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Abstract

Relation Classification aims to classify the semantic relationship between two marked entities in
a given sentence. It plays a vital role in a variety of natural language processing applications.
Most existing methods focus on exploiting mono-lingual data, e.g., in English, due to the lack of
annotated data in other languages. In this paper, we come up with a feature adaptation approach
for cross-lingual relation classification, which employs a generative adversarial network (GAN)
to transfer feature representations from one language with rich annotated data to another language
with scarce annotated data. Such a feature adaptation approach enables feature imitation via the
competition between a relation classification network and a rival discriminator. Experimental
results on the ACE 2005 multilingual training corpus, treating English as the source language
and Chinese the target, demonstrate the effectiveness of our proposed approach, yielding an
improvement of 5.7% over the state-of-the-art.

1 Introduction

Relation classification aims to identify the semantic relationship between two nominals labeled in a
given sentence. It is critical to many natural language processing (NLP) applications, such as question
answering and knowledge base population. For example, the following sentence contains an instance of
the Content-Container(e2,e1) relation between two labeled entity mentions “e1=cartridge” and “e2=ink”.

The [cartridge]e1 was marked as empty, even with [ink]e2 in both chambers.

An open challenge is how to train a model which is suitable for languages with insufficient available
data of relation classification, since manual annotation is time-consuming and human-intensive. This
makes it difficult to transferrably use the existing well-trained classification models in other languages.

To tackle this problem, we propose an adversarial feature adaptation approach to transfer latent feature
representations from the source language with rich labeled data to the target language with only unlabeled
data. Such an approach are both discriminative for relation classification and invariant across languages.
This is largely motivated by the adversarial mechanism which has been effectively applied to measure
the similarity between distributions in a variety of scenarios, such as domain adaptation (Bousmalis et
al., 2016) and multi-modal representation learning (Park and Im, 2016).

In particular, we build two counterpart networks, using convolutional neural networks (CNNs), for
source language and target language, to generate the latent feature representations respectively. Then,
we use a rival discriminator to identify the correct source of feature representations. At the training step,
the network of the source language is trained to maximize the performance on the annotated dataset,
while the network of the target language is trained to imitate the feature representations of the source
language by rival confusing the discriminator.

We perform the proposed approach on ACE 2005 multilingual training corpus by regarding English as
the richly-labeled language (source) and Chinese as the poorly-labeled language (target). Our approach
∗corresponding author
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achieves an F1-score of 70.50% with a significant improvement of 5.7%, compared to the state-of-the-art
method.

The main contributions of this study are as follows.

• We present a novel neural feature adaptation framework by leveraging a generative adversarial net-
work to transfer feature representations from a richly-labeled language to a poorly-labeled language.
To the best of our knowledge, this is the first study on feature adaptation for cross-lingual relation
classification.

• Experimental results show that the latent feature representations can be effectively transferred from
the source language to the target language. This enables the adaptation of the existing manually
annotated resource in one language to a new language.

• In a slightly better scenario that there are a small-scale annotated data available in the target lan-
guage, our adversarial feature adaptation approach can also be effectively cooperated with the su-
pervised model to further improve the overall performance.

The rest of this paper is organized as follows. In Section 2, we overview the related work. In Section 3,
we introduce details of the proposed adversarial feature adaptation approach. We show our experimental
results and discussions in Section 4. Finally, we conclude the paper in Section 5.

2 Related Work

In this section, we briefly review the recent progress in cross-lingual relation classification and existing
studies on adversarial adaptation.

2.1 Cross-lingual Relation Classification
Labeled data on relation classification are not evenly distributed among languages. While there are
various of annotated datasets in English, such as the SemEval’10 Task-8 dataset (Hendrickx et al., 2010)
and the SemEval’18 task-7 dataset (Gábor et al., 2018), annotated datasets in other languages are few.

Traditional studies for relation classification usually perform supervised machine learning models
trained on mono-lingual labeled datasets, which either rely on a set of linguistic or semantic features
(Kambhatla, 2004; Suchanek et al., 2006), or apply tree kernel-based features to represent the input
sentences (Bunescu and Mooney, 2005; Qian et al., 2008). Recently, deep neural networks (Zeng et al.,
2015; dos Santos et al., 2015) and attention mechanism (Wang et al., 2016) show the effectiveness in
relation classification. However, the training of neural network relies on large-scale labeled instances.
This makes it difficult to re-construct such classification models for the poorly-labeled language.

Most of existing studies have attempted to leverage parallel data or a knowledge-based system to
transfer effective information from the richly-labeled language to the poorly-labeled language. Qian et
al. (2014) proposed a bilingual active learning paradigm for Chinese and English relation classification
with pseudo parallel corpora and entity alignment. Kim et al., (2014) proposed a cross-lingual annotation
projection strategy by employing parallel corpora for relation detection. Faruqui and Kumar (2015) also
present a cross-lingual annotation projection method by using machine translation results, rather than
parallel data. Verga et al. (2016) performs multi-lingual relation classification by a knowledge base. Min
et al. (2017) drive a classifier to learn discriminative representations by joint supervision of classification
(softmax) loss and ideal representation loss.

Instead of exploiting external resources and manually selecting a closeness metric, we come up with
an adversarial mechanism to provide an adaptive metric for feature adaptation from the richly-labeled
language to the poorly-labeled language.

2.2 Adversarial Adaptation
Recently, the generative adversarial networks (GAN) have become increasingly popular, especially in
the area of deep generative unsupervised modeling (Goodfellow et al., 2014; Makhzani et al., 2016). For
adversarial adaptation, Ganin et al. (2017) proposed the domain adversarial neural networks (DANN) to
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Figure 1: Architecture of the adversarial feature adaptation framework for cross-lingual relation classifi-
cation.

learn discriminative but domain-invariant representations, transferring the information from the source
domain to the target domain. Different from their study, our approach aims to find sharable language-
independent latent feature representations for cross-lingual relation classification.

There have been some previous work applying adversarial adaptation technique to NLP tasks, such as
that for sentiment analysis (Chen et al., 2016) and parsing (Sato et al., 2017). These studies learn the
domain-invariant or domain-specific features by a shared network. Our work differs from them, since
we force a second network with identical structure to learn the latent feature representations from the
supervised network. Qin et al. (2017) propose a feature imitation approach. An adversarial mechanism
is used between explicit and implicit discourse relation samples. Different from their study, we migrates
the feature representations from one language to another (non-parallel). To the best of our knowledge,
this is the first work to employ the adversarial feature adaptation for cross-lingual relation classification.

3 Adversarial Feature Adaptation for Cross-lingual Relation Classification

The common semantic information between different language motivates our adversarial feature adapta-
tion approach. In this section, let us take a glance at the framework first, and then the relation classifica-
tion networks (sentence encoders) and the adversarial training procedure.

Figure 1 illustrates the schematic overview of the framework which consists of four key components:
1) a Richly-labeled Sentence Encoder (RSE) with English sentences as the inputs, 2) a Poorly-labeled
Sentence Encoder (PSE) which takes translated Chinese sentences as the input, 3) a language discrimina-
tor D distinguishing between the feature representations from the above two encoders, and 4) a relation
classifier C to predict the relation label. In general, a GAN consists of a generative network G and a
discriminator D, in which G generates instances by a distribution PG(x), and D aims to determining
whether a instance is from PG(x) or the real data distribution Pdata(x). In our approach, the PSE is taken
as the generative network which generates the feature representationsHp to confuse the discriminator.

In training step, the relation classifier aims to predict the labels, while the language discriminator
attempts to distinguish between the feature representations extracted by the two sentence encoders (Hp

or Hr). In test step, we utilize the PSE to encode the input sentences in target language, and apply the
same classifier to predict to relation labels.
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3.1 Components
As a common neural network model that yields good performance for monolingual relation classification,
we employ CNN to transform a sentence with pairs of entity mentions into a distributed representation
H. Note that, this plug-in architecture can also be implemented with the other networks, e.g., a long
short-term memory network (LSTM)1.

Embedding Layer
Following Zeng et al. (2014)’s work, we build an embedding layer to encode words, word positions, and
entity types by real-valued vectors.

Given an input sentence S = (w1, w2, ..., wn), we first transform every word into a real-valued vector
of dimension dw using a word embedding matrixWE ∈ Rdw×|V |, where V is the input vocabulary. Since
the structures of RSE and PSE are the same, it is necessary if the word representations for both languages
have a shared vocabulary. Therefore, bilingual word embeddings (Shi et al., 2015) are employed to map
words from different languages into the same feature space.

To capture the informative features of the relationship between words and the entity mentions, we map
the relative distances to entity mentions of each word to two real-valued vectors of dimension dp using
a position embedding matrix PE ∈ Rdp×|D|, where D is the set of relative distances which are mapped
to a vector initialized randomly (dos Santos et al., 2015). For each word, we obtain two position vectors
with respect to the two entity mentions.

For each word, we also incorporate its entity type embedding to reflect the relationship between the
entity type and the relation type. Each word is mapped to a real-valued vector using embedding matrix
ETE ∈ Rdet×|E|, where E is the set of entity types.

Finally, we represent a input sentence as a vector sequence w={w1, w2, ..., wn} with the embedding
dimension d = (dw + 2dp + det).

Convolution Layer
After encoding the input sentence, a convolution layer extracts local features by sliding a window of
length w over the sentence and perform a convolution within each sliding window. The output for the ith
sliding window is

pi = Wcwi−w+1:i + b, (1)

where wi−w+1:i denotes the concatenation of w word embeddings within the ith window, Wc ∈
Rdc×(w×d) is the convolution matrix and b ∈ Rdc is the bias vector (dc is the dimension of output
of the convolution layer).

Max-pooling Layer
We merge all local features via a max-pooling layer and apply a hyperbolic tangent function to obtain a
fixed-sized final representations. The ith element of the output vector x ∈ Rdc is

[x]j = tanhmax
i

pij . (2)

Classifier and Discriminator
While the Classifier C is a fully-connected layer followed by a softmax classifier, the Discriminator D is
a binary classifier which is implemented as a fully-connected neural network with a sigmoid activation
function. Discriminator D takes the feature representations as input, to discriminate whether the feature
representation comes from RSE or from PSE.

3.2 Adversarial Training

Although the aforementioned architecture could be applied to cross-lingual relation classification by
leveraging the RSE module to train on source language and the MT module to translate the instances from

1As an alternative, a bidirectional LSTM (BiLSTM) is tried as the basic network. The experimental results are shown in
Subsection 4.2.
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Algorithm 1 Adversarial Training Procedure
Input: Training dataset
Output: RSE with classifier C

1: Initialize θh and θC by minimizing Eq.(3).
2: repeat
3: Train the discriminator D through Eq.(4)
4: Train PSE and classifier C through Eq.(7)
5: until convergence

the target language to the source language, there is no guarantee that the latent feature representations of
the source language exist in the target language, or vice versa. On the other hand, the error propagation
of MT module also should be considered. Therefore, we introduce adversarial training into our cross-
lingual relation classification framework.

Algorithm 1 illustrates the adversarial training procedure. First, we pre-train the RSE and the classifier
C by minimizing the relation classification (RC) loss function on source language (step line 1). Then
we interleave the optimization of the adversarial loss function and the RC loss function on the target
language at each iteration (step line 2-5). Finally, if the discriminator cannot tell the language of a input
sentence using the adversarially trained features, then those features from PSE are effectively language-
invariant. Upon successful training, the feature representations (Hp) are thus encouraged to be both
discriminative for relation classification and invariant across languages. Referring to the expression of
Qin et al. (2017), the three loss function of our adversarial training are as follows.

RC Loss for Training on Source Language
We denote the parameters of the RSE and classifier C as θr and θC , respectively, and the objective can
be learned by minimizing the cross-entropy loss as

Lrc-sou(θr,θC) = E(xe,y)∼data [J (C(Hr(xe;θr);θC), y)] , (3)

where E(xe,y)∼data [·] denotes the expectation in terms of the data distribution, J (p, y) = −
∑

k q(y =
k) log pk is the cross-entropy loss between predictive distribution p and ground-truth label y, C(Hr(x))
is the final prediction of classifierC when the input is the feature representation of RSE (Hr(x)), (xe, y)
is the pair of input and output of relation classification model, where xe is an English instance, and y is
the relation label.

Adversarial Loss
The adversarial loss Ladv is used to train the discriminator D to make a correct estimation that where the
feature representation comes from. Formally, the parameters of the discriminator D is denoted as θD.
The training objective of D is to distinguish the input source of feature representation as far as possible:

min
θD
Ladv = E(xe,xc,y)∼data [log(1−D(Hr(xe;θD))) + logD(Hp(xc;θD))] , (4)

where D(H) denotes the output of discriminator D to estimate the probability that H comes from the
RSE rather than the PSE, C(Hl(x)) is the final prediction of classifier C when the input is the feature
representation of PSE (Hl(x)), and (xc, y) is the pair of input and output of relation classification model,
where xc is a translated Chinese instance.

RC Loss for Training on Target Language
We denote the parameters of the PSE as θp. The training objective is to minimize the discriminator’s
chance of correctly telling apart the features:

Lp(θp) = Exc∼data [logD(Hp(xc;θp))] . (5)

The parameters of classifier C is denoted as θC . The training objective of C is to correctly classify
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Relation Type
Source Target
(EN) (CH)
train train dev. test

PHYS 1,958 1,094 170 314
PART-WHOLE 1,299 1,596 228 454
ART 869 441 63 125
ORG-AFF 2,511 1,528 218 436
PER-SOC 1,087 462 66 132
GEN-AFF 954 1,354 193 386
Other 1,446 1,081 154 308
Total 10,124 7,556 1,092 2,055

Table 1: Discription of our datasets. The data in this tabel denote the number of samples of corre-
sponding sets. The relation type “Other” means that the relation of entity mentions is not among the
aforementioned six types.

relations. The objective can be learned by minimizing the cross-entropy loss:

LC(θC) = E(xc,y)∼data [J (C(Hp(xc;θC), y)] . (6)

Finally, we combine the above objectives Eq.(5) and (6) of the relation classifiers, and minimize the
joint loss:

min
θp,θC

Lrc-tar = λLp(θp) + LC(θC) (7)

where λ is a balancing parameters calibrating the weights of the classification loss and the feature-
regulating loss.

4 Experimentation

In this section, we first describe our datasets, detailed settings, and evaluation metrics used in the experi-
ments. Then we show the effectiveness of our adversarial feature adaptation framework for cross-lingual
relation classification. Finally, we further investigate the semi-supervised settings, where a small amount
of labeled data of the target language exists.

4.1 Experimental Settings

In this paper we regard English as the richly-labeled (source) language and Chinese as the poorly-labeled
(target) language. Note that, in fact, our model could generalize to any pair of source and target languages
in principle. We conduct our experiments on the commonly used ACE 2005 multilingual training corpus
(Walker et al., 2006)2 dataset. Table 1 shows the detailed descriptions of the datasets. We utilize all
of the seven types of labeled relation mentions, and evaluate all of the systems by using the micro- and
macro-F1 scores over the six types of relations excluding “Other”. The English and Chinese datasets are
not translation of each other.

We pre-train bilingual word embeddings by CLSim3 (Shi et al., 2015), which provides 50-dimensional
embeddings for 800k parallel sentence pairs. We set the dimensions of the position embeddings and the
entity type embeddings to 20 and 30, respectively, with random initialization following a continuous
uniform distribution. To obtain the translated sentence pairs automatically and easily, we employ the
commercial Google Translate engine4, which is a highly engineered machine translation system. The
mention boundaries and the entity type tags are provided by the ACE 2005 multilingual training corpus.

2https://catalog.ldc.upenn.edu/LDC2006T06
3http://nlp.csai.tsinghua.edu.cn/∼lzy/src/acl2015 bilingual .html
4https://translate.google.com
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Hyper-parameter value
Window size w 3

Convolutional filters f 100
Batch size B 100

Maximum iteration I 100
Dropout probability p 0.5

Table 2: Parameter settings.

Model (EN⇒CH)
Micro Macro

P R F1 P R F1
BI-AL 62.73 64.69 63.69 64.28 65.33 64.80
CNN-MT-Source 67.11 66.27 66.68 70.69 66.82 68.70
CNN-MT-Target 65.34 66.87 66.10 70.46 66.44 68.39
BiLSTM-MT-Source 65.60 64.54 65.07 68.25 65.97 67.09
BiLSTM-MT-Target 65.52 64.92 65.22 68.96 66.88 67.90
CNN-GAN 66.79 70.11 68.41 68.73 72.35 70.50
BiLSTM-GAN 66.22 67.41 66.81 68.02 68.07 68.05

Table 3: Performance of systems on the Chinese test sets of ACE 2005 multilingual training corpus for
cross-lingual relation classification. CNN-GAN: our adversarail feature adaptation approach with a CNN
sentence encoder; BiLSTM-GAN: similar as CNN-GAN, with a BiLSTM sentence encoder.

All the models are optimized using ADADELTA (Zeiler, 2012). We pick the parameters showing
the best performance on the development set (in Column 4, Table 1) via early stopping, and report the
scores on the test set (in Column 5, Table 1). Table 2 shows the best settings of model parameters in our
experiments.

We compare with the following baselines for cross-lingual relation classification.

• CNN-MT-Source All the instances in the English training set (the “Source” Column in Table 1)
are translated into Chinese (target language) by Google Translator. A CNN model with the same
structure of PSE is trained by leveraging this new translated training data on Chinese.

• CNN-MT-Target Contrary to the CNN-MT-Source, all the instances in the Chinese test set (the
“Target-test” Column in Table 1) are directly translated into English (source language) by Google
Translator. A CNN model with the same structure of RSE is trained by leveraging the English
training set.

• BiLSTM-MT-Source and BiLSTM-MT-Target They are similar to the settings of the CNN-MT-
Source and the CNN-MT-Target, respectively. For further examining the robustness of our adver-
sarial feature adaptation framework, we replace the sentence encoder networks (CNNs) with the
BiLSTM networks for both RSE and PSE. The BiLSTM model is proposed by Zhang et al. (2015),
which is one of the state-of-the-art mono-lingual relation classification system. For fair comparison,
we only retain the word embeddings, the position embeddings, and the entity type embeddings.

• BI-AL This model is proposed by Qian et al. (2014), which is a bilingual active learning system for
Chinese and English relation classification with pseudo parallel corpora and entity alignment.

4.2 Experimental Results

Adversarial Feature Adaptation
Table 3 shows a performance comparison of our adversarial feature adaptation models (*-GAN) with
baselines. With the CNN-GAN system, we achieve a micro-F1 score of 68.41% and a macro-F1 score
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Model (CH⇒EN)
Micro Macro

P R F1 P R F1
CNN-MT-Source 64.86 73.53 68.92 64.18 72.13 67.93
CNN-MT-Target 68.08 72.60 70.27 66.60 71.11 68.78
BiLSTM-MT-Source 68.30 73.24 70.68 67.06 70.79 68.88
BiLSTM-MT-Target 66.85 71.56 69.12 66.30 70.74 68.45
CNN-GAN 71.65 77.53 74.47 69.51 73.74 71.56
BiLSTM-GAN 72.20 75.66 73.89 69.69 72.03 70.84

Table 4: Performance of systems on the opposite direction for cross-lingual relation classification, in
which Chinese is treated as the source language and English is treated as the target language (contrary
to Table 3). The partition of English dataset is the same as that in Table 1 (i.e. the training set 70%, the
development set 10%, and the test set 20%).

of 70.50%, which outperform the active learning based system (BI-AL) with a relative improvement of
about 5%. It indicates that our adversarial feature adaptation framework substantially outperforms the
state-of-the-art model for cross-lingual relation classification without any annotated data on the target
language.

Moreover, we pay more attention to evaluate the proposed adversarial feature adaptation model against
bidirectional MT-based baselines, including 1) translate the Chinses text into English, then leveraging
the English relation classification model (trained on English dataset) to identify the entity type (CNN-
MT-Target and BiLSTM-MT-Target), and 2) translate the English training set into Chinese, then train
an Chinese relation classification model to classify the entity types (CNN-MT-Source and BiLSTM-
MT-Source). Our approach improves about 2% of macro-F1 score over the machine translation based
systems. Besides, the performances of CNN-MT-Source and CNN-MT-Target are comparative, which
indicates that the translated direction may be insignificant for cross-lingual relation classification via MT.

We can also see that all of the CNN-based adversarial feature adaptation models achieve better results
than the corresponding BiLSTM-based ones within the same settings. The reason might be that the BiL-
STM is fitter for encoding order information and long-range context dependency for sequence labeling
problem, while the CNN is suited to extracting local and position-invariant features. For relation classi-
fication, the essential features are always distributed around the entity mentions, which would be better
utilized by CNN5.

To validate the language independence of our feature adaptation framework, we also implement our
adversarial feature adaptation systems and the MT-based systems in Table 1 on the same corpus from
the opposite direction. Specifically, we regard Chinese as the source language and English as the target,
then learn the feature representations from the Chinese dataset to predict the relation labels of the En-
glish dataset. Table 4 indicates that our approach also outperforms the baselines on learning the feature
representations from Chinese to English. Besides, the results further validate the conclusions mentioned
above: 1) Our system outperforms the MT-based systems for cross-lingual relation classification, and
2) the CNN-based systems achieve better performances than the BiLSTM-based systems in the same
settings.

To further provide an empirical insight into the relationship between 1) the data size of labeled training
set for supervised relation classification (the blue curve in Figure 2), and 2) the data size required by our
adversarial feature adaptation system with only unlabeled sentences (the orange dashed curve in Figure
2), we simulate a supervised scenario by adding labeled Chinese instances for training a CNN-based
relation classification system (CNN-CH in Table 5). We start from adding 100 labeled sentences and
keep adding 100 sentences each time until 900. As shown in Figure 2, when adding the same number of
labeled sentences, the CNN-CH system can better utilize the extra supervision. The margin is naturally
decreasing as more supervision is incorporated, until the training set contains more than 700 instances.

5Yin et al. (2017) also demonstrated this conclusion for relation classification task.
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Figure 2: Comparison with a supervised relation classification system.

Figure 3: Comparison of the performances (macro-F1) when adding different sizes if labeled data of the
source language from 10% to 100%.

It indicates that our adversarial feature adaptation system can achieve comparable performance to the
supervised system trained on a small labeled dataset.

Another interesting find is that it seems a very small amount of supervision (e.g., 500 labeled instances)
could significantly help the supervised relation classification system. However, it is worth noting that the
manual annotation on such amount of dataset is still time-consuming and human-intensive, since the
people should annotate not only the entity mentions and their relation, but also the external information
such as the lexical or syntactic features if necessary.

Figure 3 compares the performances of our CNN-GAN system (the blue curve in Figure 3) and a
bilingual active learning system BI-AL (Qian et al., 2014) (the orange dashed curve in Figure 3) when
training with different sizes of labeled data from the source language. As we can see, the margin of our
approach is not significant when the size of the source-language instances is relatively small. When using
10% of the training data, our system only declines 6.35% of performance (from 70.50% to 64.15%),
while for the bilingual active learning system, the gap widens to 20.91% (from 64.80% to 42.89%). It
indicates that our feature adaptation approach can efficiently utilize the translated supervision from the
source language.

Semi-supervised Scenario
In this paper, we mainly focus on the the scenario of unsupervised cross-lingual relation classification,
i.e., without any labeled dataset. However, for broader comparisons, we also test our framework when
a few labeled training instances of the target language are available. Actually, our approach can be
easily generalized to a semi-supervised setting. We employ a simple way that directly combine the
softmax layers of the CNN-CH system and the CNN-GAN system, to integrate the supervision from
target language into relation classification.

Table 5 lists the performances of these semi-supervised relation classification systems. We see that
our ensemble model (*-CH-EN) which can employ not only the labeled data from the target language
but from the source language, slightly improves over the supervised model (*-CH). It indicates that our
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Model P R F1
bilingual-Joint-IRL 80.9 77.1 78.9
CNN-CH 79.09 81.15 80.11
BiLSTM-CH 76.23 79.94 78.04
CNN-CH-EN 79.61 81.65 80.62
BiLSTM-CH-EN 77.55 79.50 78.52

Table 5: Performance of the semi-supervised relation classification systems. bilingual-Joint-IRL system:
a bilingual approach by joint supervision of classification loss and ideal representation loss (Min et
al., 2017); *-CH systems: A CNN/BiLSTM with the same architecture of our CNN/BiLSTM feature
extractor (trained on 7,556 instances of the CH training set); *-CH-EN systems: a simple ensemble way
that directly combine the softmax layers of the CNN-CH system (trained on 3,778 instances of the CH
training set) and CNN-GAN system (trained on 3,778 instances of the EN training set).

adversarial model can transfer some useful knowledge and information from the source language to the
target language for relation classification, by which both the language-specific and language-invariant
features could be learned.

Besides, better ensemble methods could be attempted to exploit the information across language for
semi-supervised relation classification. In addition, we see that our model has obtained improvement
over the previous best-performing system (bilingual-Joint-IRL in Table 5) of semi-supervised relation
classification.

5 Conclusion

In this paper we introduce an adversarial feature adaptation approach for cross-lingual relation clas-
sification without labeled dataset, which leverages the data on richly-labeled language to help relation
classification on the poorly-labeled language. We evaluate our approach on ACE 2005 multilingual train-
ing corpus. Experimental results show that this approach can effectively transfer feature representations
from a richly-labeled language to another poorly-labeled language, and outperforms several baselines
including active learning models and highly competitive MT-based baselines. The code is available at
https://github.com/zoubowei/feature_adaptation4RC.

Theoretically speaking, our adversarial feature adaptation approach can be flexibly implemented in
the scenario of multiple languages, while this paper focuses on two languages of English and Chinese.
Thus in future, we will extend this approach to more languages and explore its significance.
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Kata Gábor, Davide Buscaldi, Anne-Kathrin Schumann, Behrang QasemiZadeh, Haı̈fa Zargayouna, Thierry
Charnois. 2018. SemEval-2018 Task 7: Semantic relation extraction and classification in scientific papers.
In Proceedings of International Workshop on Semantic Evaluation (SemEval’18).

Yaroslav Ganin, Evgeniya Ustinova, Hana Ajakan, Pascal Germain, Hugo Larochelle, Mario Marchand, and Victor
Lempitsky. 2017. Domain-adversarial training of neural networks. Journal of Machine Learning Research,
17(1):2096–2030.

Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron
Courville, and Yoshua Bengio. 2014. Generative adversarial nets. In Proceedings of Advances in Neural
Information Processing Systems Conference (NIPS’14), pages 2672–2680.

Iris Hendrickx, Nam Kim Su, Zornitsa Kozareva, Preslav Nakov, Marco Pennacchiotti, Lorenza Romano, and
Stan Szpakowicz. 2010. SemEval-2010 task 8: multi-way classification of semantic relations between pairs of
nominals. In Proceedings of the 5th International Workshop on Semantic Evaluation, pages 33–38.

Nanda Kambhatla. 2004. Combining lexical, syntactic, and semantic features with maximum entropy models for
extracting relations. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics
on Interactive poster and demonstration sessions.

Seokhwan Kim, Minwoo Jeong, Jonghoon Lee, and Gary Geunbae Lee. 2014. Cross-lingual annotation projec-
tion for weakly-supervised relation extraction. Acm Transactions on Asian Language Information Processing
(TALIP), 13(1):3.

Alireza Makhzani, Jonathon Shlens, Navdeep Jaitly, Ian Goodfellow, Alireza Makhzani, Jonathon Shlens, Navdeep
Jaitly, and Ian Goodfellow. 2016. Adversarial autoencoders. In Proceedings of the International Confer- ence
on Learning Representations (ICLR’16).

Bonan Min, Zhuolin Jiang, Marjorie Freedman, and Ralph Weischedel. 2017. Learning transferable representation
for bilingual relation extraction via convolutional neural networks. In Proceedings of the The 8th International
Joint Conference on Natural Language Processing (IJCNLP’17), pages 674–684.

Gwangbeen Park and Woobin Im. 2016. Image-Text multi-Modal representation learning by adversarial back-
propagation. arXiv preprint arXiv:1612.08354.

Longhua Qian, Haotian Hui, YaNan Hu, Guodong Zhou, and Qiaoming Zhu. 2014. Bilingual active learning for
relation classification via pseudo parallel corpora. In Proceedings of the 52nd Annual Meeting of the Association
for Computational Linguistics (ACL’14), pages 582–592.

Longhua Qian, Guodong Zhou, Fang Kong, Qiaoming Zhu, and Peide Qian. 2008. Exploiting constituent depen-
dencies for tree kernel-based semantic relation extraction. In Proceedings of the 22nd International Conference
on Computational Linguistics (COLING’08), pages 697–704.

Lianhui Qin, Zhisong Zhang, Hai Zhao, Zhiting Hu, and Eric P. Xing. 2017. Adversarial connective-exploiting
networks for implicit discourse relation classification. In Proceedings of the 55th Annual Meeting of the Asso-
ciation for Computational Linguistics (ACL’17), pages 1006–1017.

Motoki Sato, Hitoshi Manabe, Hiroshi Noji, and Yuji Matsumoto. 2017. Adversarial training for cross-domain
universal dependency parsing. In Proceedings of the CoNLL 2017 Shared Task: Multilingual Parsing from Raw
Text to Universal Dependencies (CoNLL’17), pages 71–79.

Tianze Shi, Zhiyuan Liu, Yang Liu, and Maosong Sun. 2015. Learning cross-lingual word embeddings via matrix
co-factorization. In Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics
and the 7th International Joint Conference on Natural Language Processing (ACL’15, Short Papers), pages
567–572.

Fabian M. Suchanek, Georgiana Ifrim, and Gerhard Weikum. 2006. Combining linguistic and statistical analysis
to extract relations from web documents. In Proceedings of the 12th ACM SIGKDD international conference
on Knowledge discovery and data mining (KDD’06), pages 712–717.



448

Patrick Verga, David Belanger, Emma Strubell, Benjamin Roth, and Andrew McCallum. 2016. Multilingual
relation extraction using compositional universal schema. In Proceedings of the 2016 Conference of the
North American Chapter of the Association for Computational Linguistics: Human Language Technologies
(NAACL’16), pages 886–896.

Christopher Walker, Stephanie Strassel, Julie Medero, and Kazuaki Maeda. 2006. ACE 2005 multilingual training
corpus. Linguistic Data Consortium.

Linlin Wang, Zhu Cao, Gerard De Melo, and Zhiyuan Liu. 2016. Relation classification via multi-level attention
CNNs. In Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (ACL’16),
pages 1298–1307.

Wenpeng Yin, Katharina Kann, Mo Yu, and Hinrich Schtze. 2017. Comparative study of CNN and RNN for
natural language processing. arXiv preprint arXiv:1702.01923.

Matthew D. Zeiler. 2012. ADADELTA: An adaptive learning rate method. arXiv preprint arXiv:1212.5701.

Daojian Zeng, Kang Liu, Yubo Chen, and Jun Zhao. 2015. Distant supervision for relation extraction via piece-
wise convolutional neural networks. In Proceedings of the 2015 Conference on Empirical Methods in Natural
Language Processing (EMNLP’15), pages 1753–1762.

Daojian Zeng, Kang Liu, Siwei Lai, Guangyou Zhou, and Jun Zhao. 2014. Relation classification via convolu-
tional deep neural network. In Proceedings of the 25th International Conference on Computational Linguistics:
Technical Papers (COLING’14), pages 2335–2344.

Shu Zhang, Dequan Zheng, Xinchen Hu, and Ming Yang. 2015. Bidirectional long short-term memory net-
works for relation classification. In Proceedings of 29th Pacific Asia Conference on Language, Information and
Computation, pages 73–78.


