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Abstract

Recent neural network methods for zero pronoun resolution explore multiple models for generat-
ing representation vectors for zero pronouns and their candidate antecedents. Typically, contex-
tual information is utilized to encode the zero pronouns since they are simply gaps that contain
no actual content. To better utilize contexts of the zero pronouns, we here introduce the self-
attention mechanism for encoding zero pronouns. With the help of the multiple hops of attention,
our model is able to focus on some informative parts of the associated texts and therefore pro-
duces an efficient way of encoding the zero pronouns. In addition, an attention-based recurrent
neural network is proposed for encoding candidate antecedents by their contents. Experiment
results are encouraging: our proposed attention-based model gains the best performance on the
Chinese portion of the OntoNotes corpus, substantially surpasses existing Chinese zero pronoun
resolution baseline systems.

Title and Abstract in Chinese

基于注意力神经网络模型的零指代消解研究

传统的关于零指代的方法提出了多种关于先行语和零代词的表示模型。这些模型中，研
究者们用零代词的上下文信息来帮助表示缺省的信息。为了更好的帮助建模零代词，我
们提出了一种基于注意力机制的神经网络模型，通过注意力模型来获取更有表示性信
息的上下文信息。实验结果表明：我们的方法能够有效提升效果，并在中文OntoNotes
5.0数据集上取得了最好的结果，超越了现有的基准系统。

1 Introduction

In natural languages, expressions that can be deduced contextually by people are frequently omitted in
texts. This is special the case in pro-dropped languages, such as Chinese, where a kind of anaphoric
expression is frequently eliminated. A zero pronoun is a gap in the sentence that is found when a pho-
netically null form is used to refer to a real-world entity (Chen and Ng, 2016). We here show a case of
zero pronouns from the OntoNotes-5.0 dataset.

这次地震 φ1 有一些房屋塌的 ,这里面如果有建房的质量问题， φ2 是要追究
责任的。

In this earthquck φ1 some rooms collapsed, if there exsit some room quality issues, φ2 will
need to call to account.

We use φ to represent the zero pronouns in this example. Among these zero anaphoras, we can assign
the mention “政府/the government” that appears in leading text, to be the antecedent of φ2 while there
are no such mentions for φ1. Hence, φ2 is an anaphoric zero pronoun, and φ1 is the un-anaphoric case.
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With the fact that zero pronouns are gaps that have no text, it is almost impracticable to representant
the zero pronouns by themselves. This issue has received increasingly attention. In recent time, deep
neural network methods for Chinese zero pronoun resolution (Chen and Ng, 2016; Yin et al., 2017a;
Yin et al., 2017b) have been proposed and are intended to encode zero pronouns into the vector-space
semantic by additional elements. Chen and Ng (2016) propose a neural network model that learns to
encode the anaphoric zero pronoun by using the leading word and governing verb, which leads to the
insufficient text issue. To better use associated text information for expressing zero pronouns, Yin et al.
(2017a) present the ZP-centered-LSTM architecture that learns to encode zero pronouns by their text
words. However, it could bring with some defects: their model regards all the words in the sentence
equally, thus fails in capturing informative parts of the sentence. As described in (Chen and Ng, 2016),
the clause information of a zero anaphora is very important in explaining these gaps, it is a natural way
of modeling zero pronoun by focusing on some important texts. For instance, in sentence “two trains
in ten weeks ago φ crashed in their way to the southern German countryside”, “crashed in their way”
is an important clue for the zero pronoun but “several weeks ago” is not. Under this consideration, a
systematic solution that can encode zero pronouns by focusing on informative parts of associate texts is
the better choice. Besides, another important issue for the task of zero pronoun resolution is modeling
candidates. Recent researches use context and content words to encode candidates (Yin et al., 2017a; Yin
et al., 2017b). Typically, these words are modeled in a sequential way by recurrent neural networks. We
argue that some of the words in noun phrases contains more important information than others, a need
that leads to the usage of attention mechanism.

To alleviate the above-mentioned issues, in this paper, we propose a novel attention-based neural
network model to deal with the task. Following existing neural network work for Chinese zero pronoun
resolution (Chen and Ng, 2016; Yin et al., 2017a; Yin et al., 2017b), we focus on anaphoric zero pronoun
resolution task, introducing a pair-wise model to resolve anaphoric zero pronouns. For some natural
language processing tasks (Mnih et al., 2014; Tang et al., 2016), people investigate to apply attention
mechanism on top of the convolutional neural network or recurrent neural network to introduce an extra
source of information to guide the modeling of useful information. However, since zero pronouns are
simple gaps that have no such kind of extra information, the above-mentioned attention mechanism can
rarely be directly practiced for modeling these gaps. Inspired by (Lin et al., 2017), we here investigate
the usage of a self-attentive mechanism for encoding the zero anaphoras. With the help of self-attentive
mechanism, our model is able to effectively focus on informative texts of the zero pronouns and therefore
captures essential information on encoding the zero pronouns. In addition, on purpose of modeling
informative texts of mentions (noun phrases), we propose an attention-based recurrent neural network to
build the mention encoder. With the help of representative vector of zero anaphoras, our model is able
to effectively focus on important parts of mentions and therefore brings an efficient way of expressing
candidates at the semantic level. Empirically, we show that our method has brought performance gains
in baselines, achieving great performance on the widely used OntoNotes-5.0 dataset. Our contributions
are three-fold:

• By utilizing the self-attention mechanism, our model is able to focus on informative parts of asso-
ciate texts when modeling zero pronouns, leading to an effective way of capturing useful informa-
tion for interpreting the zero pronouns;

• Our model is capable of modeling candidate antecedents by their informative words with the help
of zero pronouns, which in return brings a better way of explaining candidate antecedents;

• We show that our model substantially surpasses all baseline systems, gains state-of-the-art perfor-
mance on the benchmark dataset.

In Section 2, we will discuss related work on zero pronoun resolution. Next, we will intorduce our
attention-based neural network model in Section 3. In Section 4, empirical evaluation results are shown.
And finally, we conclude in Section 5.
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2 Related Work

In this section, we give a brief summary of early efforts for zero pronoun resolution both for Chinese and
other languages.

2.1 Zero Pronoun Resolution for Chinese
Converse (2006) is the first rule-based study that integrate Hobbs-algorithm into the resolution of zero
pronoun in the Chinese Treebank (Xue et al., 2005). After that, a variety of learning-based methods
have been investigated. Zhao and Ng (2007) use the learning-based model to locate and resolve zero
anaphoras. They investigate a serious of features and apply the decision-tree algorithm to train the
classifier. To better capture the syntactic-level information, Kong and Zhou (2010) introduce the context
sensitive tree-kernel unified framework for zero anaphor resolution. On the base of Zhao and Ng (2007),
Chen and Ng (2013) further investigate their model, introducing two extensions to the resolver, namely,
novel features and zero pronoun links. However, these work deeply rely on annotation dataset. To
alleviate this issue, Chen and Ng (2014) present the first unsupervised model that first convert zero
anaphoras into ten pre-defined pronouns and then apply a ranking-based pronoun resolution model to
select antecedent mentions. Chen and Ng (2015) build a discourse-aware model that can jointly locate
and resolve zero anaphoras.

More recently, with the advance of neural network techniques, deep-learning-based methods are in-
troduced and have been demonstrated to be effective for this task. Chen and Ng (2016) first introduce
a feed-forward neural network framework, where zero anaphoras are encoded by its previous word and
headword. However, their model overlooks context of a zero anaphora, which inevitably misses some
valuable information. Naturally, some works try to alleviate this issue by investigating information from
associate texts. Yin et al. (2017a) introduce a novel memory-based network neural network model that
learns to encode zero anaphoras by its texts and antecedent mentions. They take advantage of multi-
hops architecture, producing abstract information from external-memories as hints for explaining zero
anaphoras. Yin et al. (2017b) focus on encoding global-information for candidates, where a hierarchical
candidate encoder is introduced that learns to model the candidates. Liu et al. (2017) investigate the issue
of generating pseudo training-data for the task of zero anaphora resolution. They use a novelty two-step
training strategy that helps to overcome the diversity between the generated pseudo training-data and
the real one. Even though these above-mentioned methods can reveal the semantic of zero anaphoras
by its context, they regard all the words equally, overlooking the diversity of different words. In this
paper, we focus on exploring an effective way of modeling zero pronoun by using the associated texts.
More specifically, we integrate a novel self-attentive mechanism, which provides our model an ability to
focus on multi-aspects text, benefiting the encodings of zero anaphoras. In addition, by employing an
attention-based technique for modeling candidates, our model learns to encode more informative parts
of the mentions. All these bring advantages to the resolution of zero pronouns.

2.2 Zero Pronoun Resolution for other Languages
There has been a variety of work on zero pronoun resolution for other languages besides Chinese, such as
Korean and Japanese. These methods could be categorized as rule-based and learning-based. Ferrández
and Peral (2000) investigate a rule-based method that can encode preferences for candidates for resolving
zero anaphoras in Spanish. In recent time, learning-based methods (Han, 2006; Iida and Poesio, 2011;
Isozaki and Hirao, 2003; Iida et al., 2006; Iida et al., 2007; Sasano and Kurohashi, 2011; Iida and Poesio,
2011; Iida et al., 2015; Iida et al., 2016) have been well studied. Iida et al. (2016) present a novel CNN-
based deep neural network model for intrasentential subjective zero anaphora resolution in Japanese. As
clues, they use both the surface-word and the dependency tree-structure of a sentence. Their model gains
higher precision, which is needed for real-world natural language processing (NLP) applications.

3 Methodology

We introduce an attention-based neural network model for anaphoric zero pronoun resolution. Compared
to the prior studies that have the underutilized context of zero pronouns, we investigate an attention
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mechanism that helps to effectively capture useful information from associate texts. We here present
the methodology in details, which include the preliminary, the architecture of proposed attention-based
neural network and training objective of the model.

RNN RNN RNN
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RNNpre RNNpre RNNpre
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RNNolRNNfolRNNfol
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Figure 1: Framework of the proposed attention-based neural network for zero pronoun resolution. The
wi for zero pronoun part means the i-th word in the associated sentence, wzp−i is the i-th word before
the zero pronoun and wzp+i is the i-th word behind the zero pronoun. wnpi is the i-th word of the noun
phrase. After generating the representative vector of zero pronoun and candidate mention, we generate
its resolution score by going through two tanh layers.

3.1 Preliminary

In the first place, we select its candidate mentions from the associated texts. More specifically, we
choose the noun phrases that appear within two sentences from the zero anaphora to be the candidates.
In addition, we choose the strategy used in prior approaches (Chen and Ng, 2016; Yin et al., 2017a) for
Chinese zero pronoun resolution, reserving those mentions that are max noun phrases or modifier noun
phrases as candidates. By doing so, we can recall most (about 98%) of the antecedents with a small loss.
Then, what we desire the resolver to do is to accurately recognize antecedents for zp from its candidates
list NP = {np1, np2, ..., npn}.

Our model is basically a pair-wise model (Zhao and Ng, 2007; Chen and Ng, 2016; Yin et al., 2017b).
For each candidate mention of zp, we classify it into two classifications, namely, “corefer” that means
the candidate is the antecedent of the zero pronoun; or otherwise, “un-corefer”. We build the classifier
by applying the attention-based techniques. More specifically, an attention-based neural network model
is utilized that generates the coreference score of each zero pronoun-candidate antecedent pair.

3.2 Attention-based Neural Network Model

In this part, we introduce our attention-based neural network for anaphoric zero pronoun resolution in
detail. The architecture of our model is shown in Figure 1. For an anaphoric zero pronoun zp, we convert
the input instances into real-valued vectors by using its context words. With the help of the self-attentive
mechanism, our model learns to represent zero pronouns by focusing on different parts of contexts. In
this way, we generate the representative vector of zp as vzp. In addition, when dealing with candidate
mentions, our model learns to encode the candidate mentions by using its informative content words. We
here manipulate the vzp as an external vector to attend to the informative parts of its candidate mentions.
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By doing so, our model captures the important information of each candidate according to the zp. After
that, we generate the representative vectors of candidates as {vnp1 , vnp2 , ..., vnpn}. Lastly, we feed the
representative vectors of the candidate and zero pronoun to a two-layer neural network, generating the
resolution score for each zero pronoun-candidate antecedent pair. After that, we obtain the resolution
probability for each candidate. The candidate mention with the biggest probability is regarded as the
final result. Basically, our model involves three modules, namely, a zero pronoun encoder; a candidate
antecedent encoder; and a feed-forward neural network that learns to score each candidate antecedent.

3.2.1 Modeling Zero Pronoun
Inspired by Lin et al. (2017), we investigate the self-attention mechanism when modeling zero anaphoras.
In practice, we use two recurrent neural networks (RNNs) to encode the preceding and following texts
of the zero anaphora (Yin et al., 2017a). The last hidden vectors of these two RNNs are concatenated
as the vector-space semantic of the zero pronoun. On top of the employed recurrent neural network
architecture, we apply the proposed attention technique that helps the model to capture the informative
parts of associated texts.

Especially, our self-attention mechanism provides the attention-weight vectors for hidden states of the
employed RNN architectures. We then dot these attention-weight vectors with counterpart hidden states
and use the weighted summation vector as the representative vector for the zero pronoun. For a zero
pronoun, we map its associated text words as sequential embeddings.

Contextprecedding = (w1, w2, ..., wzp−1) (1)

Contextfollowing = (wzp+1, wzp+2, ..., wn) (2)

where wi is a d dimensional embedding for the ith word in the sentence. After that, we generate the
representative vector of the preceding and the following text by using two separate RNNs:

hpret = RNNpre(wt, h
pre
t−1) (3)

hfolt = RNNfol(wt, h
fol
t−1) (4)

where RNNpre and RNNfol are two employed RNNs that model the precedding and following context
of the zero pronoun independently. After that, we get the hiddent vector for each word, which has the
dimension of u. We represent all the hidden states of RNNpre and RNNfol as Hpre ∈ Rnpre×u and
Hfol ∈ Rnflo×u, seperately:

Hpre = {hpre1 , hpre2 , ..., hprenpre
} (5)

Hfol = {hfol1 , hfol2 , ..., hfolnfol
} (6)

We then apply the self-attention mechanism, which computes linear-combinations of the hidden vec-
tors inHpre andHfol. The attention mechanism takesHpre (orHfol) as the inputs and produces a matrix
of attention-weight Apre (Afol):

Apre = softmax(W pre
2 tanh(W pre

1 HT
pre)) (7)

Afol = softmax(W fol
2 tanh(W fol

1 HT
fol)) (8)

where W1 is a weight matrix with a shape of da-by-u and W2 is in shape of r-by-da; r represents the
number of hops of attention we choose. The softmax() is performed along the second dimension of
its input. In this way, the attention matrix A could be seen as a multi-hope attention matrix. Comparing
with the single-attention matrix, such a mechanism enables our model to focus on different parts of the
contexts, bringing a more efficient way of modeling sentence-level information for the zero pronoun at
the semantic level.

We get the r weighted sums by multiplying the attention matrix A and hidden states H , regarding the
resulting matrix as the representative vector of the zero pronoun’s preceding and following texts:

Mpre = ApreHpre (9)
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Mfol = AfolHfol (10)

Subsequently, we obtain the representative vectors of the associated text of the zero pronoun by averaging
the row vectors in each representative matrix (namely, Mpre and Mfol). After that, these two vectors are
concatenated as the representative vector of the zero pronoun. Our experiments show that the attention-
based model leads to a considerable improvement from the non-attentive model, indicating that the self-
attention mechanism can help to better encode the zero pronoun, focusing on informative parts of the
associated texts.

3.2.2 Modeling Candidate Antecedent

We here build the candidate antecedent encoder by using an RNN architecture, whose input is comprised
by the words in the candidate antecedent. In an effort to better align the more informative parts of
phrases to the anaphoric zero pronoun, we here integrate an attention technique into our model. In
this work, we use a gating-function as our attention mechanism. Especially, given the representative
vector of the anaphoric zero pronoun v(zp), the output vector and input embedding vector of RNN in the
candidate mention part at time t, h(np)t and et, the attention mechanism computes a gate as: attentiont =
att(et, h

(np)
t , v(zp)), where att is defined as:

st = tanh(W (att) · [et;h(np)t ; v(zp)] + b(att)) (11)

attentiont =
exp(st)∑m

t′=1
exp(st′ )

(12)

whereW (att) and b(att) are parameters to be learned,m is the number of words in the mention. After that,
we regard the averaged attention-hidden vector as the vector-space semantic of the candidate antecedent,
which takes considerations of a hierarchy of historical semantic:

ṽnp =
m∑
i=1

h
(np)
i ∗ attentioni (13)

3.2.3 Calculating Resolution Scores

After generating the representive vector of zero pronoun, vzp and vectors of its candidates
{ṽnp1 , ṽnp2 , ..., ṽnpn}, we calcualte the resolution score for each zero pronoun-candidate antecedent by
using a two-layers feed-forwd nerual network. Taking vzp and its i-th candidate mention vnpi as inputs,
our model calcuate the resolution score by going through two tanh layers:

sj = tanh(W
(s)
i · sj−1 + b

(s)
j ) (14)

where s0 = [v(zp); v(npi); v
(fe)
i ], W (s) and b(s) are the parameters of this feed-forward neural network.

In addition, to better capture the syntactics, position and other relations between an anaphoric zero pro-
noun and its candidates, we encode hand crafted features (v(fe)) as inputs to our neural network model.
We utilize the features from exsiting work on zero anaphora resolution (Chen and Ng, 2013; Chen and
Ng, 2016), map them into vectors to estimate the resolution score for the zero pronoun-candidate mention
pair as:

scorei =W (sco) · s−1 + b(sco) (15)

where scorei denotes the probability of the i-th candidate mention (npi) being predicted to be the an-
tecedent, and s−1 is the output vector of the second hidden layer. After that, we obtain the resolution
scores for all the candidates {score1, score2, ..., scoren}. The candidate mention with the biggest score
is eventually selected to be the antecedent of the anaphoric zero pronoun.
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3.3 Training Objective

Same as Yin et al. (2017b), we train our model by minimizing the cross entropy error of coreference
classification. The training objective is defined as:

loss = −
∑
t∈T

∑
np∈NP

δ(zp, np) log(P (zp, np)) (16)

where T represents all training instances, NP is the candidate-set of the anaphoric zero pronoun
zp; δ(zp, np) represents the coreference of zp and its candidate mention np: if they are coreference,
δ(zp, np) = 1 or otherwise, δ(zp, np) = 0.

4 Experiments

4.1 Experiment Setup

4.1.1 Evaluation Metrics
Same as early work on Chinese zero pronoun resolution (Zhao and Ng, 2007; Chen and Ng, 2016; Yin
et al., 2017a; Yin et al., 2017b), we manipulate to evaluate the quality of our model by Recall, Precision
and F-score (denoted as F). More specifically, recall and precision are defined as:

RecallRes =
# Res Hit

# AZP in Key
(17)

PrecisionRes =
# Res Hit

# AZP in Predictions
(18)

where a “Res Hit” means that the anaphoric zero pronoun is successfully identified and successfully re-
solved to a candidate mention that is in the same coreference chain as in the golden answer key annotated
in the dataset.

4.1.2 Experiment Settings
Same to existing work on Chinese zero pronoun resolution (Chen and Ng, 2016; Yin et al., 2017a; Yin et
al., 2017b), we run experiments on the Chinese part of the OntoNotes-5.0 dataset1 used in the Conll-2012
task. Because zero pronoun coreferences are only annotated in the training and development set, we thus
train our model on the training dataset and evaluate the model on the development dataset. Table 1 is the
statistics of our dataset.

Documents Sentences Words Anaphoric Zero Pronouns
Training 1,391 36,487 756K 12,111

Test 172 6,083 110K 1,713

Table 1: Statistics on the training and test dataset.

We use the recent zero pronoun resolution systems for Chinese as our baselines, namely, a learning-
based model (Zhao and Ng, 2007); an unsupervised method (Chen and Ng, 2015); and others are deep-
learning-based methods (Chen and Ng, 2016; Liu et al., 2017; Yin et al., 2017a; Yin et al., 2017b). As we
are focusing on the anaphoric zero pronoun resolution, we run experiments by directly employing golden
parse tree and golden anaphoric zero pronouns that are annotated in the dataset. In addition, documents in
the datasets are from 6 sources: BN (Broadcast News), NW (Newswire), BC (Broadcast Conversation),
WB (Web Blog), TC (Telephone Conversation) and MZ (Magazine). We report the overall results on
the complete test dataset and also the result from the different source of the dataset.

1http://catalog.ldc.upenn.edu/LDC2013T19
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NW (84) MZ (162) WB (284) BN (390) BC (510) TC (283) Overall
Zhao and Ng (2007) 40.5 28.4 40.1 43.1 44.7 42.8 41.5
Chen and Ng (2015) 46.4 39.0 51.8 53.8 49.4 52.7 50.2
Chen and Ng (2016) 48.8 41.5 56.3 55.4 50.8 53.1 52.2
Yin et al. (2017b) 50.0 45.0 55.9 53.3 55.3 54.4 53.6
Yin et al. (2017a) 48.8 46.3 59.8 58.4 53.2 54.8 54.9
Liu et al. (2017) 59.2 51.3 60.5 53.9 55.5 52.9 55.3
Our model 64.3 52.5 62.0 58.5 57.6 53.2 57.3

Table 2: Experiment results on the test dataset, including the results on the overall dataset and different
sources of the dataset. The first six columns show the results on the different source of documents and
the last is the overall result. The strongest F-score in each row is in bold. The parenthesized number
beside a source’s name is the number of anaphoric zero pronouns in that source.

4.2 Hyperparameter
To tune the hyperparameters of our model, 20% of the training dataset are reserved as a held out de-
velopment set. Such a strategy is also utilized in the baseline systems (Chen and Ng, 2016; Yin et al.,
2017a). We randomly initialize the parameters and minimize the loss-function by Adagrad (Duchi et
al., 2011) with learning-rate 0.003. The input embedding vector dimension is 100, the dimension of
hidden layer of RNNs (namely, the u) is 256 and da is 128. Besides, we fix the dimensions of two
hidden layer of the feed-forward neural network to 256 and 512. We add the dropout (Hinton et al.,
2012) with a probability of 50% on the output of each layer. The code for this work is released in
https://github.com/qyyin/AttentionZP.git.

4.3 Experiment Results
We report the experiment results (F-score) of our model and the baselines in Table 2. The number of
hops of attention is fixed to be 2 (r = 2), where we gain the best result. We report the overall results on
the complete test dataset and also the results for each source of documents. As we can observe that our
model gains 57.3% in overall F-score, which significantly beats the best baseline system (Liu et al., 2017)
by 2.0%. In addition, we run experiments on different sources of test corpus, as shown in the first six
columns Table 2. The parenthesized number beside a source’s name represents the number of anaphoric
zero pronouns in that source. We can observe that our model improves performance significantly in 5
of 6 sources of the dataset. More specifically, our model beats the best baseline (Liu et al., 2017) on all
documents in F-score: by 5.1% (source NW), 1.2% (source MZ), 1.5% (source WB), 4.6% (source BN),
2.1% (source BC) and 0.3% (source TC). The main reason why our model gains worse performance on
source “TC” lie in the short length of text in this source, which makes our model hard to learn to capture
useful information for expressing the zero pronouns. Besides, there are full of numerous verbose words
such as “呃/Er”, “哟/Yo”, which brings difficulties for our model to accurately encode a zero pronoun by
focusing on its informative contexts. More efforts could be performed in order to encode the associated
text of a zero pronoun in a more efficient way, modeling word-sequences beyond the sentence boundary,
for instance.

We show in Figure 2 the learning curve of our model on the development dataset. As we can observe,
after the first epoch, the F-score on the test dataset is about 46%, and it gradually grows to 52% after
about 30 iterations when performance starts to plateau. It is well accepted that modeling useful parts
of associated text play an important role in encoding the zero pronouns. By applying the self-attentive
mechanism, our model learns to focus on important parts of the contexts, revealing multi-aspect sentence-
level information in a more efficient way than those without attention. On the other side, by assigning
different attention to the words in a candidate mention with respect to the information of the counterpart
zero pronoun, our model learns to encode candidate mentions in a more natural way. Hence, both of
them bring benefit to selecting accurate antecedents, leading to better performance.

In addition, having multi-aspect sentence-level information is expected to afford more abundant in-
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Figure 2: Learning curve of our model on the development dataset.

formation about the encoded zero pronoun, we thus evaluate how the improvement can be brought by
tuning r in the self-attentive mechanism. We vary r from 2 to 6, as is shown in Figure3. We can observe
that the best performance is reached when r = 2. The results are not confusing because we are tried
to focus on the informative part for zero pronouns, and we cut the sentence into two separate parts that
are zero pronoun-centric, when r = 2 means to attend on totally 4 parts of the sentence, thus our model
performances well in this situation.
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Figure 3: Effect of tuning r for encoding zero pronouns.

For illustrating the effect of the proposed attention mechanism for zero pronoun and candidate men-
tions, we also run an experiment without applying the attention mechanism for both zero pronouns and
candidates, which is r = 0 in Figure 3. As we can observe that the performance drops by removing the
attention mechanism. For the model without the attentive mechanism, the performance drops by 0.9%
in F-score compared with that of the full model. Because that the proposed self-attentive mechanism for
zero pronoun brings our model an ability to access multi-aspect sentence-level information, removing
such an architecture unsurprising influences the results significantly. With an inspiration that not all the
words are equally important for explaining the mention, the performance of removing the attention for
candidate mentions is reasonable weak. All these show the benefit of our attention-based model.

Lastly, we give a case study to illustrate the power of our self-attentive mechanism, as is shown in
Figure 4. From the figure, we can tell that the model successfully focuses on informative parts of the
texts. Though there are redundancies between different hops of attention, our model can capture useful
information for explaining the zero pronoun (denoted as “*pro*” in the picture). Our model learns to
focus on the informative words such as “数字证书/digital certificate”, which is essential for expressing
the zero pronoun.
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a然 数字 c书 T 网上 dC 的 c明 ， 但 *pro* 并不 能 作为 文件 c书  存P 在 
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Figure 4: Heat maps of our attention-based model. In this case, we show the detailed attention weight
taken by the attention matrix taken by the attention matrix (r = 2). Darker color means higher weight.

5 Conclusion

We proposed a novel attention-based neural network model for Chinese zero pronoun resolution. Using
recent advances in attention mechanism, we developed a self-attentive architecture for modeling zero
pronouns, which enables our model to focus on parts of the associated texts. In addition, we also inves-
tigated an attention-based candidate antecedent encoder that learns to model important parts of the noun
phrases with respect to the representative vector of zero anaphoras. Our experiments demonstrated that
our method significantly surpasses the state-of-the-art on a benchmark dataset for anaphoric zero pronoun
resolution. Future work will evaluate our model on other natural language processing problems, such as
anaphora resolution for Chinese and English. We also plan to investigate training the anaphora-specific
embedding that could better reveal the descriptive attribute for the zero anaphoras.
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