary classification model with answer span confidences: Like many existing MRC models,
BiDAF estimates both start and end words of an answer candidate in the given text passage, allowing
us to utilize two confidences associated with these two words as features. In this paper, we refer to the
confidence of a start-word vector as s and that of an end word as e. The numbers of dimensions of s and
e were aligned with the number of the words in the longest text passage. This resulted in 673 dimensions.
In this experiment, 75,155 NAQs and the same number of answerable questions were randomly chosen
for training, and 9,762 NAQs and the same number of answerable questions were randomly chosen for
testing.

(b) “null-answer” question detection model: The BiDAF model can be leveraged another way. This
model explicitly adds a “null-answer” class by properly representing an empty span associated with
a null-answer. Through a preliminary experiment, we expressed it by locating both the start and end
positions at the very last word of the text passage. The same set of answerable questions and NAQs was
also used in this experiment.

4.1.1 The Results
Table 5 summarizes the classification accuracy with the binary classification model, where four types of
classifiers (RF, LR, SVM, and AdaBoost) were particularly compared. As seen in Table 5, the highest
accuracy of 0.813 was achieved with the RF classifier that employs both features, (ypstart and ypend).
These results were worse than those of the classifiers with similarity features utilized in the difficulty
level grading, presented in Section 3.2.

Table 6, on the other hand, presents the classification results of accuracy with the null-answer detection
model, where the accuracy was as high as 0.895, which greatly outperformed other models, including the
one described in Section 3.2. Moreover, the recall rate for recovering answerable questions was as high
as 0.936, whereas that for recovering NAQ was as low as 0.854, indicating that the detection of NAQs is
more difficult. If we only consider the results with answerable questions, the EM score was 0.607, which
was moderately worse than 0.680, achieved with the model trained without NAQs. Thus, the percentage
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Classifier RF LR SVM AdaBoost
ypstart 0.807 0.774 0.760 0.808

Features ypend 0.785 0.756 0.751 0.792
ypstart, ypend 0.813 0.780 0.774 0.813

Table 5: Accuracy results with the binary classification model.

All Answerable questions NAQs
Accuracy of NAQ detection 0.895 0.936 0.854

EM scores - 0.607 -

Table 6: Accuracy results with the null-answer detection model.

of misclassifying answerable questions as not-answerable was only 6.36% (1-0.936), whereas that of
misclassifying NAQs as answerable was 14.6% (1-0.854).

With the null-answer model, it is expected that correct answers will be recovered. The error rate of
answer extraction for the correctly identified answerable questions was 0.33, which is comparable with
0.32, achieved with the model trained without NAQs. This small difference supports the assumption that
the model would have misclassified many answerable questions as NAQs.

4.2 Validating the Difficulty Level Grading

We can extract a subset of the entire dataset by choosing the difficulty levels, which enables more detailed
evaluation of the machine’s NAQ detection performance. If the detection accuracies degrade with the
increase of difficulty levels, then the assigned difficulty levels are valid. Moreover, if the NAQ detection
accuracies are low enough, the created dataset is useful for the dev of the functionality to distinguish
NAQs from answerable questions.

For each class of the difficulty level, we randomly extracted the same number of answerable questions
from the SQuAD dataset as the NAQs from our dataset, and conducted the binary classification for the
dev set. Again, we compared the binary classification model (with the RF classifier) with the null-answer
detection model.

4.2.1 The Results
The results in Table 7 show that the accuracies degrade with the increase of the difficulty level, indicating
that the difficulty grading is valid. Additionally, we confirmed that the null-answer model was superior
to the present binary classification model. Moreover, the results for the most difficult level NAQs gave
significantly lower accuracy figures, signaling that the models for detecting NAQs still have room for
improvement. Nevertheless, we can construct a sub-dataset with designated difficulty levels from the
entire dataset, which could be effectively exploited in the development of MRC models that deal with
NAQs.

4.3 Error Analysis

Errors are divided into two cases, where the machine: (a) judged an NAQ as answerable (false answer-
able), or (b) judged an answerable question as an NAQ (false not-answerable).

Model Binary classification Null-answer detection
LEVEL1 0.860 0.953
LEVEL2 0.855 0.948
LEVEL3 0.748 0.734

Table 7: Accuracy results of NAQ detection experiments for each difficulty level.
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4.3.1 False answerable
Figures 6, 7 and 8 respectively display a false answerable error case, where the machine wrongly pre-
dicted a question as answerable in each difficulty level.

In the Level-1 question exemplified in Fig. 6, the machine wrongly answered the shape of thylakoid
rather than that of pyrenoids. This error could be attributed to the existence of the keyword ”shape”
appeared in the question. The passage actually had nothing to do with pyrenoids. In the example shown
in Fig. 7, the passage contains the sentence, ”In 1893, Tesla returned to his birthtown, Smijian.” The
machine’s prediction would have been strongly affected by the existence of not only ”Tesla” but ”go”:
”go” in the question and ”return” in the passage exhibit a level of semantic similarity. In this example, the
machine should have recognize that ”Smiljan” and ”Karlovac” are totally different placements, whose
similarity would not be taken into account. Finally, Fig. 8 displays a Level-3 question. Similar to the
example given in Fig. 7, the machine was again not able to recognize the difference in nouns; in this case
the focused nouns are compounds, each of them designates a specific event.

These examples suggest that the machine estimated the NAQs as answerable questions especially
when some words overlapped between passage and question. In these cases, the machine tends to simply
predict a span whose estimated semantic type is matched with the type of the interrogative.

4.3.2 False not-answerable
In false not-answerable cases, we observed differences in the mean length of questions and that of passage
as counted in Table 8. This table suggests that the machine tended to recognize answerable questions as
NAQs when the passage length is short or when the ground truth answer length is long.

Figure 6: A Level-1 NAQ that the machine misjudged as an answerable question.

Figure 7: A Level-2 NAQ that the machine misjudged as an answerable question.

5 Concluding Remarks

Machine understanding of language is difficult to define and accomplish. However, we must approach
this issue by developing a computational mechanism, along with the relevant resources. As a step along
this direction, in this paper, an automatic dataset creation method with which NAQs were incorporated
was proposed. We created a dataset by altering an existing QA dataset, SQuAD.
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Figure 8: A Level-3 NAQ that the machine mistook as an answerable question.

Answerable questions
Correctly predicted as answerable Incorrectly predicted as NAQ

Passage 777.39 722.01
Answer 2.82 3.25

Answer/Passage Ratio [%] 0.42 0.53

Table 8: The lengths of passages and answers contained answerable questions.

One of the key requirements for such a dataset would be the acquisition of NAQs that are difficult to
identify as not-answerable. Given this sub-goal, a method for assigning the difficulty levels to NAQs
was also described. The results of NAQ detection experiments demonstrated that the assigned difficulty
levels were valid, because the detection accuracies were degraded with the increase in difficulty level.
This means that we acquired a way to examine and evaluate NAQ detection methods and models more
precisely. Moreover, the lower accuracy results confirmed that there is still scope for improvement in
the NAQ detection models. Therefore, the created dataset could be effectively utilized in developing the
NAQ detection functionality.

For future work, we should develop a more difficult MRC dataset by further investigating into the
notion of the difficulty in NAQ detection, which would inherently require us to incorporate various
aspects of human language understanding. Along with this direction, we will devise a set of questions,
for which confusing items reside in the target text passages.
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