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Abstract

Cloze-style reading comprehension has been a popular task for measuring the progress of natural
language understanding in recent years. In this paper, we design a novel multi-perspective frame-
work, which can be seen as the joint training of heterogeneous experts and aggregate context
information from different perspectives. Each perspective is modeled by a simple aggregation
module. The outputs of multiple aggregation modules are fed into a one-timestep pointer net-
work to get the final answer. At the same time, to tackle the problem of insufficient labeled data,
we propose an efficient sampling mechanism to automatically generate more training examples
by matching the distribution of candidates between labeled and unlabeled data. We conduct our
experiments on a recently released cloze-test dataset CLOTH (Xie et al., 2017), which consists of
nearly 100k questions designed by professional teachers. Results show that our method achieves
new state-of-the-art performance over previous strong baselines.

1 Introduction

Reading comprehension is a challenging task which requires the deep understanding of natural language.
Cloze test is a particular form of reading comprehension: given a passage with blanks, an examinee is
required to fill in the missing word (or phrase) that best fits the context surrounding the blank. Recently,
cloze-style reading comprehension has drawn growing interests from NLP research communities, since
such a task meets the practical requirements and is relatively easy to design.

The research of cloze-style reading comprehension is first advanced by two large-scale corpora: the
CNN/Daily Mail (Hermann et al., 2015) and CBT (Hill et al., 2015) datasets, which are automatically
constructed by randomly or periodically deleting a word from original passage. Though the automatically
generated datasets usually consist of a large quantity of labeled data and make it possible to train large
neural network models, they are in nature far away from real-world language understanding problems
and have serious ambiguity issues (Chen et al., 2016). As a result, the state-of-the-art system of cloze
test almost reaches the performance ceiling and loses its improvement direction due to the limitation of
the corpus (Chen et al., 2016). In such situation, Xie et al. (2017) argues that it is a more reliable means
to assess language proficiency with carefully designed questions by professional teachers, and releases
a novel corpus CLOTH. The CLOTH dataset brings the new challenge of exploring a comprehensive
evaluation of language proficiency and specifically divides the questions into several types including
matching, reasoning and grammar etc. Table 1 shows several example questions from CLOTH.

From experiments by Xie et al. (2017), we can see that the Stanford attention reader (Chen et al.,
2016) of having the near state-of-the-art performance (with an accuracy of about 0.74) on CNN/Daily
Mail only gets an accuracy of 0.487 on CLOTH and there exists a huge performance gap between human
and popular machine learning models. The main reason is that attention models are mainly good at
processing matching questions (e.g., the first example in Table 1 has matching between “police” and
“accident”, “man died”), which occupy a less percentage in CLOTH than in CNN/Daily Mail. Xie
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question type
...... As a Senior student, I have to many exams. ......
A: finish B: win C: take D: join

collocation

I am calling from the station .......
“ There was an accident, and a man died .” ......
A: post B: bus C: police D: railway

matching

a student reported that I made an error ...... He was
and after thanking him for his honesty ...... he said angrily .
A: wise B: right C: rigid D: angry

reasoning

...... They are used to messages by computers
and smart phones. ......
A: sending B: send C: sent D: sends

grammar

Table 1: Example questions and their corresponding types from the CLOTH dataset. “......” represents some omitted irrelevant
sentences.

et al. (2017) also present the word-predicting potential of language models (LM) which can well tackle
lexical collocation (e.g., “take” and “exam” in the second example), given a large volume of unlabeled
data and high computation power. Furthermore, Xie et al. (2017) points out that the most difficult
questions belong to the long-term-reasoning type (e.g., the third example question), which constitutes
approximately 22.4% in CLOTH and needs more semantics to deal with.

To comprehensively consider the progress and questions in CLOTH, we come up with the idea of
modeling multiple perspectives to arrive at the correct answer, given limited computation power. Our
multi-perspective network consists of several parallel modules, where each module aggregates context
information from a unique perspective. We model long-distance matching with attentive readers, global
semantics with iterative dilated convolutions and lexical collocation with both n-gram and neural lan-
guage model(LM). The outputs of aggregation modules are further integrated and fed into a one-timestep
pointer network (Vinyals et al., 2015) to get the final answer.

Next, one challenging problem is how to effectively train our multi-perspective network due to the
insufficiency of labeled data. To overcome this problem, Xie et al. (2017) present a representativeness-
based weighted loss function. Their approach has two drawbacks: first, it requires to train another model
for predicting a candidate’s representativeness score; second, it is not a sample-efficient way since each
word including uninformative stop words becomes a training example. In this paper, we improve on Xie
et al. (2017)’s approach and develop a semi-supervised learning method by matching the distribution of
candidates between labeled and unlabeled data. The intuition is to make automatically constructed data
as similar as possible to existing labeled data. Stop words, named entities and out-of-vocabulary words
should be downsampled while meaningful content words should be kept for training.

Our method is simple, straightforward and shows better performance with only a fraction of training
examples. Experiments show that our semi-supervised multi-perspective network is able to outperform
state-of-the-art results on the CLOTH dataset by 4.2%.

2 Model

Formally, the task of cloze-style reading comprehension requires choosing the correct answer from |c|
candidates {ci}|c|i=1 given a sequence of words {wi}ni=1 as context. Candidate ci could be a word or a
phrase. For the CLOTH dataset, each question has |c| = 4 candidates.

2.1 MPNet: Multi-Perspective Context Aggregation Network

The overall architecture of our proposed MPNet is shown in Figure 1. It consists of an input layer, a
multi-perspective aggregation layer and an output layer.
Input Layer Given the passage as a variable-length word sequence {wi}ni=1, we embed each word
into 300-dimensional word embeddings {ei}ni=1 using GloVe vectors. Then, we apply bidirectional
GRU(BiGRU) on {ei}ni=1 to get contextualized word representations {hi}ni=1 (McCann et al., 2017)
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muchsohim____newsThe

 M1  M2 Mt-1  Mt…

…

BiGRU

P1 P2 Pt-1 Pt

Candidates

Pointer Net

Figure 1: MPNet: Multi-Perspective context aggregation network. We only show part of the context “The news him so
much” and “ ” is the blank to fill in.

(Peters et al., 2018), since GRU is computationally more efficient and shows slightly better performance
than LSTM. −→

h i =
−−−→
GRU(

−→
h i−1, ei)

←−
h i =

←−−−
GRU(

←−
h i+1, ei)

hi = [
−→
h i;
←−
h i]

(1)

We also use another GRU to encode candidates {ci}|c|i=1 into fixed-length vectors {ui}|c|i=1, as
candidates may be multi-word phrases.

Multi-Perspective Aggregation Layer This layer consists of several independent aggregation modules
{Mi}ti=1. Computation can be easily parallelized since modules are independent. Each module Mi takes
contextualized word representations {hi}ni=1 and candidates’ encoding {ui}|c|i=1 as input and outputs a
vector pi, which reflects the information from module Mi’s perspective. We also assume aggregation
modules can have access to {wi}ni=1 and {ci}|c|i=1. For cloze-style reading comprehension, each module
should be able to distill some knowledge which can judge whether a candidate fits a given context from
a perspective.

The aggregation modules that we use are listed below:

• Selective Copying Assuming the index of the blank is j, this module simply selects the hidden
representation of the blank hj , directly copies it to the output psc and ignores everything else. Note
that hj is the output of BiGRU and already incorporates context information from both forward and
backward directions. This resembles a bidirectional language model without softmax output layer.
Words near the blank are paid more attention which is consistent with our intuition of filling in the
blank.

• Attentive Reader A large portion of questions involve matching candidates with related words
which may be far away from each other such as the second example in Table 1. Attentive reader
proposed by Chen et al. (2016) directly attends to the entire context and therefore avoids the diffi-
culty of modeling long-range dependence. Original bilinear attention function (Chen et al., 2016)
is slightly modified by introducing bar to model attention bias towards the ith word. u is the vector
representation of a candidate, we omit its subscript for simplicity.

αi = softmaxi(u
TWarhi + bT

arhi), i ∈ [1, n]

par =

n∑
i=1

αihi
(2)
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• Iterative Dilated Convolution Convolutional neural networks have been a successful method for
modeling both natural language (Kim, 2014) and images. Multiple layers of CNNs can extract
features in a hierarchical way, which shares similarity with the compositional property of natu-
ral language. Dilated convolution is a variant of traditional convolution and is more efficient for
multi-scale context aggregation (Yu and Koltun, 2015; Strubell et al., 2017). In this work, we use
two blocks where each block consists of two dilated convolutions with dilation rate set to 1 and 3
respectively. Max pooling across filters is applied to get the final output pidc.

• N-gram Statistics To explicitly incorporate collocation information, we use this module to output
logarithmic n-gram counts png from English Wikipedia with n ∈ [1, 5]. Logarithmic function
avoids the optimization difficulty with extremely large numbers.

Note that the output psc from selective copying module and pidc from iterative dilated convolution
module don’t depend on the candidates. We therefore get context representation Pctx = [psc;pidc]
by concatenating psc and pidc. Similarly, we can get the representation vector Ci for ith candidate by
concatenating the output pi

ar from attentive reader module, pi
ng from n-gram statistics and ui from the

candidate encoder: Ci = [ui;p
i
ar;p

i
ng], i ∈ [1, |c|].

Output Layer We use a one-timestep pointer network (Vinyals et al., 2015) to choose the correct
answer from |c| candidates {ci}|c|i=1. Given context representation Pctx and candidates representation
{Ci}|c|i=1, we first refine candidates representation with a gating mechanism:

gi = σ(W1Pctx +W2Ci + b), i ∈ [1, |c|]
C′

i = Ci ⊙ gi, i ∈ [1, |c|]
(3)

σ is the sigmoid function and ⊙ denotes pointwise multiplication. Then we calculate the distribution of
being the correct answer over candidates with bilinear function:

ŷi = softmaxi(C
′T
i WoPctx + bT

o C
′
i), i ∈ [1, |c|] (4)

{ŷi}|c|i=1 is a probability distribution and the pointer points to the candidate argmaxi(ŷi).

Model Learning The model is trained by minimizing the standard cross-entropy loss.
Discussion Different aggregation modules summarize context from different perspectives. In order to
precisely locate the correct answer, a set of complementary aggregation modules are preferred where
one module may only focus on lexical collocation and another module may be sensitive to the global
matching. It is worth noting that our MPNet framework can be easily extended by adding other effective
aggregation modules.

In addition, the main idea of MPNet is to some extent connected with the mixture of experts (MoE)
(Masoudnia and Ebrahimpour, 2014). If each aggregation module can be seen as an expert, then multi-
ple aggregation modules become MoE. One key difference is that aggregation modules in MPNet have
heterogeneous network structures while traditional MoE models usually consist of homogeneous experts.

2.2 SemiMPNet: Semi-supervised Learning with Distribution Matching

SemiMPNet is the semi-supervised variant of our proposed MPNet in Section 2.1, with exactly the same
network architecture. Though CLOTH consists of nearly 100k questions, it is generally not enough to
train large neural models. Semi-supervised learning comes to the rescue. We propose to sample from
unlabeled text to construct training examples automatically. In order to train effectively, we need to
make the automatically generated data similar to labeled data and ensure that candidates should have a
similar distribution in original labeled data to that in the generated data. Then, we formulate candidates
distribution matching in two datasets as two sampling problems as follows:
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How to sample positive candidates? We assume Du is a collection of unlabeled documents, Dc is
the collection of all candidates in the CLOTH dataset and V is the vocabulary which is composed of
all the candidates occurring in CLOTH. Each word wi ∈ V is associated with an unknown sampling
probability p(wi). To match the distribution of candidates between Du and Dc, the following constraints
about p(wi), i ∈ [1, |V |] should be satisfied:

p(wi)#(wi,Du)∑|V |
j=1 p(wj)#(wj ,Du)

=
#(wi,Dc)∑|V |
j=1#(wj ,Dc)

, i ∈ [1, |V |]

0 ≤ p(wi) ≤ 1, i ∈ [1, |V |]
max {p(wi)| i ∈ [1, |V |]} = 1

(5)

Function #(wi,D) returns the frequency of wi in corpus D. The second constraint is to make sure
{p(wi)}|V |

i=1 is a valid probability distribution and the third constraint is to make full use of data. There is
generally no exact solution to Equation(5) as #(wi,Du) = 0 and #(wi,Dc) > 0 may hold for some i.
Instead, we use an approximate solution:

p(wi) = min(1,
#(wi,Dc)

#(wi,Du)
×

γ
∑|V |

j=1#(wj ,Du)∑|V |
j=1#(wj ,Dc)

) (6)

The coefficient γ can be interpreted as the average probability of sampling a word. We set γ = 0.5 based
on validation data. With this strategy, we sample the positive candidates and use the corresponding
passages as their contexts.
How to sample negative candidates? Given a positive candidate wp, the probability of wi being
sampled as a negative candidate p(wi|wp) can be calculated as follows:

p(wi|wp) =
λ

|V |
+ (1− λ)

#(wi, wp)∑|V |
j=1#(wj , wp)

(7)

#(wi, wp) is the co-occurrence counts of wi and wp as candidates in labeled dataset Dc. Intuitively,
the co-occurrence probability of wi and wp should match between constructed data and labeled data. λ
is the probability of randomly selecting a word from the entire vocabulary, similar to the exploration
mechanism in reinforcement learning. It makes our model more robust to overfitting and we set λ = 0.1
throughout the experiments.

In the case that candidates are multi-word phrases, our method is also applicable by simply expanding
the vocabulary V to include phrases in Dc.

3 Experiments

3.1 Experimental Setup
Dataset and Evaluation Metrics We use the CLOTH (Xie et al., 2017) dataset for training and eval-
uation. RACE (Lai et al., 2017) dataset and English Wikipedia 1 serve as background text corpora for
semi-supervised learning. RACE dataset consists of nearly 28k reading comprehension passages from
high-school examinations. We delete passages that have a Jaccard similarity over 0.85 with passages
in the CLOTH dataset. Furthermore, background text corpora also include training passages from the
CLOTH dataset by filling the correct answer back into the corresponding blank.

Accuracy is used as the evaluation metric. To make a fair comparison with Xie et al. (2017), we also
report performance on CLOTH-M(middle school questions) and CLOTH-H(high school questions).
Hyperparameters Our model is implemented with Tensorflow (Abadi et al., 2016). Hyperparameters
are optimized with random search based on validation data. All our models are run on a single GPU(Tesla
P40). NLTK (Bird and Loper, 2004) is used for tokenization. Word embeddings are initialized with

1https://dumps.wikimedia.org/enwiki/
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300-dimensional GloVe (Pennington et al., 2014) vectors. Only vectors of top 1000 frequent words are
fine-tuned during training. Our network is trained with Adam algorithm (Kingma and Ba, 2014). The
initial learning rate is set to 10−3. We decrease learning rate to 10−4 after 15k iterations and further
decrease it to 10−5 after 50k iterations. Both forward and backward GRU have 128 hidden units. For
input, we use a context window of 80 words. For 1D dilated convolution, we use 2 blocks, the number
of filters is 128 and the convolution width is 3 for all layers. Batch normalization and ReLU are applied
on top of convolution. Gradients are clipped to have a maximum L2 norm of 5. Dropout with probability
0.5 is applied to the output of BiGRU.

Model + constructed data? CLOTH CLOTH-M CLOTH-H
Random No 25.0% 25.0% 25.0%

LSTM (Xie et al., 2017) No 48.4% 51.8% 47.1%
Stanford Attention Reader (Chen et al., 2016) No 48.7% 52.9% 47.1%

MPNet - ngram No 50.1% 53.2% 49.0%
Language Model (Xie et al., 2017) Yes 54.8% 64.6% 50.6%

Representativeness (Xie et al., 2017) Yes 56.5% 66.5% 52.6%
LSTM + Representativeness (Xie et al., 2017) Yes 58.3% 67.3% 54.9%

SemiMPNet - ngram Yes 60.9% 67.6% 58.3%
Human – 86.0% 89.7% 84.5%

Table 2: Experimental results without using external data. We exclude n-gram as n-gram is calculated based on external corpus
Wikipedia. SemiMPNet uses passages from CLOTH for semi-supervised data augmentation. Human performance is from Xie
et al. (2017).

3.2 Baselines
LSTM is a baseline model by Xie et al. (2017). First, a BiLSTM layer is applied to context word
embeddings. Then it uses the outputs near the blank to calculate the probability of being the correct
answer for each candidate.
Stanford Attention Reader is an attention-based neural model for reading comprehension presented
by Chen et al. (2016). Experimental results are from Xie et al. (2017).
Language Model To overcome the difficulty of insufficient labeled data. Xie et al. (2017) propose to
train a neural language model on passages from the CLOTH dataset. The candidate that results in the
highest probability is chosen as the predicted answer. It’s fair to say Language Model is a simple data
augmentation approach that treats every word as a training example with equal weight.
Representativeness is another semi-supervised data augmentation approach by Xie et al. (2017). It
assigns different weights to different constructed examples based on Representativeness score. Repre-
sentativeness can be interpreted as the probability of a given word being selected as a blank by human.
For more technical details, please refer to Xie et al. (2017).
One-billion-word-LM is a state-of-the-art neural language model (Jozefowicz et al., 2016) trained on
one-billion-word benchmark (Chelba et al., 2013). It has more than 1 billion parameters and is publicly
available2.

3.3 Main Results
We evaluate our model’s performance in two experimental settings: use external data or not. For the
setting without external data, we only use passages from CLOTH for training and semi-supervised data
augmentation. Though GloVe vectors are trained on external text corpora, it has become a standard
practice for NLP to use pretrained embeddings. Therefore, GloVe vectors are used in both settings and
so does the work by Xie et al. (2017).

Results w/o External Data Results are shown in Table 2. When trained only on labeled data, both
LSTM by Xie et al. (2017) and our proposed MPNet perform poorly, though MPNet slightly outper-

2https://github.com/tensorflow/models/tree/master/research/lm_1b
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forms LSTM by 1.7% in overall accuracy. The accuracy of middle school questions (CLOTH-M) is
consistently higher than high school questions (CLOTH-H) across all of our experiments, since middle
school questions are relatively easier.

w p(w) w p(w) w p(w)

I 0.04 festivals 0.75 California 0.13
the 0.03 birthday 1.0 thank you 0.26

Frank 0.09 8 0.09 congratulation 1.0

Table 3: Sample probability for some words. p(w) is the probability of sampling w to construct a training example. Stop words,
named entities usually have low probability. See Section 2.2 for details.

Table 2 clearly shows that constructed data can significantly boost both models’ performance. Xie
et al. (2017) explore several different ways for data augmentation: Language Model treats every word
equally, while Representativeness method assigns different weights to different words by training an
representativeness prediction network. This mechanism improves the accuracy from 48.4% to 58.3%.
Further, our proposed method adopts a new sampling method and requires sampling words with
distribution constraints, which makes training more efficient. As shown in Table 3, stop words (e.g., “I”
and “the”), named entities (e.g., “Frank” and “California”) and common phrases (e.g., “thank you”)
have low probability of being sampled. Content words such as “festivals” and “birthday” are more
likely to be sampled. One limitation of our sampling method is its inability to handle synonyms. Since
synonyms tend to co-occur as candidates in the labeled dataset, this problem is not as severe as it looks
like to be. “SemiMPNet - ngram” beats all baseline methods and achieves the highest accuracy 60.9%.
Human performance is 86.0% which is much higher than “SemiMPNet - ngram”. The effectiveness of
constructed data indicates that the lack of labeled data has become a bottleneck.

Model CLOTH CLOTH-M CLOTH-H
One-billion-word-LM 70.7% 74.5% 69.3%

MPNet 65.3% 70.0% 63.6%
SemiMPNet 70.4% 75.5% 68.5%

SemiMPNet + One-billion-word-LM 74.9% 79.0% 73.3%
Human 86.0% 89.7% 84.5%

Table 4: Experimental results with external data. SemiMPNet use passages from the RACE dataset for semi-supervised data
augmentation.

Results with External Data As shown in Table 4, incorporation of the RACE dataset for semi-
supervised learning improves accuracy from 65.3% to 70.4%. However, MPNet and SemiMPNet still
underperform a pretrained state-of-the-art neural language model One-billion-word-LM (Jozefowicz et
al., 2016). It is trained on a large corpus with nearly 1 billion words and achieves an accuracy of 70.7%.
In contrast, SemiMPNet is trained on only ∼ 10 million words and has a 0.3% gap in accuracy, which
is pretty impressive given that the sizes of two corpora differ by two orders of magnitude. Once again it
shows the power of transferring knowledge from unlabeled text corpora.

As a further discussion, we’d like to point out that although language model can achieve good results,
it is not the most efficient way. Actually, experimental results in Table 2 show that language model un-
derperforms SemiMPNet given the same amount of text. A fair comparison would be training SemiMP-
Net on the one-billion-word benchmark. Considering the size of the one-billion-word corpus, applying
our semi-supervised method directly on the one-billion-word corpus would require a sizable amount of
computing power. Here we design an approximate method “SemiMPNet + One-billion-word-LM” and
combine MPNet and One-billion-word-LM by linear interpolation of their output probabilities:

p = βpmp + (1− β)plm (8)

pmp is the output probability by SmiMPNet and plm is the normalized probability by One-billion-word-
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LM3. Setting β = 0.5 yields empirically good results. Hyper-parameter search shows the results are quite
robust to a wide range of β values. We can see that our model “SemiMPNet + One-billion-word-LM”
achieves a new state-of-the-art performance of 74.9%, which improves One-billion-word-LM by 4.2%.
This also shows the complementarity of SemiMPNet and One-billion-word-LM. Two models can learn
different aspects of the contexts.

3.4 Ablation Study

Our proposed MPNet consists of four aggregation modules. To examine the effect of each module, we
conduct an ablation study. The results are shown in Table 5.

Model CLOTH
SemiMPNet 70.4%

w/o selective copying 69.4% (-1.0)
w/o attentive reader 67.6% (-2.8)
w/o dilated convolution 69.6% (-0.8)
w/o n-gram statistics 63.0% (-7.4)

Table 5: Results for SemiMPNet ablation study. RACE dataset is used for semi-supervised data augmentation.

N-gram statistics turn out to be the single most influential factor. Overall performance decreases by
7.4% without n-gram statistics. On one hand, this result further highlights the importance of distilling
knowledge from large text corpora. On the other hand, it proves that our background corpus is not large
enough for neural models to learn reliable lexical collocation information.

Attentive reader also has a significant impact on overall performance. Attention mechanism is able to
locate useful information regardless of its positional distance from the blank. In contrast, RNNs need to
preserve such information over a long distance which is nontrivial.

Besides, the results in Table 5 support an important intuition in this paper: different modules capture
context information from different perspectives, and removing any one of them would result in decreased
performance.

0.4 0.6 0.8 1.0 1.2 1.4
words (million)
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45
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CLOTH
Wiki

Figure 2: Examining effects of different text corpora. The x-axis is the number of words in background corpus, and the y-axis
is the accuracy on test data. To avoid the influence of external data, we report model performance with “SemiMPNet - ngram”.

3.5 Examining Effects of Background Corpus

For our semi-supervised learning model SemiMPNet, background corpus is used to construct training
examples. The choice of background corpus can make a big difference. In this section, we conduct an

3The normalization makes sure the probabilities for all candidates sum to 1.
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experiment to examine such effects. Three different corpora are used: passages from the training set of
CLOTH, RACE and English Wikipedia.

Results are shown in Figure 2. Unsurprisingly, more data lead to better performance. Moreover, given
the same amount of text, CLOTH consistently beats RACE and RACE consistently beats Wikipedia. As
we know, CLOTH and RACE consists of passages designed for high school students, while Wikipedia
entries are for the general public and therefore have a different word distribution. Thus, how to make use
of huge unlabeled data to help training is a key for performance improvement, since training corpora of
higher quality are generally smaller in scale.

4 Related Work

Reading Comprension or machine reading is drawing more and more interests among NLP research
communities. The CNN/Daily Mail (Hermann et al., 2015) and CBT (Hill et al., 2015) are two auto-
matically generated cloze-style datasets. Though they can be large in scale, the quality of automatically
generated questions is generally lower than manually labeled ones. Instead, SQuAD (Rajpurkar et al.,
2016) adopts a crowd-sourcing approach to ensure its quality. In SQuAD, each passage accompanies one
or more questions and the answer is a text span of the given passage for the convenience of automatic
evaluation. Rapid progress has been made with neural network based models (Wang et al., 2016). The
performances of state-of-the-art models on SQuAD such as QANet (Yu et al., 2018) and ELMo (Peters
et al., 2018) are already very close to human. There are also some datasets focusing on answering
questions from real-world scenarios. MS MARCO (Nguyen et al., 2016) and DuReader (He et al.,
2017) are two typical examples. Such datasets are usually harder as they require the ability of both
comprehension and language generation. BLEU and ROUGE are often used as evaluation metrics. One
potential problem is that answers with high BLEU scores may have very different semantic meanings.

Cloze Test is a particular form of reading comprehension task and has been widely adopted as a method
for assessing students’ language proficiency. Zweig and Burges (2011) presented a challenging dataset
for sentence completion but its scale is too small with only 1040 questions. CNN/Daily Mail (Hermann
et al., 2015), CBT (Hill et al., 2015), LAMBADA (Paperno et al., 2016) and CLOTH (Xie et al.,
2017) are all large-scale cloze-test datasets, with the difference that each question in CLOTH has four
candidate options. Recently proposed Story Cloze (Mostafazadeh et al., 2017) is a cloze-test dataset
that goes beyond words and phrases, and requires choosing a sentence as the appropriate story ending.

Semi-supervised Methods for reading comprehension are widely studied due to the fact that labeled
data is scarce. One major approach is pretraining a model for text representation and reusing the weights
during supervised learning. Autoencoders (Hewlett et al., 2017), machine translation (McCann et al.,
2017) and language model (Peters et al., 2018) can be used for representation learning. Another approach
aims to directly construct training examples from unlabeled text corpora. Weighted loss function (Xie et
al., 2017) and reinforcement learning (Yang et al., 2017) can be used to alleviate the discrepancy between
human-labeled data and automatically-constructed data.

5 Conclusion

In this paper, we propose a multi-perspective network MPNet for cloze-style reading comprehension.
MPNet consists of several parallel context aggregation modules. Each module summarizes the variable-
length context and candidates into a fixed-length vector from a unique perspective. We explore four
effective implementations of aggregation modules in experiments. The architecture of MPNet is very
flexible and can be easily extended by adding more task-specific modules.

To overcome the difficulty of limited labeled data, we turn to semi-supervised learning by automati-
cally constructing training examples from unlabeled text corpora. Experiments on the CLOTH dataset
show that our semi-supervised MPNet achieves new state-of-the-art performance. In our future work,
we’d like to come up with more effective methods to tackle this challenge.
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