@inproceedings{goldberger-melamud-2018-self,
title = "Self-Normalization Properties of Language Modeling",
author = "Goldberger, Jacob and
Melamud, Oren",
editor = "Bender, Emily M. and
Derczynski, Leon and
Isabelle, Pierre",
booktitle = "Proceedings of the 27th International Conference on Computational Linguistics",
month = aug,
year = "2018",
address = "Santa Fe, New Mexico, USA",
publisher = "Association for Computational Linguistics",
url = "https://preview.aclanthology.org/fix-sig-urls/C18-1065/",
pages = "764--773",
abstract = "Self-normalizing discriminative models approximate the normalized probability of a class without having to compute the partition function. In the context of language modeling, this property is particularly appealing as it may significantly reduce run-times due to large word vocabularies. In this study, we provide a comprehensive investigation of language modeling self-normalization. First, we theoretically analyze the inherent self-normalization properties of Noise Contrastive Estimation (NCE) language models. Then, we compare them empirically to softmax-based approaches, which are self-normalized using explicit regularization, and suggest a hybrid model with compelling properties. Finally, we uncover a surprising negative correlation between self-normalization and perplexity across the board, as well as some regularity in the observed errors, which may potentially be used for improving self-normalization algorithms in the future."
}
Markdown (Informal)
[Self-Normalization Properties of Language Modeling](https://preview.aclanthology.org/fix-sig-urls/C18-1065/) (Goldberger & Melamud, COLING 2018)
ACL
- Jacob Goldberger and Oren Melamud. 2018. Self-Normalization Properties of Language Modeling. In Proceedings of the 27th International Conference on Computational Linguistics, pages 764–773, Santa Fe, New Mexico, USA. Association for Computational Linguistics.