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Abstract

This paper analyzes arguably the most challenging yet under-explored aspect of resolution tasks
such as coreference resolution and entity linking, that is the resolution of plural mentions. Unlike
singular mentions each of which represents one entity, plural mentions stand for multiple entities.
To tackle this aspect, we take the character identification corpus from the SemEval 2018 shared
task that consists of entity annotation for singular mentions, and expand it by adding annotation
for plural mentions. We then introduce a novel coreference resolution algorithm that selectively
creates clusters to handle both singular and plural mentions, and also a deep learning-based entity
linking model that jointly handles both types of mentions through multi-task learning. Adjusted
evaluation metrics are proposed for these tasks as well to handle the uniqueness of plural mentions.
Our experiments show that the new coreference resolution and entity linking models significantly
outperform traditional models designed only for singular mentions. To the best of our knowledge,
this is the first time that plural mentions are thoroughly analyzed for these two resolution tasks.

1 Introduction

Resolution tasks such as coreference resolution and entity linking are challenging because they require a
holistic view of a document (or across multiple documents) to find correct entities. Although many models
have been proposed for these tasks (Clark and Manning, 2016; Francis-Landau et al., 2016; Wiseman
et al., 2016; Gupta et al., 2017; Lee et al., 2017), most of them are focused on singular mentions such
that they are insufficient for resolving the other type of mentions, plural, although the amount of plural
mentions is not negligible in practice.1 Table 1 illustrates how mentions are annotated for coreference
resolution by the CoNLL’12 shared task (Pradhan et al., 2012) and our proposed work. In the CoNLL’12
annotation, the plural mention They8 is grouped with the noun phrase [Mary1 and John2]3; however, the
other plural mention We7 becomes a singleton because there is no noun phrase representing such an entity.
Since CoNLL’12 limits each plural mention to be linked to a single noun phrase, it loses connections to
individual entities that exist within the document but not grouped as a noun phrase.

Document [Mary1 and John2]3 came to see me4 yesterday. She5 looked happy, and so did he6.
We7 had a great time together. They8 left around noon.

CoNLL’12 {Mary1, She5}, {John2, he6}, {[Mary1 and John2]3, They8}, {me4}, {We7}
Our Work {Mary1, She5, We7, They8}, {John2, he6, We7, They8}, {me4, We7}

Table 1: Snippets of how mentions are annotated by the CoNLL’12 shared task and our work.

In our work, the plural mentions We7 and They8 are linked to multiple entities that those mentions refer to.
This allows higher-level NLP tasks such as question answering or machine translation to reason more
explicitly about those entities while adding another level of challenges to the resolution tasks. In this paper,
we first present the annotation scheme for resolving plural mentions that is used to expand the corpus

This work is licensed under a Creative Commons Attribution 4.0 International License.
License details: http://creativecommons.org/licenses/by/4.0/
1A singular mention is a noun phrase that refers to exactly one entity while a plural mention is one that refers to multiple entities.
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provided by the Character Mining project (Section 3). We then introduce a novel algorithm for coreference
resolution that selectively creates clusters for singular and plural mentions, as well as evaluation metrics to
handle plural mentions for coreference resolution (Section 4). We also present a new deep learning-based
entity linking model that jointly identifies both singular and plural mentions (Section 5). All models are
evaluated on our dataset (Section 6); the experiments reveal significant improvement from our new models
compared to the previous state-of-the-art models dedicated for singular mentions. As far as we can tell,
this is the first time that such annotation for plural mentions is provided in a large enough scale that deep
learning models can be trained on, at the same time, machine learning models are developed to achieve
promising results for the resolution of plural mentions.

2 Related Work

Chen and Choi (2016) were the first to introduce the task of character identification and provided a new
corpus based on TV show transcripts. Given a dialogue transcribed in text where all mentions are detected,
character identification aims to find the entity for each personal mention, who may or may not be active
in the dialogue. Unlike most other entity linking tasks focusing on Wikification, this task is challenging
because it is dialogue-based where the entities are general characters in the show. This corpus was later
expanded by Chen et al. (2017) who added annotation for the ambiguous entity types. In this work, we
expanded the corpus further by doubling the size of the annotation and adding new annotation for plurals.

The character identification corpus can be used for both coreference resolution and entity linking tasks.
Our approach to coreference resolution was partially motivated by the previous works, Clark and Manning
(2016) and Durrett et al. (2013), who tackled the general cases of coreference resolution including plurals;
however, since their approaches were based on the annotation provided by CoNLL’12, they did not handle
plural mentions to our satisfaction (Table 1). Jain et al. (2004) presented a rule-based system for resolving
plural mentions, which was limited to unambiguous plural types. Our work is distinguished because we
handle both ambiguous and unambiguous types of plural mentions, which makes it more challenging.
Chen et al. (2017) presented an entity linking model that identified the real entity of each singular mention,
which we adapted to develop a new multi-task learning model that jointly handles singulars and plurals.

3 Corpus

3.1 Annotation

The Character Mining project provides transcripts from the TV show Friends for all ten seasons in JSON.2

A subset of the first two seasons of this show was annotated for the task of character identification by Chen
et al. (2017), who made it publicly available through the International Workshop on Semantic Evaluation
(SemEval 2018).3 Given this annotation, we expanded the corpus as follows:

1. We realized that about 20% of the first two seasons were not covered by the previous annotation.
Following the annotation guidelines suggested by Chen et al. (2017), we completed the annotation
for the first two seasons and further annotated two more seasons. As a result, the first four seasons
are completely annotated for character identification in our corpus.

2. There were quite a few mismatches among the speaker and the entity labels in the previous annotation.
For instance, while mentions were annotated by the entity’s full name such as Monica Geller,
some utterances were paired with speaker labels represented by only the first name, Monica, which
could cause confusions for machine learning models. We manually went through the entire annotation
and made sure the speaker and the entity labels were coherent across all seasons.

3. The previous annotation consisted of only singular mentions such that each mention was guaranteed
to be linked to exactly one entity. We annotated plural mentions for the first four seasons through
crowdsourcing. Unlike singular mentions that were automatically recognized by the heuristic-based

2Character Mining: https://github.com/emorynlp/character-mining
3SemEval 2018 Task 4: https://competitions.codalab.org/competitions/17310
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mention detector (Chen and Choi, 2016), plural mentions in our corpus were manually detected by
the crowd workers who were also asked to link each plural mention to a set of its referent entities.

The annotation guidelines used for singular mentions are adapted to annotate plural mentions as well such
that the only difference in annotation between these two types of mentions is the number of entities to
which the mentions refer. Formally, each mention m is annotated with a set of entities E, where each
element in E belongs to one of the following four groups:

1. Known entities: include all the primary and secondary characters recurring in the show.

2. GENERIC: indicates actual characters in the show whose identities are unknown across the show:
e.g., That waitress is really cute, I am going to ask her out.

3. GENERAL: indicates mentions referring to a general case rather than a specific entity:
e.g., The ideal guy you look for doesn’t exist.

4. OTHER: indicates actual characters in the show whose identities are unknown in this dialogue but
revealed in some other dialogue.

The COLLECTIVE type, used to distinguish the plural usage of the pronoun you in the previous annotation,
is discarded in our annotation because each you is now annotated with a set of entities such that the plural
usage can be deterministically distinguished by the size of its entity set.

Speaker Utterance
Jack And I1 read about these women2 trying it all, and I3 thank God ‘Our4 Harmonica5’ doesn’t have this problem.

Monica So, Ross6, what’s going on with you7 two? Any stories? No little anecdotes to share with mom8 and dad9?
Ross Okay, I10 just got this from the guy11 next to me12. He13 was selling a whole bunch of stuff.

{I1, I3, Our4, dad9} → Jack {Our4, mom8} → Judy, {Harmonica5} → Monica, {Ross6, you7, I10, me12} → Ross,

{women2} → GENERAL, {you7} → OTHER, {guy11, He13} → MAN 1

Table 2: An example of entity annotation in our corpus, where Our4 and you7 are the plural mentions.

Table 2 shows examples of all types of entities for both singular and plural mentions. The mention women2

does not refer to any specific character so it is identified as GENERAL. Both the mentions guy11 and He13

refer to a specific person whose identity is never revealed so it is annotated with the generic type, MAN 1.
There are two plural mentions, Our4 and you7, which are handled differently. All entities of Our4 can be
identified from the context of this dialogue so it is annotated with the known entities Jack and Judy.
However, only one of you7 can be identified in this context so it is annotated with the known entity Ross
and also OTHER, implying that it refers to some other entity that can be identified in a separate dialogue.
This method is used to distinguish non-immediately identifiable entities from the generic case of MAN 1
whose identity is unknown across the entire show.

3.2 Analytics

Table 3 shows the statistics of our corpus. Compared to the previous annotation including 18,608 mentions,
our corpus is comprised of 47,367 annotated mentions, which is 2.5 times larger. Plural mentions together
compose about 9% of the entire dataset, which is significant enough to make a difference in resolution.
Each cluster contains about 6 mentions on average when each scene is treated as an independent dialogue.

All mentions were double-annotated by crowd workers. From this double-annotation, Cohen’s kappa
score of 56.88% was achieved for plural mentions, which was about 20% lower than the one achieved for
singular mentions (Chen and Choi, 2016). The lower inter-annotator agreement was expected due to the
high complexity of this task. A subset of the disagreed annotation was manually adjudicated by experts,
from which we found that taking the union of the entity sets annotated by two workers would effectively
give the correct set of entities for each of those disagreed plural mentions. Thus, a vast amount of plural
mentions were pseudo-adjudicated by taking their unions of double-annotation.
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Season General Mention Entity
Episode Scene Utterance Speaker Singular Plural Total Cluster Type

1 24 326 5,968 107 10,313 1,147 11,460 2,162 270
2 24 293 5,747 107 10,521 1,156 11,677 1,934 285
3 25 348 6,495 108 11,458 907 12,365 1,925 230
4 24 334 6,318 100 10,726 1,139 11,865 1,881 175

Total 97 1,301 24,528 331 43,018 4,349 47,367 7,902 781

Table 3: The overall statistics of our corpus. All columns show raw counts except that the speaker column
and the type column in the entity section give the set counts of all speakers and entities, respectively.

Table 4 shows the distributions of entity types. The primary characters compose about 67% of all mentions
whereas the ambiguous types together compose about 8.6%, which implies that the majority of mentions
can be linked to known entities. Notice that the total count of GENERAL increases by 554 from Seasons
1-2 to 3-4, whereas the total count of OTHER decreases by 654 for those seasons; these two ambiguous
entity types are easily confused because they do not refer to any specific entity within the dialogue.
Considering that annotation tasks for the first two seasons were mostly conducted by Chen et al. (2017)
whereas the next two seasons were conducted by us, it is possible that our crowdsourcing instructions
were more biased towards GENERAL than OTHER, which we will analyze in the future.

Season Known Entities Ambiguous Entities Total
Primary Secondary GENERIC GENERAL OTHER

1 9,247 3,616 214 641 463 14,181
2 9,591 3,704 184 598 455 14,532
3 9,491 3,512 200 896 136 14,235
4 9,807 3,181 112 897 128 14,125

Total 38,136 14,013 710 3,032 1,182 57,073

Table 4: The distributions of entity types. Each column shows the number of mentions annotated with the
corresponding entity type. Note that the total number of mentions here is different from the one in Table 3
(57,073 vs. 47,367) because each plural mention is counted more than once in this table.

4 Coreference Resolution

The presence of plural mentions brings up several challenges for coreference resolution. First, the search
scope becomes broader. For each mention mj , a typical coreference resolution system would find another
mentionmi that is referent tomj , and assignsmj to the cluster Ci thatmi belongs to if it exists; otherwise,
creates a new cluster and assigns both mi and mj to that cluster.4 As soon as mj is assigned, the search
can stop for mj . This strategy works for singular mentions but fails with plural mentions because they
can be assigned to more than one cluster. Second, the referent relations are no longer transitive. Let
mi ← mj , mi → mj , mi � mj stand for referent relations such that mj is referent to mi, mi is referent
to mj , mi is coreferent to mj , respectively. Then, mi � mj and mj � mk would imply mi � mk

for singular mentions, but this transitivity fails with plural mentions when mj belongs to two different
clusters Ci = {mi,mj} and Ck = {mj ,mk} such that mi and mk have no referent relation. Third, some
of the popular evaluation metrics for coreference resolution such as B3 (Bagga and Baldwin, 1998) are
not necessarily designed for plural mentions such that they need to be revisited.

Section 4.1 introduces our new coreference resolution algorithm that selectively creates clusters with
respect to different mention types. This algorithm ensures singular mentions representing different entities
get assigned to separate clusters. For example, let mp be a plural mention and mi be a singular mention
such that mp → mi. When the referent relation is found, the cluster Ci is created and both mp and mi are
assigned to Ci. Let mj be another singular mention such that mp → mj . Now, the algorithm must decide
4The term ‘cluster‘ indicates a group of mentions that refer to the same entity within a document such that each cluster represents
a distinct entity although a cluster in one document can represent the same entity as another cluster in a different document.
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whether to assign mj to Ci or create another cluster Cj for mj . If mi � mj , mj should be assigned to Ci;
otherwise to Cj . Our algorithm allows a model to learn this decision during training so that the clusters
can be created accordingly during decoding. Section 4.3 describes how existing evaluation metrics can be
adjusted to evaluate both singular and plural mentions for coreference resolution, which is the first time
that these metrics are adapted for plural mentions linked to multiple entities.

4.1 Algorithm
For each mention mj , our algorithm compares it against all of the preceding mentions mi to determine
whether or not they are referent, where i and j are the ordered indices such that 0 < i < j. Additionally,
two more mentions, mg and mo, are compared to mj that represent the GENERAL and the OTHER types,
respectively (Section 3.1). For each mention pair (mi,mj), the algorithm assigns one of the following
three labels for multi-classification:

1. N: mi is not referent to mj .

2. L: mj gets assigned to the cluster that mi belongs to. If mi does not yet belong to any cluster, a new
cluster Ci is created and both mi and mj are assigned to Ci.

3. R: mi gets assigned to the cluster that mj belongs to. If mj does not yet belong to any cluster, a new
cluster Cj is created and both mi and mj are assigned to Cj .

During training, labels are determined by consulting the oracle. L is labeled if mi is a singular mention. R
is labeled if mi is plural and mj is singular. N is labeled for all the other cases. Notice that this algorithm
does not allow any plural mention to be directly linked to another plural mention; in other words, it does
not create any cluster consisting of only plural mentions. Plural mentions can still be indirectly linked
through clusters created for singular mentions. The creation of clusters comprising only plural mentions
would not help identifying the known entities of those mentions, which defeats the purpose of character
identification. It is possible to link plural mentions directly by using the GENERIC type (Section 3.1),
which is not adapted to annotate entities for plural mentions in the current annotation scheme.

[mi] → {N, L, R} mj Clusters
[G,O]→ N 1 ∅g, ∅o
[O, 1]→ N, [G]→ L 2 {2}g, ∅o
[G,O, 2]→ N, [1]→ L 3 {2}g, ∅o, {1, 3}1
[G,O, 2]→ N, [1, 3]→ L 4 {2}g, ∅o, {1, 3, 4}1
[G,O, 1..4]→ N 5 {2}g, ∅o, {1, 3, 4}1
[G,O, 1..5]→ N 6 {2}g, ∅o, {1, 3, 4}1
[G, 1..5]→ N, [O, 6]→ L 7 {2}g, {7}o, {1, 3, 4}1, {6, 7}6
[G,O, 1..3, 5..7]→ N, [4]→ R 8 {2}g, {7}o, {1, 3, 4}1, {6, 7}6, {4, 8}8
[G,O, 2, 5..8]→ N, [1, 3, 4]→ L 9 {2}g, {7}o, {1, 3, 4, 9}1, {6, 7}6, {4, 8}8
[G,O, 1..5, 8, 9]→ N, [6]→ L 10 {2}g, {7}o, {1, 3, 4, 9}1, {6, 7, 10}6, {4, 8}8
[G,O, 1..10]→ N 11 {2}g, {7}o, {1, 3, 4, 9}1, {6, 7, 10}6, {4, 8}8
[G,O, 1..5, 8, 9, 11]→ N, [6, 10]→ L 12 {2}g, {7}o, {1, 3, 4, 9}1, {6, 7, 10, 12}6, {4, 8}8
[G,O, 1..10, 12]→ N, [11]→ L 13 {2}g, {7}o, {1, 3, 4, 9}1, {6, 7, 10, 12}6, {4, 8}8, {11, 13}11

Singleton Processing {2}2, {7}7, {1, 3, 4, 9}1, {6, 7, 10, 12}6, {4, 8}8, {11, 13}11, {5}5

Table 5: A demonstration of our algorithm using the example in Table 2. The mj column indicates the
index of mj that the algorithm is currently processing. The first column shows the labels generated for all
mention pairs (mi,mj), where the indices of mi are indicated inside the square brackets (e.g, [O, 1] stands
for mo and m1) and the labels are indicated next to the right arrows (e.g.,→ L). The clusters column
shows the list of entity sets created by taking the labeling information from the first column.

Table 5 depicts how this algorithm finds the referent relations for all the mentions in Table 2. Note that
the special mentions mg and mo are considered singular and placed prior to any other mention here. The
algorithm labels L for (mg,m2), which makes women2 ∈ Cg representing GENERAL. For m4, it labels L
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for m1 and m2, which makes Our4 ∈ C1 representing JACK; although Our4 is a plural mention, it gets
assigned to only one cluster at the moment since the other entity has yet been revealed. For m7, it labels
L for both mo and m6, which makes you7 ∈ Co representing OTHER and ∈ C6 representing Ross. For
(m4,m8), it labels R because m4 is plural and m8 is singular, which creates a new cluster C8 and assigns
both Our4 and mom8 to C8. Once all mention pairs are compared, the algorithm collects mentions that are
not assigned to any cluster, and makes them singletons such that Harmonica5 becomes the singleton C5.
Furthermore, every mention that belongs to either Cg or Co gets turned into a singleton such that C2 and
C7 are created at the end. This is because mentions assigned to those ambiguous types are not referent to
one another, if they were, they would have been assigned to GENERIC instead.

4.2 Learning Model
Our learning model uses a modified version of the Agglomerative Convolutional Neural Networks (ACNN)
introduced by Chen et al. (2017). This architecture incorporates multiple sets of features and learns the
most optimized feature combination at each convolution layer. It also allows the model to dynamically
accumulate the most salient features for eventual inclusion in the mention and mention pair embeddings.
ACNN takes a mention pair (mi,mj), performs multiple convolutions to extract features from different
groups (CONV1), combines the extracted features among groups using more convolutions (CONV2), and
generates mention embeddings rs(mi) and rs(mj). These mention embeddings are then concatenated
with discrete features φd(m) and combined through convolutions to generate a mention-pair embedding
rp(mi,mj). The mention-pair embedding together with pairwise features φp(mi,mj) are used to make a
binary classification for mi and mj being referent or not.

1-gram filters

2-gram filters

3-gram filters

1-gram filters

2-gram filters

3-gram filters

Mention Embeddings Mention Pair Embedding
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Figure 1: The overview of our coreference resolution model using the multi-class ACNN.

To be adapted to our coreference resolution algorithm in Section 4.1, ACNN is modified at the output layer
to include three labels, N, L, and R, such that it is optimized for multi-class instead of binary classification.
The modified ACNN, called the multi-class ACNN, generates mention embeddings, rs(mi) and rs(mj),
as well as mention pair embeddings, rp(mi,mj), which are used to create cluster embeddings and fed as
input to our entity linking model in Section 5.1.

4.3 Evaluation Metrics
Three metrics proposed by the CoNLL’12 shared task (Pradhan et al., 2012), B3, CEAFφ4 , and BLANC,
are used to evaluate our coreference resolution models. B3 (Bagga and Baldwin, 1998) is a mention-based
metric that measures precision (P ) and recall (R) as follows (D: a set of documents, N : the total number
of mentions in D, Cs/om : the cluster from the system (s) or the oracle (o) that the mention m belongs to):

P =
1

N

∑
d∈D

∑
m∈d

|Csm ∩ Com|
|Csm|

R =
1

N

∑
d∈D

∑
m∈d

|Csm ∩ Com|
|Com|
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In our case, each mention can be assigned to more than one cluster; thus, C∗m is replaced by the union of
all clusters that the mention m belongs to, which enables this metric to evaluate plural mentions.

CEAFφ4 (Luo, 2005) is an entity-based metric that first creates a similarity matrix M ∈ R|S|×|O| where
S and O are the sets of clusters produced by the system and the oracle, respectively. It then measures the
similarity between every pair of clusters (Cs, Co) ∈ S ×O where s ∈ [1, |S|] and o ∈ [1, |O|] such that:

Ms,o =
2× |Cs ∩ Co|
|Cs|+ |Co|

Given this similarity matrix, the Hungarian algorithm is used to find the list H that contains similarity
scores from the most similar matching pairs of clusters (Cs, Co) ∈ S ×O such that |H| = min(|S|, |O|).
Finally, the overall similarity between S and O is measured as Φ =

∑
φ∈H φ, and precision and recall are

measured as P = Φ/|S| and R = Φ/|O|, respectively. Since CEAFφ4 is entity-based, the metric can be used
to evaluate plural mentions without any modification. The potential pitfall is that certain clusters may
include a greater number of plural mentions than singular mentions, in which case, distinct clusters with
similar sets of plural mentions may yield a high similarity score. However, plural mentions make up less
than 10% of the dataset, so we are not concerned about these plural-majority clusters, since most if not all
clusters would be dominated by singular mentions.

BLANC (Recasens and Hovy, 2011) is a link-based metric. Let Ls and Lo be the sets of links generated
by the system (s) and the oracle (o), respectively. Let G be the set of all possible links between every pair
of mentions whether or not they are referent. This metric first creates a confusion matrix B ∈ R2×2 such
that B0,0 = |Ls ∩ Lo|, B0,1 = |Lo − Ls|, B1,0 = |Ls − Lo|, and B1,1 = |(G− Ls) ∩ (G− Lo)|. It then
measures precision and recall for referent links (Pc and Rc) and also for non-referent links (Pn and Rn):

Pc =
B[0, 0]

B[0, 0] +B[1, 0]
Rc =

B[0, 0]

B[0, 0] +B[0, 1]
Pn =

B[1, 1]

B[1, 1] +B[0, 1]
Rn =

B[1, 1]

B[1, 1] +B[1, 0]

F1c =
2× Pc ·Rc
Pc +Rc

F1n =
2× Pn ·Rn
Pn +Rn

Finally, precision, recall, and F1-score are measured as P = Pc+Pn/2, R = rc+rn/2, and F1 = F1c+F1n/2.
Note that we decide to replace MUC (Vilain et al., 1995), another popular metric used by the CoNLL’12
shared task, with BLANC because both are link-based and BLANC takes singletons into consideration,
which consume a large portion of our dataset (over 20%), whereas MUC does not so that BLANC is
more appropriate for our case. It is worth mentioning that a separate confusion matrix Bd is constructed
for each document d such that B =

∑
d∈D Bd where Bd is based on links only in d. This prevents

potential inflation of B[1, 1], which could become huge if it were to be measured across the entire dataset.
BLANC can also be used to evaluate plural mentions without any modification because each link is treated
independently regardless of its mention type in this metric.

5 Entity Linking

5.1 Multi-Task Learning
The task of character identification requires each mention to be identified by the names of actual characters
(e.g., Monica, Ross in Table 2). Figure 2 gives the overview of our entity linking model, which adapts
the underlying architecture from the entity linking model proposed by Chen et al. (2017) and generalizes
it to jointly handle singular and plural mentions. It assumes the output from ACNN in Section 4.2 such
that for each mention mi, the embedding of that mention and the set of clusters {C1, . . . , Ck} that mi

belongs to are taken. For each cluster Ca, ACNN gives the list of mention pair embeddings mCa
i,j , where

mi,mj ∈ Ca. Similarly to the previous model, the cluster embedding and the cluster pair embedding are
created. Unlike the previous model, our model creates multiple cluster and cluster pair embeddings when
m is assigned to more than one cluster during coreference resolution so that the average vectors of those
embeddings are generated, which get concatenated with the mention embedding of mi and passed onto
the fully-connected layers for prediction.
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Figure 2: The overview of our entity linking model using multi-task learning.

The final ReLu layer is fed to two output layers optimized by softmax and sigmoid functions, respectively.
The dimension of the output layer from softmax is |E|+ 1 where E is the set of all entities such that each
cell represents an entity and the extra cell gives an indication of m being plural. When this extra cell
is predicted, the output layer from sigmoid is used, whose dimension is |E|, to predict multiple entities
for m. Since the sigmoid function optimizes each cell to be between 0 and 1, any entity whose score is
greater than 0.5 is taken. These two output layers are optimized jointly, treating the resolution of singular
and plural mentions as multi-task learning.

5.2 Evaluation Metrics

Two metrics are used to evaluate the entity linking models. One is the micro-average F1 score whose
precision (P ) and recall (R) are measured as follows (D: a set of documents, Es/om : the set of entities
found for m by the system (s) or the oracle (o)):

P =

∑
d∈D

∑
m∈d |Esm ∩ Eom|∑

d∈D
∑

m∈d |Esm|
R =

∑
d∈D

∑
m∈d |Esm ∩ Eom|∑

d∈D
∑

m∈d |Eom|

The micro-average F1 tends to weigh more on frequently occurring entities so it is useful if you need to
know the raw prediction power of your model. The other is macro-average F1 score that measures the
micro-average F1 for each entity e, say F e1 , and takes the average, that is 1/|E|

∑
e∈E F

e
1 where E is the

set of all entities. The macro-average F1 treats all entities evenly so it is useful if you need to optimize
your model to make correct predictions for as many entities as possible.

6 Experiments

6.1 Configuration

Experiments are conducted on two tasks, coreference resolution and entity linking. For both tasks, models
from Chen et al. (2017) are used to establish strong baseline (CZC). Since they take only singular mentions,
a pseudo-singular dataset is created where exactly one entity is chosen for each plural mention based on
the closest matching previous speaker or if there is none, chosen randomly. Thus, the models trained on
this pseudo-singular dataset always predicts one entity per mention. These models are compared to our
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models described in Sections 4 and 5 (Ours). Additionally, CZC models are evaluated on the singular-only
dataset (S-only) where all plural mentions are filtered out, which should give an intuition of how much
impact the addition of plural mentions has on the predictions for singular mentions. All results reported
from these experiments are averages of three randomly initialized trials. The corpus in Section 3 is split
into training, development, and evaluation sets, where all models are tuned on the development set and the
best models are tested on the evaluation set. Episodes 1–19, 20–21, and the rest from each season are
used to generate the training, development, and evaluation sets, respectively.

6.2 Coreference Resolution
Table 6 shows that our coreference model is capable of learning to handle plural mentions effectively
while significantly outperforms the CZC model. The CZC model is trained on the pseudo-singular dataset
but evaluated on the full dataset by the metrics adjusted for plurals (Section 4.3) such that it is penalized
for not predicting multiple entities for plural mentions. Both the B3 and BLANC metrics show a similar
trend that the CZC and our models achieve higher precision and recall, respectively, whereas our model
dominates both precision and recall for the CEAFφ4 metric. The remarkable gap in performance between
these two models signals that our model finds referents for plural mentions well without compromising its
ability to find referents for singular mentions. The S-only model gives comparable performance as the
one reported by Chen et al. (2017), ensuring that our implementation of the CZC model is robust.

B3 CEAFφ4 BLANC
P R F1 P R F1 P R F1

CZC 84.5±0.6 60.7±0.2 70.6±0.3 49.0±0.8 63.7±0.3 55.4±0.6 81.2±1.0 73.3±0.4 75.9±0.5
Ours 83.8±1.5 67.0±2.7 74.4±1.1 52.1±1.2 68.0±0.6 59.0±0.5 80.4±0.8 76.5±1.2 78.0±0.6

S-only 84.3±1.2 71.9±1.4 77.6±1.0 54.5±1.3 71.8±1.0 62.0±0.6 84.3±1.6 80.4±1.1 82.1±1.3

Table 6: Coreference resolution results on the evaluation set (±: standard deviation).

6.3 Entity Linking
Tables 7 and 8 show the micro and macro average scores achieved by all models. For the micro average,
the trend is clear across all types of mentions such that the CZC and our models achieve higher precision
and recall, respectively. The precision gap for micro average is quite small, signaling that there is no
significant loss of ability in entity resolution for singular mentions in our model. For the macro average,
our model completely dominates except for the precision of plural mentions, which implies that our model
is more generalizable across different entities regardless of their frequency rates in the training set. The
recall of micro-average for plural mentions shows relatively high standard deviations for our model. We
expect that running more trials of experiments potentially mitigates this variance, which we will explore.
It is expected for the micro average scores to be higher than the macro average scores because the micro
average favors frequently appearing entities such that it is possible to achieve high micro average scores
without handling infrequent entities well, whereas that is not the case for the macro average.

Singular Plural All
P R F1 P R F1 P R F1

CZC 72.8±0.5 72.8±0.5 72.8±0.5 60.8±2.4 19.7±0.8 29.8±1.2 71.8±0.4 61.4±0.4 66.2±0.4
Our 72.7±0.3 72.9±0.4 72.8±0.4 59.9±1.7 32.2±4.8 41.7±4.1 71.1±0.4 64.2±1.3 67.4±0.8

S-only 73.7±0.6 73.7±0.6 73.7±0.6

Table 7: Micro-average scores for entity linking on the evaluation set (±: standard deviation).

Table 9 shows the micro average F1 score for each entity. The top-15 frequently appearing characters are
considered to be known entities, whereas all the other secondary characters are considered OTHER, which
composes about 26.8%. Our model dominates all the main characters (the first six entities) and OTHER,
together of which gives about 90% of the entire annotation. Given that these results are achieved by using
automatically generated clusters from our coreference resolution models, they are encouraging.
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Singular Plural All
P R F1 P R F1 P R F1

CZC 72.9±5.0 55.5±1.0 59.4±2.3 37.9±1.0 10.5±0.3 14.0±0.3 71.1±4.6 46.2±1.1 53.2±1.9
Our 75.8±1.4 56.9±1.1 61.8±1.1 34.8±5.0 15.8±1.7 20.5±1.6 74.2±1.4 48.8±1.5 55.5±0.8

S-only 73.3±2.5 55.4±1.6 59.6±2.3

Table 8: Macro-average scores for entity linking on the evaluation set (±: standard deviation).

Ro Ra Ch Mo Jo Ph Em Ri Ca Be Pe Ju Ba Ja Ka OT GN

CZC 69.2 77.5 69.0 71.3 71.5 79.0 63.4 76.4 31.3 41.8 56.4 09.3 49.2 11.8 24.7 58.2 45.1
Our 71.9 78.4 71.5 72.2 72.3 79.7 61.5 82.0 29.6 41.8 54.8 12.8 45.0 18.2 47.3 59.2 45.1

S-only 78.3 86.5 78.8 81.7 78.3 88.8 69.2 83.9 40.3 39.3 59.2 16.1 39.8 24.8 35.2 64.0 49.7
% 12.65 11.58 11.16 9.71 9.33 8.61 0.98 0.96 0.71 0.64 0.57 0.44 0.34 0.28 0.26 26.79 5.01

Table 9: Entity linking results on evaluation set per character.Ro: Ross, Ra: Rachel, Ch: Chandler,
Mo: Monica, Jo: Joey, Ph: Phoebe, Em: Emily, Ri: Richard, Ca: Carol, Be: Ben, Pe: Peter, Ju: Judy,
Ba: Barry, Ja: Jack, Ka: Kate, OT: OTHER; GN: GENERAL.

7 Conclusion

In this paper, we explore a new paradigm for handling plural mentions in two resolution tasks, coreference
resolution and entity linking, on multiparty dialogue. We address this challenge by showing the inadequacy
of traditional approaches in handling plural mentions, and present an innovative approach to overcome
the shortcomings of existing methods for these tasks at hand. For resource creation, we expand upon the
Character Identification corpus and augment it with the manual annotation of plural mentions (Section 3).
For linguistic analysis, we propose a novel transition-based algorithm and evaluation metrics to process
different types of mentions for coreference resolution (Section 4). For NLP engineering, we introduce a
neural-based entity linking model using multi-task learning that comprehensively handles plural mentions
(Section 5). The results of our models demonstrate significant improvements on these tasks, implying the
feasibility of our approach to handle plural mentions (Section 6).

To the best of our knowledge, this paper provides the first extensive framework for resolving referents
for plural mentions, which is a critical problem in any resolution task. Further work includes improving
the quality of the dataset as well as expansion of its size, and addressing the issue of extracting global and
external features for complete coreference and entity resolution for both singular and plural mentions. All
resources including the annotated corpus and source codes are publicly available through the Character
Identification project: https://github.com/emorynlp/character-identification.5
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