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Abstract

Identifying emergent research trends is a key issue for both primary researchers as well as sec-
ondary research managers. Such processes can uncover the historical development of an area,
and yield insight on developing topics. We propose an embedded trend detection framework
for this task which incorporates our bijunctive hypothesis that important phrases are written by
important authors within a field and vice versa. By ranking both author and phrase information
in a multigraph, our method jointly determines key phrases and authoritative authors. We repre-
sent this intermediate output as phrasal embeddings, and feed this to a recurrent neural network
(RNN) to compute trend scores that identify research trends. Over two large datasets of scien-
tific articles, we demonstrate that our approach successfully detects past trends from the field,
outperforming baselines based solely on text centrality or citation.

1 Introduction

At no time prior to now has the advance of science – as measured by the rate of growth in scientific
publications – bloomed more rapidly. Even practitioners of narrowly-defined, specific fields need help
to scan the masses of literature to summarize work and to identify developments likely to spur long-term
impact due to the potential problem of information excess (Fujita et al., 2012). The identification of such
emergent research trends — “radically novel and relatively fast growing research topic characterized
by a certain degree of coherence, and a considerable scientific impact” (Wang, 2017) — is a task that is
growing in importance and urgency with the increasingly large scale of scholarly literature.

Wang (2017)’s survey reveals two important techniques that characterize the state-of-the-art work on
this task. First, text mining — specifically in the guise of topic models — have been employed to
yield a summative form of large corpora. Both the Dynamic Topic Model (Blei and Lafferty, 2006)
and Author–Topic Model (Rosen-Zvi et al., 2004) cater towards different aspects of the special temporal
and authoring aspects of topics in scientific documents, specializing the basic Latent Dirichlet allocation
(LDA; Blei et al. (2003)) topic model. Second, dense citations among papers has been used to measure
the coherence contributing to a well-defined research trend (Price, 1965). Through appropriate metrics,
core works can be identified, from which extracted keywords are treated as a trend’s central concepts.
Analyses often establish a co-citation network, as typified by Shibata et al. (2008).

These works point to the importance of side information external from the content itself, such as
publication date or author identity, and its necessary incorporation into a detection methodology. Our
observation is that these attributes often correlate with each other, naturally hinting to a framework where
such information can reinforce their signal.

We thus take inspiration from other natural language processing and information retrieval scenarios
where such mutual recursion has found application. Hyperlink Induced Topic Search (HITS; (Kleinberg,
1999)) showed web pages arranged as nodes of a hyperlinked graph can be mutually related and ranked
by an authority and a hub (popularity) score, where the two scores are calculated using mutual recursion.

This work is licensed under a Creative Commons Attribution 4.0 International License. License details: http://
creativecommons.org/licenses/by/4.0/
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Yan et al. (2017) applied a similar logic to the task of ranking sentences and words with mutual recur-
sion, where it is assumed that important sentences and important words are correlated. They achieved
better performance for keyphrase extraction compared with TextRank (Mihalcea and Tarau, 2004), a
non-recursive formulation.

Furthermore, with the current advent of deep learning and better semantic representations via embed-
dings, there is opportunity to utilize both advances in trend detection.

Applying these observations to the research trend task, we make the following assumptions when
formulating our model detailed in Section 3:

• Important authors often collaborate together, i.e., the co-authorship among key-authors contributes
to the research trend emergence.

• Important authors often write important keyphrases. Such phrases are then often trending phrases
for a research area.

• High centrality values for nodes are key features to identify the core items within a graph. For
identifying emergent trends, these metrics must exhibit values that connote both importance and
urgency.

• We neuralize the traditional trend detection pipeline. Specifically, we represent obtained keyphrases
as averaged tf-idf word embeddings and use a recurrent neural network (RNN) model to perform
supervised learning for trend status.

We use a multigraph ranking (MGR) core component to compute trending scores for keyphrases. We
take these MGR outputs as input to our neuralized embedded trend detection (EDM) framework: namely,
we represent the outputs as word or phrase embeddings, and feed their ranking scores into a recursive
neural network to identify trends per time slice in a target dataset. This results in our final embedded
trend detection model – ETD (MGR), or “ETD-M” for short.

2 Prior Work

Previous studies have addressed both of our tasks of obtaining keyphrases and identifying research
fronts from scientific publications. We review this area first, then review mutually recursive algorithms
used in practice.

Research Trend Detection. Wang (2017) classified research trend detection models into two cate-
gories, namely, text- and bibliometric-based approaches. In text-based approaches, keywords and terms
representing the core topics have been the focus of study. Hall et al. (2008) performed post-hoc analy-
sis by applying the LDA model to the batch of publications in the same year; top keywords generated
in different years are compared in an effort to identify the transition of topics. Mörchen et al. (2008)
attempts to combine keywords and the time of their appearances: the variation of term frequencies in
two different timestamps provides the insights on how significant the term is becoming. Sessions within
conferences are another perspective that have been investigated. Furukawa et al. (2014) constructed tf-idf
vectors (Salton et al., 1983) from publications’ abstracts to obtain the relative importance of sessions,
and then applied the vectors to assess the evolution of a publication venue.

In bibliometric approaches, citations are used to connect papers. Hopcroft et al. (2004) have proposed
the concept of co-citation, where papers are connected if they are both cited by another paper published
later; following the co-citation relation, the graph of papers can be used for further studies (Shibata et
al., 2008): topological clusters inside the graph was identified, where tightly knit clusters with densely
distributed edges represent the general topics. Subsequently, NLP techniques such as tf-idf are employed
to generate the top terms associated with the topic. Similar to textual approaches, top keywords from
clusters in different years can then be used for research fronts analysis. Elkiss et al. (2008) tried to analyze
the cohesion of texts based on the citing sentences and co-citation metrics, which provides insights on the
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focused perspective of the cited paper. He et al. (2009) proposed an inheritance topic model to identify
topic evolution by fully utilizing the impact of citations.

We note that both textual and bibliometric approaches expose shortcomings: they are restricted to his-
torical data, and human interpretations are often required to establish the link between different times-
tamps; additionally, without a comprehensive keywords extraction method, the final output can be am-
biguous and uninformative.

Mutual Recursive Algorithms. Hyperlink Induced Topic Search (HITS) Algorithm (Kleinberg,
1999) is a prototypical example and used for ranking pages on the Internet, where each page is as-
signed with two values: an “authority” score and a “hub/popularity” score. The rationale states that a
good hub page points to many other pages, where a good authority page is pointed to by many hubs.
Therefore, the two scores are computed dependently on each other.

In natural language processing, the implication of mutual recursion can apply to keyphrase extraction
models: Yan et al. (2017) implemented a ranking model by constructing separate sentence and word
graphs. They assume that important sentences and words are correlated, hence by linking the two graphs
together and ranking sentences and words recursively, salient keywords can be extracted. Their model
outperforms standard TextRank algorithm (Mihalcea and Tarau, 2004). Zhang et al. (2017) also proposed
a graph-based keyphrase extraction approach by capturing mutual influences among different types of
information on a candidate word, which have been widely used in existing supervised or graph-based
approaches.

3 Methodology

Our goal is to mine and assign high fidelity importance scores to keyphrases, and then to use these
to predict emerging trends, based on the abstracts for a large target scientific publication dataset. Our
embedded trend detection (ETD) model consists of the following three components: 1) extraction of
keyphrases, 2) representativeness enhancement with word embeddings, and 3) predictions and rankings
of phrase with RNN. In the following, we detail each of the components.

3.1 Multigraph Ranking for Key Phrase and Author Extraction

Our ETD framework admits any means of identifying the keyphrases, so any keyphrase generation algo-
rithm can be employed (e.g., TextRank). However, since our task is slightly different in that we want to
generate keyphrases for overall trend detection of an area (as opposed to the more typical characterization
of a single publication), we need to introduce several refinements.

As a result, we propose our multigraph ranking (MGR) component for salient keyphrase extraction.
Our MGR model starts with the extraction of keyphrases and key-authors based on the assumption that
important authors are more likely to write potentially trending phrases. We extract them via iterative
score ranking in a pair of jointly-connected graphs.

We construct the graphs as follows: documents are first grouped into year-based clusters. For each of
the cluster, we build an “author” graph, which contains individual authors who have published at least
one paper in that year; authors are connected by undirected edges whose weights are determined by the
number of publications two authors have made together during the year. We also construct a “phrase”
graph following the logic of TextRank with modifications. Compare this to the standard TextRank model,
where the nodes in the graph are tokenized words from the raw text, and the edges conceptualize the
adjacency when tokens occur within a predefined window size.

Our empirical results demonstrate that domain-specific single-word terms dominate the final keyphrase
list. Hence in our model, we pre-process the input to extract noun phrases via regular expression over
parts-of-speech1 before TextRank processing.

Consider the sample document in Figure 1: after transforming the raw text to a set of noun phrases,
each noun phrase is split further: for {coherency protocols}, two separate nodes will be added to the

1Using the Natural Language Toolkit (NLTK) via <DT>?<JJ|NN|NNS>*<NN|NNS> (where DT stands for determiner;
JJ for adjectives, and NN|NNS for nouns).
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Title: Evaluating the performance of four snooping cache coherency protocols.
Authors: S. Eggers and R. Katz.
Publication Year: 1989.
Abstract: ... coherency protocols have been criticized for being unable to achieve good bus
performance across all cache configurations ...

Transformed Token List: {coherency protocols, good bus performance, all cache configurations}

Figure 1: Example text from 1989, with noun phrases bolded.

Figure 2: Portion of the multigraph derived from the text in Figure 1. Note that in the complete graph,
nodes may connect with other unseen authors and phrases; we only show the part constructed by the
sample document.

“phrase” graph: coherency protocol and protocol; similarly, good bus performance, bus perfor-
mance, and performance from the next noun phrase. Subsequently, each node from {coherency pro-
tocol} will be linked with another node from {good bus performance}. Therefore, single nodes in our
“phrase” graph can be entire noun phrases.

The “author” and “phrase” graphs are jointly connected based on the “author-writes-phrase” relation-
ship, in which an author–phrase pair is denoted as { author ai – phrase pj}. We then propose tf-iaf, which
is a variant of tf-idf (Salton et al., 1983) to calculate the weight of the edges:

tf -iafai,pj = tfai,pj × iafpj

=
Occ(ai, pj)∑n
z=1Occ(ai, pz)

× log
|A|
|A(pj)|

, (1)

where Occ(ai, pj), |A(pj)|, and |A| denote the number of occurrences of pj by ai, the number of authors
who write pj , and the total number of authors, respectively.

Returning to our running example, for the document group for year 1989, a portion of the graph is
demonstrated in Figure 2.

Ranking and extraction of the key-authors and keyphrases can then be implemented through an itera-
tive method, similar to the HITS algorithm. We use three matrices to store the “author”, “phrase”, and
the tf-iaf graphs. More specifically,
· Nm×m is a matrix for the set of authors A = {ai|1 ≤ i ≤ m}. Each element ni,j denotes how

many papers auhtors ai and aj co-authored during the year. In the sample document presented above,
if the authors “S. Eggers” and “R. Katz” have only collaborated on this paper in 1989, then we have
nEggers,Katz = 1 for matrix N .
·W n×n is a matrix for the set of phrases P = {pj |1 ≤ j ≤ n}. Each element wi,j denotes that how
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often phrase pi and pj have co-occurred across all documents since that year. Note that for matrices N
and W , we have N = NT and W = W T .
· Lm×n is a matrix for the tf-iaf scores defined by Equation (1). Each element li,j denotes the tf-iaf

value, in other words, li,j = tf -iafai,pj .
Additionally, we use a m × 1 vector i⃗ and a n × 1 vector j⃗ to represent the scores of the authors and

phrases, respectively. Both vectors are initialized with 1 for each entry; subsequently, the score vectors i⃗
and j⃗ are updated using the following rule:

i⃗ = (α×N i⃗+ (1− α)×Lj⃗).normalized(),

j⃗ = (α×W j⃗ + (1− α)×LT i⃗).normalized().

where α is a tuning coefficient to determine the relative importance of authors and phrases during rank-
ing.

Therefore, after the iterative ranking, noun phrases are assigned a score based on both the adjacency
with other phrases and the author information for a particular year. Consolidating all scores for all
phrases produces a 2D array, of which each row stands for the time series scores for a phrase.

3.2 Representativeness with Word Embeddings

A key point here is that the meaning of a phrase and its relation to other phrases evolves over time. For
instance, during the development of the topic Machine Learning, the phrase “machine learning” was
likely to be associated with popular supervised approaches such as “decision tree” and “SVM” around
2000, but after 2010 co-occurs more often with “deep neural networks”. These changes indicate that the
representativeness of a phrase to a topic also shifts over time. To model such dynamics, we use word
embeddings to further refine the phrase scores from the previous step in our ETD pipeline.

Our model assigns a vector per phrase, per unit time step (year). We construct phrase vectors by
averaging its individual word embeddings (originating from the 300-dimensional version of Google’s
Word2Vec model (Mikolov et al., 2013)). The phrase vector is calculated by taking the tf-idf weighted
average of the vectors of individual words, where the tf-idf is calculated on the basis of the yearly-divided
corpus. We note that we tried training dynamic word embeddings based on recalibrating the vectors as
per many standard NLP application, but that technique did not lead to better performance.

As individual phrases are too fine-grained to be minted as trends, we apply a form of dimensionality
reduction to find key phrases that can serve as a label for a trend. We group the vectors into clusters
using the k-means algorithm, where each phrase is associated with a representativeness value calculated
by taking the cosine similarity between its vector and its respective cluster center. The phrase score
obtained from the graph ranking step is multiplied with the representativeness score. In this way, we
assign phrases with the list of scores indicating their significance and representativeness over the years.

3.3 Predictions with RNN and Trending Phrase Ranking

For a particular phrase, given its scores over a certain period of time, we expect our model to predict
the phrase score in the following time interval. In our model, we implement a basic recurrent neural
networks (RNNs) to makethese predictions.

The model employs scores from the first k sequential years to predict (k + 1)th score defined as:

xk+1 = f(x1, x2, x3, ..., xk).

For the array of scores from 1958 to 2015, this is a list of training samples where x is score vector that
consists of k sequential years and y is the score in the (k + 1)th year. The input of the RNN is 1 × k
representing the same feature (score of a certain year) spanned across k years, and the output is a single
value representing the score in the (k + 1)th year.

With the scores for each phrase predicted from year 1958 to 2015, it is then possible to investigate
further into the phrases. As illustrated previously, it is expected that our model could make predictions
of trending research fronts. Specifically, trends refer to research areas which are gradually being studied,
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hence, there should be a strong foundation for them, meaning that there are certain level of existing work
associated with them; yet they should not be the mostly-discussed issue at the same time. Based on these
assumptions, we have defined a trending score for each phrase, which can be defined as follows:

trend = β × (xk+1 −max(x1, . . . , xk)) + (1− β)×max(x1, . . . , xk),

where β is another tuning weight similar to that used in the graph ranking algorithm. Coupled with the
previous steps’ score computations, we can then determine the most influential and trending phrases in
each year with the predictions from RNN. Our model selects the top ranked phrases based on their actual
scores for each year, and produces another list based on predictions from RNN. It is expected that when
comparing these two lists, phrases appearing near the top of the actual list also appear at the top of the
prediction list.

4 Experiments

Evaluation of research trend detection is largely indicative, since the task is subjective, sources various,
and replicability of prior work is difficult at best. Despite these problems, we propose a workflow that
allows better future replicability, including the standardization of the datasets and the availability of the
algorithms’ prediction output2.

In our experiments, we use the abstract of each paper and the published year as one document entry
and the timestamp, respectively. After describing specific parameter settings, we describe our evaluation
for the two different datasets in turn.

4.1 Parameter Settings
For the three sub-components of our model, we set the parameters as follows:

In the multi-graph ranking component, when iterating through the texts, phrases appearing within a
window size of 3 are identified as adjacent tokens and are hence connected in the graph, when updating
the final score vectors with Equation (1). We set α to 0.5.

When incorporating the Word2Vec model into phrase scores, we use the k-means algorithm to cluster
the phrase vectors. We compare the performance of the model on various settings of k = {10, 15, 20, 25}.
For the recurrent neural network predictions, we set a (context) block size of 3 for the input shape (i.e.,
in the 2D array of scores, for each phrase, its time series scores incorporate the three prior values:
x4 ←< x1, x2, x3 >).

The generated training samples are then fed into the RNN, which includes 2 hidden layers, where each
layer has 4 neurons. We use mean squared error as the loss function (as the result is continuous), which
naturally dictates the use of RMSProp as the optimizer. Following typical training regimes, we use a
batch size of 10, and 80 epochs before termination. We also empirically tuned β to 0.8, emphasizing the
positive and increasing trend in importance in defining trending topics and research fronts.

4.2 ACM Periodical Dataset
We use this dataset to evaluate the performance of multigraph ranking (MGR) component as we hy-
pothesize that its mutual recursion will improve trend detection over the baseline TextRank source. This
dataset includes around 9,740 XML files representing publications copyrighted by the Association of
Computing Machinery (ACM), in the domain of computer science, published from 1958 to 2015. It is
available from the ACM used by explicit permission. We use the abstract and metadata (specifically,
publication time, authors, and keywords) for each paper. For space, in this presentation, we restrict the
field of study to “software engineering”3.

We evaluate our model with Recall@n and nDCG@n, and then compare it with the standard Tex-
tRank algorithm (Mihalcea and Tarau, 2004) as a baseline.

2Code is available at: https://github.com/RichardeJiang/racode.
3Filtered using the keyword “software engineering” and “software and its engineering” on the keywords and concept

description component of each publication.
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Recall @ nth rank

System k = 10 k = 15 k = 20 k = 25
@10 @20 @30 @10 @20 @30 @10 @20 @30 @10 @20 @30

ETD-TR 11.3% 10.5% 8.5% 13.0% 12.9% 10.4% 7.6% 7.4% 6.5% 14.1% 13.2% 10.5%
ETD-M 24.0% 21.9% 16.5% 25.9% 23.5% 21.1% 17.8% 15.6% 12.9% 16.7% 13.6% 10.5%

Normalized Discounted Cumulative Gain (nDCG) @ nth rank

System k = 10 k = 15 k = 20 k = 25
@10 @20 @30 @10 @20 @30 @10 @20 @30 @10 @20 @30

ETD-TR 0.105 0.127 0.138 0.107 0.136 0.143 0.078 0.090 0.095 0.120 0.151 0.161

ETD-M 0.158 0.220 0.251 0.226 0.261 0.289 0.147 0.180 0.199 0.107 0.136 0.174

Table 1: Performance comparison of Recall@n (top) and nDCG@n (bottom), varying the number of
clusters k = {10, 15, 20, 25} generated by k-means. Best system figures are bolded. “ETD-TR” and
“ETD-M” stand for embedded trend detection with TextRank (Mihalcea and Tarau, 2004) (baseline) and
our multigraph ranking, respectively.

Recall @ 20, k = 20
Run 1 2 3 4 5
ETD-TR 7.4% 10.3% 8.6% 11.1% 9.2%

ETD-M 15.6% 14.0% 15.6% 13.2% 20.1%

Table 2: Comparison of Recall@20 with k = 20 clusters over different runs of our model.

Our embedded trend detection workflow consists of the three stages: keyphrase extraction, embed-
ding representation, and final prediction with RNN. Our evaluation here tests the effectiveness when we
change the first component to our proposed MGR. We replace the MGR with the standard TextRank
algorithm and use the output as the baseline, and compare the resulting ranking model.

Recall@n measures how many predicted phrases are the actual top terms computed by the system. For
each year, the first component (MGR and baseline TextRank) returns a list of the top terms. These are
further enhanced through Word2Vec embeddings and fed to the RNN to generate top trending phrases.
We first compute average recall based on this final output for all available years, and then compute
normalized discounted cumulative gain (nDCG) (Järvelin et al., 2000) to further assess the quality of the
element ranking. A system performs better if it returns true positive trending phrases towards the top of
its rankings, as opposed to the bottom.

We test different settings of k ∈ {10, 15, 20, 25} for the number of clusters when performing the
k-means algorithm in the second Word2Vec stage for incorporation, as shown in Table 1.

From Table 1, we note that when extracting the keyphrases and make value predictions, our model
consistently outperforms the baseline TextRank algorithm, in both the number of correctly predicted
phrases (Recall) and their ordering (nDCG). Since the only difference between the baseline TextRank
and our MGR model is how the phrases are ranked, we conclude that our multi-graph ranking algorithm
yields more consistent scores in this dataset. We take this as evidence that in our MGR model, random
interference is reduced when compared against the standard TextRank algorithm. This provides the
empirical justification for our assumption when formulating the multi-graph ranking step – that important
authors are more likely to cooperate with each other; and that words written by them are more likely to
be trending in their respective fields. Additionally, the use of graphical techniques which find central
components does reveal useful core nodes (concepts).

As the k-means algorithm does not guarantee to produce the same cluster result when we run the
algorithm for several times, in order to show the consistency of performance, we have tested the system
multiple times with the same set of parameters. Here, we show the example when k = 20 (number
of clusters), and we compute the Recall@20, as illustrated in Table 2. We observe that results will be
different when testing the system in different runs, which conform to the nature of k-means algorithm;
however, our model (ETD-M) consistently outperforms the baseline ETD-TR with the same parameter
settings.
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Clusters Top 10 Keywords
G1 degree, growth, substrate, film, ga, gaas, gan, nh, si, surface

G2 degree, contact, gan, al, ni, ga, ti, au, physics, american institute

G3 gan, mg, layers, ga, physics, american institute, structure, defect, photoluminescence, strain

Table 3: Top 10 keywords detected by citation network methodology from (Shibata et al., 2008), for the
year of 2000. Copied verbatim from the source.

Year Top 20 Keyphrases

1999

molecular beam epitaxy, beam epitaxy, substrate, surface, epitaxy, deposition,
results, quality, diffraction, metalorganic chemical vapor deposition, vapor

deposition, sapphire substrates, conditions, cm, properties, measurements,
chemical vapor deposition, electron microscopy, microscopy, spectra

2000
growth, layers, substrate, epitaxy, surface, diffraction, substrates, molecular

beam epitaxy, electron microscopy, measurements, spectra, spectroscopy,
microscopy, cm, properties, structure, quality, results, conditions, characteristics

2001
growth, layers, temperature, temperatures, substrates, emission, layer, epitaxy,

measurements, spectroscopy, surface, molecular beam epitaxy, properties,
diffraction, films, microscopy, beam epitaxy, cm, photoluminescence, structure

Table 4: Top keyphrases predicted by our ETD-M model. Phrases detected by both ETD-M and Shibata
et al.’s (2008) model marked as bolded.

We also tested the sub-systems by eliminating the Word2Vec component from our pipeline of ETD:
meaning that after we obtained the phrases together with their time series scores using graph ranking
algorithms (either with TextRank or our proposed multigraph ranking, MGR), we feed the data into
RNN and evaluate the performance. The resulting Recall@20 for TextRank and MGR are 14.5% and
17.1%, respectively. The values illustrate two inferences: firstly, even without the reinforcement of word
embeddings, our proposed MGR still produces more consistent ranking scores. Secondly, if comparing
the result with average Recall@20 from Table 1 (10.5%, 12.9%, 7.4%, 13.2% for TextRank, 21.9%,
23.5%, 15.6%, 13.6% for MGR), we observe that when the embedding component is added to our system,
ETD-M outperforms ETD-TR when the number of k-means clusters is relatively small. By comparison,
TextRank considers all available tokens, hence the adjacency relationship includes more information on
the representativeness of each word. Therefore, in ETD-TR, we believe that word embeddings introduce
noise to the original values. On the other hand, in MGR, the spatial information is diluted and Word2Vec
helps to centralize the popularity of each phrase, especially when the number of clusters is small. This
indicates that word embeddings are effective in our ETD-M model.

4.3 Science and Social Science Citation Index Datasets

In their paper, Shibata et al. (2008) provided the research fronts detected by their system for the domain
of Gallium Nitride (GaN) – a prominent research field in applied physics and material science – for
the year 2000 (Table 3). We wish to compare directly with their reported results, contrasting the top
terms generated for phrases in the year range of 1999–2001, as shown in Table 4, hypothesizing that our
ETD-M system can outperform their inferred keyphrase in terms of subjective keyphrase quality.

They used data gleaned from the Science Citation Index (SCI) and Social Science Citation Index
(SSCI) original compiled by the Institute for Scientific Information, which are available from Web of
Science databases. To compare with their results as best as possible, we have retrieved the papers using
the same database query provided by their research: “GaN OR Gallium Nitride” to compare our results
with theirs. We collected papers whose years of publication range from 1970 to 2004, to exactly match
the parameters used in Shibata et al.’s work. The total number of the papers is around 15,200.

We note that about half of the keyphrases obtained by Shibata et al.’s work are also predicted suc-
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cessfully by the ETD-M model. Examining the two tables carefully, we believe that phrases from our
model provide better quality insight: element names such as “ga”, “ni”, and “al” recognized by Shibata
et al.’s work unfortunately provide no detail on the study; furthermore, some terms recognized by them
like “american institute” are also irrelevant to the research topic.

Since Shibata et al.’s work filters out non-core papers first, potential keywords can only originate from
core papers. According to their results, out of 4,000 publications collected in the year 2000, around 30
are selected based on the roles of each paper within its cluster. Although we cannot replicate their work
exactly, we surmise that these central papers may manifest such terms with sufficiently high frequency to
be extracted, resulting in the large involvement of element names and non-relevant terms in the output.
Due to the mutual recursion element of ETD-M, we can propagate the influence of keyphrases beyond
such a core, while assigning an appropriate level of credit. Such results allow ETD-M to convey and
rank longer, meaningful phrases such as “molecular beam epitaxy” and “metalorganic chemical vapor
deposition” within that domain.

5 Future Work

The three-stage pipeline in our ETD-M model is designed to provide insights on the trending research
keywords and has been proven to work better than the standard TextRank and bibliometric approaches.
Additionally, the model can be improved from various perspectives.

In our multigraph ranking (MGR) step, the score vectors for authors and phrases are normalized after
each iteration of updates to limit the values within the range of [0, 1]; the matrices representing author and
phrase mutual relations (N ,W ,L) are non-smoothed. We expect by normalizing matrices N ,W ,L to
N̂ , Ŵ , L̂ in the first place, and then using the normalized matrices in the ranking, the output score vector
will therefore indicate the relative importance and the value will be smoothed. The update rules hence
become:

i⃗ = α× N̂ i⃗+ (1− α)× L̂j⃗,

j⃗ = α× Ŵ j⃗ + (1− α)× L̂
T
i⃗.

Our model uses Google’s Word2Vec to enhance the representativeness of each phrase in every year
by taking the cosine similarities between the vector representation of a phrase and its respective cluster
center. Given a specific collection of documents, the embedding for its vocabulary can be rather differ-
ent from the fixed, pretrained Word2Vec, so in the future we may consider further training the existing
Word2Vec with our yearly-divided data. In addition, the representativeness of phrases can also be ex-
tended by incorporating topic models, so as to assign a topic and a value to each phrase would admit the
relative importance of the phrase, while providing an intuitive approach in clustering.

The evaluation of our model is largely subjective: whether the output keyphrase list provides insights
with better quality depends on human interpretation. To better understand the efficacy of our model, it
can be applied to other disciplines such as using the PubMed data, and then we employ domain experts
to manually evaluate the keyphrase list.

One common issue with a pipeline model is that error may propagate through different stages and
accumulate. Therefore, the overall structure of the model can be redesigned such that the graphs are
already time-aware during ranking. Wang et al. (2013) have provided an article ranking model which
takes publication time into account. When applying to our model, we could introduce a “time” graph to
the existing MGR model, where the heterogeneous graph incorporates publication times.

6 Conclusion

We have presented our ETD-M model for detecting research fronts and trends from scientific publi-
cations. Unlike prior work that emphasize evidence from citation links and topological measures, our
model mines salient phrases from the abstract of the publications themselves. Our three-stage ETD-M
pipeline features a multigraph keyphrase ranking (MGR) algorithm, followed by k-means clustering and
keyphrase representation utilizing word embeddings, with a final stage of detecting the topics using an
RNN for the final, temporally-sensitive inference of trending topics.
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A key contribution from our work lies in the first stage of evidence gathering, in the form of our
keyphrase extraction. We structure this task as a mutual recurrence between important authors and
their keyphrases. We compare our MGR against the TextRank algorithm within the ETD framework,
which clearly showed the advantages of utilizing author information in identifying salient keyphrases.
Additionally, we feel that our MGR model’s inferred research fronts align well with historical fact.

Our ETD-M model can be extended further for a more comprehensive structure. Applying normalized
author and phrase matrices to the update rule makes the scores more reasonable; Mikolov’s Word2Vec
can be adjusted to fit in our own dataset for each year. Additionally, we can introduce human evalua-
tion by feeding in data from various fields of study, to further evaluate the efficacy of our model while
discovering trend insights to these other scientific research areas.
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