
Proceedings of COLING 2016, the 26th International Conference on Computational Linguistics: System Demonstrations,
pages 223–227, Osaka, Japan, December 11-17 2016.

YAMAMA: Yet Another Multi-Dialect Arabic Morphological Analyzer

Salam Khalifa, Nasser Zalmout and Nizar Habash
Computational Approaches to Modeling Language Lab

New York University Abu Dhabi, UAE
{salamkhalifa,nasser.zalmout,nizar.habash}@nyu.edu

Abstract

In this paper, we present YAMAMA, a multi-dialect Arabic morphological analyzer and dis-
ambiguator. Our system is almost five times faster than the state-of-the-art MADAMIRA system
with a slightly lower quality. In addition to speed, YAMAMA outputs a rich representation which
allows for a wider spectrum of use. In this regard, YAMAMA transcends other systems, such as
FARASA, which is faster but provides specific outputs catering to specific applications.

1 Introduction

? 	àAÖ �ßAK. PðX ú

	̄ ½J
Ê 	̄ @ 	á�
K. ij. 	J�
� Éë

hl synjH byn Âflyk fy dwr bAtmAn
Will Ben Affleck be a good Batman?
POS Diac Gloss

PV+PVSUFF_SUBJ:3MS bay∼ana He demonstrated
PV+PVSUFF_SUBJ:3FP bay∼an∼a They demonstrated
NOUN_PROP biyn Ben

ADJ bay∼in Clear
PREP bayn Between, among
NOUN_PROP bi+yan with a Yen

15 more analysis ...

Figure 1: Possible analyses produced by the mor-
phological analyzer of the word 	á�
K. byn. The correct
analysis is highlighted in gray.

The Arabic language poses many challenges for
Natural Language Processing (NLP). First, Ara-
bic is morphologically rich, having a large num-
ber of inflections per lemma. Secondly, Arabic
is orthographically ambiguous, having about 12
full morphological analyses per word on aver-
age. Finally, Arabic has a number of linguistic
varieties among which Modern Standard Ara-
bic (MSA) is the official primary written stan-
dard with numerous resources, while the other
varieties are the unofficial primarily spoken Di-
alects of Arabic (DA). For more on Arabic NLP,
see (Habash, 2010). Table 1 presents an exam-
ple that showcases the aspect of morphological
ambiguity which is shared across all varieties of
Arabic.1

Previous efforts on morphological analysis and disambiguation have led to the creation of a number
of state-of-the-art tools with high accuracy, such as MADAMIRA (Pasha et al., 2014). MADAMIRA
produces a rich output (diacritization, tokenization, part-of-speech (POS), lemmatization, gloss, and all
inflected features), but it is slow. Other systems such as FARASA (Darwish and Mubarak, 2016) are very
fast but focus on specific types of output with high quality performance (tokenization). Clearly, there is
always a tradeoff between speed, quality and richness. Our system, YAMAMA (Yet Another Multi-
Dialect Arabic Morphological Analyzer; Arabic �éÓAÖß
 ‘Barbary Dove’), is an alternative to MADAMIRA
and FARASA: it offers a faster performance than MADAMIRA but with all of MADAMIRA’s rich
output at a reasonable tradeoff of quality that varies depending on the specific feature.2

2 Related Work

There has been a considerable amount of work on MSA and DA morphological analysis, disambigua-
tion, POS tagging, tokenization, lemmatization and diacritization. One of the most notable efforts is
MADAMIRA (Pasha et al., 2014). MADAMIRA produces a rich feature set for each word, containing

1Arabic transliteration is presented in the Habash-Soudi-Buckwalter scheme (Habash et al., 2007).
2To obtain YAMAMA (Version 1.0), go to http://camel.abudhabi.nyu.edu/resources/.

223



more than 14 morphological and lexical features. It also provides different tokenization schemes. Addi-
tionally, MADAMIRA has two modes for MSA and Egyptian Arabic (EGY). The speed of MADAMIRA
however is relatively slow (420 words/sec in stand-alone mode, and 1,013 words/sec in server mode) es-
pecially for NLP tasks where speed may be critical. Recently, Darwish and Mubarak (2016) and Abdelali
et al. (2016) presented a new Arabic segmenter, FARASA. They reported much faster running times than
MADAMIRA with similar accuracy on toekniztion. FARASA produces word segmentations only as
opposed to MADAMIRA’s richer output; and it currently does not handle any Arabic dialect. Our sys-
tem, YAMAMA, uses some components from MADAMIRA, in particular the morphological analyzers
(out-of-context readings) but has its own disambiguation models. This allows YAMAMA to maintain
the richness of MADAMIRA, but increase the speed. The disambiguation modeling components are
inspired by FARASA’s design. In this paper, we compare to both systems in terms of quality and speed.

3 YAMAMA

Motivation We were motivated by the FARASA approach (Darwish and Mubarak, 2016; Abdelali et
al., 2016). FARASA achieves very high tokenization accuracy at a very high speed by not using any con-
text. It relies on simple probabilistic models of stems, prefixes, suffixes and their combinations. While
this approach will be limiting for complex tasks such as POS tagging, it is sufficient for tokenization,
particularly when it comes to specific applications such as machine translation (MT) and information
retrieval (IR) (Abdelali et al., 2016). Our goal for YAMAMA is to create a system that combines the rich
output of MADAMIRA with fast and simple out-of-context analysis selection comparable to FARASA’s
approach. For in-vocabulary words, YAMAMA uses a pre-computed maximum likelihood model to as-
sign an analysis to every word. For out-of-vocabulary words, YAMAMA ranks all of the analyses for
such words using two unigram language models of the lemma and the Buckwalter POS tag. In both
cases, YAMAMA reduces the text to types and makes decisions in type space, thus benefiting from the
low type to token ratio.3

Datasets For the training and development of our system, we used the same settings as those used for
MADAMIRA. For MSA, we used the Penn Arabic Treebank (PATB parts 1,2 and 3) (Maamouri et al.,
2004), and for EGY, the ARZ Treebank (Maamouri et al., 2014) . We followed the data splits recommend
by Diab et al. (2013) for both treebanks.

Maximum Likelihood Model We created the maximum likelihood model based on the ATB Train
dataset by selecting the most frequent analysis for each word token in the dataset. The selected analyses
are then stored in a dictionary that is loaded once the system starts running. The analyses include all the
morphological and lexical features as in MADAMIRA.

Analysis and Disambiguation For the OOV words, we run a morphological analyzer (same analyzer
used in MADAMIRA). For MSA we used the SAMA database (Graff et al., 2009), and for EGY we
used the CALIMA ARZ database (Habash et al., 2012). The analyses of each word are ranked using
the multiplication of their lemma probability and their semi-lexicalized Buckwalter tag probability. Both
probabilities are estimated using the training data. The highest ranking analysis is selected; and the word
and analysis are added to the loaded analysis dictionary.

Tokenization YAMAMA currently produces a detailed segmentation consisting of the undiacritized
morphemes from the Buckwalter tag analysis (BWTagTok). For the analysis dictionary the BWTagTok
segmentation is generated for each word ahead of time. Whereas for OOV words, the segmentation is
generated after disambiguation.

Output Generation Although all analyses are determined in type space, the output has to be generated
in token space. YAMAMA’s output is in the same format as MADAMIRA’s.

3In a text of 80 words, the type to token ratio is 89%, whereas in a text of 8M words, the type to token ratio is only 3.7%.

224



4 Evaluation

We present next two sets of experiments. The first set targets accuracy and speed and the second set
targets machine translation quality. In both sets, we try to compare YAMAMA4 to MADAMIRA5 and
FARASA6 both, when possible.

4.1 Accuracy and Speed Evaluation

Experimental Setup While MADAMIRA and YAMAMA share similar output, they are different
from FARASA. To allow us to compare them, we conducted three experiments. First, we compared
MADAMIRA and YAMAMA in terms of accuracy of their rich output. Second, we compared all sys-
tems in terms of accuracy of the specific tokenization output of FARASA. Finally, we compared all three
systems in terms of speed on a very large corpus. We also report speeds in the first two experiments, al-
though the test sets are relatively small. For the accuracy evaluation we used the Test sets recommended
by Diab et al. (2013) of the Penn Arabic Treebank (PATB parts 1,2 and 3) (Maamouri et al., 2004) (for
MSA) and the ARZ Treebank (Maamouri et al., 2014) (for EGY).

MDMR YMM
MSA EGY MSA EGY

BWTagTok 98.5 93.8 98.4 94.0
LEX 96.8 87.5 96.1 87.8
POS 96.8 92.5 96.1 91.9

DIAC 88.0 83.6 81.0 85.3
ALL 86.0 78.4 78.8 79.3

Time (s) 57.7 51.2 15.4 31.1

Table 1: Evaluation results for MADAMIRA
(MDMR) and YAMAMA (YMM) on the two tests
MSA (ATB) and EGY (ARZ-ALL) using a num-
ber of morphological features: Buckwalter POS Tag
tokenization (BWTagTok), Lemma (LEX), Part-of-
Speech (POS), Diacritization (DIAC) and all features
together (ALL). We also report running time.

Results First, in Table 1, we compare YAMAMA
to MADAMIRA in terms of accuracy over the (a)
Buckwalter POS tag segmentation, which is an un-
diacritized segmentation based on the morphemes in
the Buckwalter analysis, (b) Lemma, (c) POS, (d)
Diacritization, and (e) ALL features. We also re-
port the time the systems took to complete the task.
To give an example of the various features evalu-
ated, the word �é«ñÒj. ÖÏ @ Almjmwςh̄ ‘collection/group’
may have a correct analysis with the BWTagTok
Al+mjmwE+p, the lemma majomuwEap, the POS
noun, and the diacritization AlmajomuwEapi. The
ALL condition would include all of these in addi-
tion to prc3:0 prc2:0 prc1:0 prc0:Al_det
per:na asp:na vox:na mod:na gen:f num:s stt:d cas:g enc0:0. For MSA, YA-
MAMA performs very closely to MADAMIRA except for DIAC, which explains the drop in ALL.
However, in EGY, YAMAMA beats MADAMIRA in almost all aspects, except for POS. YAMAMA is
four times faster than MADAMIRA in the MSA setting, and two times faster in EGY; due to the large
size of the CALIMA ARZ database which is three times larger than SAMA, hence more loading time.
Also, the speed of YAMAMA is sensitive to the ratio of OOV types, where it uses the morphological
analyzer.

Second, in Table 2 we compare to MADAMIRA and YAMAMA to FARASA in terms of FARASA’s
tokenization scheme (FarasaTok), which is similar but not exactly the same as the BWTagTok. We
automatically converted the MADAMIRA and YAMAMA outputs as well as the MSA and EGY test
sets to FarasaTok to be able to compare in the same tokenization space. We also report on an Alif, Ya
and Ta-Marbuta normalized version of FarasaTok (FarasaTokNorm) for all test conditions. In addition
to the test sets reported on earlier, we add the MSA WikiNews test set that was reported on by Darwish
and Mubarak (2016). Across all conditions, YAMAMA and MADAMIRA behave very similarly. In
MSA WikiNews, all three systems behave similarly. However, as would be expected, YAMAMA and
MADAMIRA beat FARASA on the EGY set by a large margin. YAMAMA and MADAMIRA also have
higher performance than FARASA on the MSA set. In terms of speed, YAMAMA outperforms in all
modes except for EGY. The speeds of YAMAMA are competitive with FARASA except for EGY for the
reasons mentioned earlier.

4YAMAMA:Version: 1.0.
5MADAMIRA: Released on May 16, 2016, version 2.1.
6FARASA: Downloaded on May 27, 2016.

225



MSA EGY MSA-Wiki
MDMR YMM FRS MDMR YMM FRS MDMR YMM FRS

FarasaTok 98.7 98.7 89.6 94.3 94.4 73.3 98.5 98.0 98.7
FarasaTok Norm 99.2 99.2 98.4 96.5 96.6 86.6 98.9 98.8 98.7

Time (s) 58.1 15.7 17.7 51.4 31.2 16.8 43.8 9.9 14.8

Table 2: Evaluation results for MADAMIRA (MDMR), YAMAMA (YMM) and FARASA (FRS) on the three tests MSA
(ATB), EGY (ARZ-ALL) and MSA-Wiki (WikiNews) using FARASA tokenization scheme in basic (FarasaTok) and normal-
ized forms (FarasaTok Norm). We also report running time.

Finally, we ran all systems through a large dataset of 7.5 million words from Gigaword (Parker et al.,
2009). The reported running times for MADAMIRA (standalone mode), YAMAMA and FARASA are
2,305s, 398s and 99s, respectively. YAMAMA is five times faster than MADAMIRA and FARASA is
four times faster than YAMAMA.

4.2 Machine Translation Evaluation

With OOV Without OOV
BLEU METEOR BLEU METEOR

YAMAMA 39.49 0.3618 38.00 0.3448
MADAMIRA 39.52 0.3627 37.65 0.3435

FARASA 37.73 0.3301 37.76 0.3436

Table 3: Machine translation results

Experimental Setup We used the Moses
toolkit (Koehn et al., 2007) with default param-
eters to develop the Statistical Machine Trans-
lation (SMT) systems. For alignment, we used
GIZA++ (Och and Ney, 2003). And for lan-
guage modeling, we used KenLM (Heafield et
al., 2013) to build a 5-gram language model. We
evaluate using BLEU (Papineni et al., 2002) and
METEOR (Banerjee and Lavie, 2005). We apply statistical significance tests using the paired boot-
strapped resampling method (Koehn, 2004). We used the Arabic-English parallel component of the UN
Corpus (Eisele and Chen, 2010), with about 9 million lines for the English language model (∼286 mil-
lion words), 200 thousand parallel lines for training (∼5 million words), 2000 lines for tuning, and 3000
lines for testing. The English content was tokenized using the default English tokenizer at Moses, and
the Arabic texts were tokenized through YAMAMA, MADAMIRA and FARASA into the same Arabic
Treebank tokenization scheme. For YAMAMA, we used the TOKAN tool (Habash et al., 2009) to do the
tokenization. The Arabic dataset we used had English text segments covering UN resolutions numbers
and named entities; so we applied Moses’ English whitespace tokenization scripts on the Arabic files in
advance of the Arabic tokenization for the three systems to be of a better match to the English reference.

Results and Analysis The results of the SMT experiments are presented in Table 3, with YAMAMA
and MADAMIRA showing a statistically significant performance improvement relative to FARASA. For
a better understanding of the results, we analyzed the output files and observed that FARASA translit-
erates English words with Arabic letters and deletes the vowels, most likely the result of an internal
minor transliteration error. This behavior is problematic for SMT, as Moses would pass such English
Out-of-Vocabulary (OOV) words in Arabic letters. To facilitate a better comparison ignoring the effect
of different OOV handling, we performed additional SMT experiments that drop the OOV words from
all three systems’ output. Results are also in Table 3, with YAMAMA outperforming the other two
systems slightly but with statistical significance. MADAMIRA and FARASA performed closely, with a
statistically insignificant difference. As a general observation, we conclude that the variations among the
different systems don’t have a profound impact on the SMT quality.7

5 Conclusions and Future Work

We presented YAMAMA, a multi-dialect Arabic morphological analyzer and disambiguator. YAMAMA
is almost five times faster than MADAMIRA, with slightly lower quality. YAMAMA outputs a rich
representation which allows for a wider spectrum of use, transcending other systems, such as FARASA,

7We would like to thank the Farasa team, specifically, Kareem Darwish, Hamdy Mubarak, and Ahmed Abdelali for helpful
conversations. We have provided them with feedback and they have since released an updated version of Farasa.

226



which is faster but provides specific outputs catering to specific applications. There is yet much room for
enhancing the speed and the quality of YAMAMA, which we plan to investigate.

References
Ahmed Abdelali, Kareem Darwish, Nadir Durrani, and Hamdy Mubarak. 2016. Farasa: A fast and furious

segmenter for Arabic. In Proceedings of the 2016 Conference of the North American Chapter of the Association
for Computational Linguistics: Demonstrations, pages 11–16, San Diego, California.

Satanjeev Banerjee and Alon Lavie. 2005. METEOR: An Automatic Metric for MT Evaluation with Improved
Correlation with Human Judgments. In Proceedings of the ACL 2005 Workshop on Intrinsic and Extrinsic
Evaulation Measures for MT and/or Summarization.

Kareem Darwish and Hamdy Mubarak. 2016. Farasa: A new fast and accurate Arabic word segmenter. In
Proceedings of the Tenth International Conference on Language Resources and Evaluation (LREC 2016).

Mona Diab, Nizar Habash, Owen Rambow, and Ryan Roth. 2013. LDC Arabic treebanks and associated corpora:
Data divisions manual. arXiv preprint arXiv:1309.5652.

Andreas Eisele and Yu Chen. 2010. Multiun: A multilingual corpus from united nation documents. In Proceedings
of the Language Resources and Evaluation Conference (LREC), pages 2868–2872.

David Graff, Mohamed Maamouri, Basma Bouziri, Sondos Krouna, Seth Kulick, and Tim Buckwalter. 2009.
Standard Arabic Morphological Analyzer (SAMA) Version 3.1. Linguistic Data Consortium LDC2009E73.

Nizar Habash, Abdelhadi Soudi, and Tim Buckwalter. 2007. On Arabic Transliteration. In A. van den Bosch and
A. Soudi, editors, Arabic Computational Morphology: Knowledge-based and Empirical Methods. Springer.

Nizar Habash, Owen Rambow, and Ryan Roth. 2009. MADA+TOKAN: A toolkit for Arabic tokenization, dia-
critization, morphological disambiguation, POS tagging, stemming and lemmatization. In Khalid Choukri and
Bente Maegaard, editors, Proceedings of the Second International Conference on Arabic Language Resources
and Tools. The MEDAR Consortium, April.

Nizar Habash, Ramy Eskander, and Abdelati Hawwari. 2012. A Morphological Analyzer for Egyptian Arabic. In
Proceedings of the Twelfth Meeting of the Special Interest Group on Computational Morphology and Phonology,
pages 1–9, Montréal, Canada.

Nizar Y Habash. 2010. Introduction to Arabic natural language processing, volume 3. Morgan & Claypool
Publishers.

Kenneth Heafield, Ivan Pouzyrevsky, Jonathan H. Clark, and Philipp Koehn. 2013. Scalable modified Kneser-Ney
language model estimation. In Proceedings of the 51st Annual Meeting of the Association for Computational
Linguistics, pages 690–696, Sofia, Bulgaria, August.

Philipp Koehn, Hieu Hoang, Alexandra Birch, Christopher Callison-Burch, Marcello Federico, Nicola Bertoldi,
Brooke Cowan, Wade Shen, Christine Moran, Richard Zens, Christopher Dyer, Ondrej Bojar, Alexandra Con-
stantin, and Evan Herbst. 2007. Moses: open source toolkit for statistical machine translation. In Proceedings
of the 45th Annual Meeting of the Association for Computational Linguistics Companion Volume Proceedings
of the Demo and Poster Sessions, pages 177–180, Prague, Czech Republic.

Philipp Koehn. 2004. Statistical significance tests for machine translation evaluation. In Proceedings of EMNLP
2004, pages 388–395, Barcelona, Spain, July. Association for Computational Linguistics.

Mohamed Maamouri, Ann Bies, Tim Buckwalter, and Wigdan Mekki. 2004. The Penn Arabic Treebank: Building
a Large-Scale Annotated Arabic Corpus. In NEMLAR Conference on Arabic Language Resources and Tools,
pages 102–109, Cairo, Egypt.

Mohamed Maamouri, Ann Bies, Seth Kulick, Michael Ciul, Nizar Habash, and Ramy Eskander. 2014. Devel-
oping an Egyptian Arabic Treebank: Impact of Dialectal Morphology on Annotation and Tool Development.
In Proceedings of the Ninth International Conference on Language Resources and Evaluation (LREC-2014).
European Language Resources Association (ELRA).

Franz Josef Och and Hermann Ney. 2003. A Systematic Comparison of Various Statistical Alignment Models.
Computational Linguistics, 29(1):19–52.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. 2002. BLEU: a Method for Automatic Evaluation
of Machine Translation. In Proceedings of the 40th Annual Meeting of the Association for Computational
Linguistics, pages 311–318, Philadelphia, PA.

Robert Parker, David Graff, Ke Chen, Junbo Kong, and Kazuaki Maeda. 2009. Arabic Gigaword Fourth Edition.
LDC catalog number No. LDC2009T30, ISBN 1-58563-532-4.

Arfath Pasha, Mohamed Al-Badrashiny, Ahmed El Kholy, Ramy Eskander, Mona Diab, Nizar Habash, Manoj
Pooleery, Owen Rambow, and Ryan Roth. 2014. MADAMIRA: A Fast, Comprehensive Tool for Morphologi-
cal Analysis and Disambiguation of Arabic. In In Proceedings of LREC, Reykjavik, Iceland.

227


