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Abstract

Current Word Sense Disambiguation systems show an extremely poor performance on low fre-
quent senses, which is mainly caused by the difference in sense distributions between training
and test data. The main focus in tackling this problem has been on acquiring more data or se-
lecting a single predominant sense and not necessarily on the meta properties of the data itself.
We demonstrate that these properties, such as the volume, provenance, and balancing, play an
important role with respect to system performance. In this paper, we describe a set of experi-
ments to analyze these meta properties in the framework of a state-of-the-art WSD system when
evaluated on the SemEval-2013 English all-words dataset. We show that volume and provenance
are indeed important, but that approximating the perfect balancing of the selected training data
leads to an improvement of 21 points and exceeds state-of-the-art systems by 14 points while
using only simple features. We therefore conclude that unsupervised acquisition of training data
should be guided by strategies aimed at matching meta properties.

1 Introduction

The task of automatically selecting the meaning of a word in a linguistic context, known as Word Sense
Disambiguation (WSD), has been and is one of the main challenges for NLP. Despite the huge amount
of research that has been carried out to analyze and tackle this problem, it is nevertheless still con-
sidered unsolved. The best performances on the SemEval-2013 task 12: “Multilingual Word Sense
Disambiguation” English all-words subtask (from now on sem2013-aw) (Navigli et al., 2013) was 72.28
(Weissenborn et al., 2015)) out of competition and 64.7 in competition (Gutiérrez et al., 2013), exceeding
the naive Most Frequent Sense (MFS) baseline by only 10 points at most.

Supervised machine learning systems have been successful for WSD and it is commonly believed
that the problem of the low performance can be solved by providing more (manually annotated) training
data. However, in addition to the sparseness of training data, another aspect of the problem is the Zipfian
distribution of word senses (McCarthy et al., 2007). In both training data and test data, the same single
sense of a word tends to heavily dominate, making the MFS not only a baseline that is difficult to beat
(Kilgarriff, 2004), but also being used as a fall-back option by many systems.

Given the Zipfian distribution of word senses, it comes as no surprise that WSD systems have a bias
towards assigning the MFS (Preiss, 2006). Building upon this observation, Postma et al. (2016) analyzed
systems participating in previous Senseval and SemEval competitions with respect to their performance
on the MFS and on all other senses, which are called the less frequent senses (LFS). This study convinc-
ingly showed that systems excel at identifying MFS instances, but that all systems underperform on LFS
instances. For instance on the sem2013-aw task, systems performed on average around 80% in accuracy
on the MFS instances, but they hardly achieved on average 20% accuracy for the LFS instances.

The main challenge for WSD is therefore not only to acquire more training data, but to also address the
overfitting towards the majority case in order to boost the performance for the LFS cases. Assuming that
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their low performance is due to both the sparseness of training data and differences in sense distributions,
the challenge is how to acquire more training data and obtaining the right distribution. In this paper, we
therefore investigate the following research questions:

1. Volume: What is the influence of using more training data without distinguishing between MFS
and LFS cases?

2. LFS: What is the influence of only adding more LFS training examples?
3. Provenance: What is the effect of training using manually annotated data versus automatically

annotated data?
4. Balancing: What is the effect of mimicking the perfect target distribution in the training data?

By providing evidence for each research question, we firstly demonstrate that more data has a small
impact on the performance of a state-of-the-art supervised system (It Makes Sense (IMS), (Zhong and
Ng, 2010)). Interestingly enough, the type of data has a bigger impact, more specifically, adding silver
data with a better fit to the test set with respect to time and genre appears to be better than adding more
manually annotated data. Our biggest contribution is however that a perfect balance of data has a major
impact on the performance. Balancing the training data according to the sense distribution of the test
data boosts the results for the LFS cases while maintaining the high performance for the MFS instances.
Following this assumption, our experiments presented in this paper reach an overall accuracy of 86.8 as
an upper ceiling. This points towards the conclusion that the evaluation data sets have so-called “long-tail
details” that need to be modeled to obtain a high-performance in addition to the properties of the head
of the distribution. We therefore conclude that the distributional effect is more complex than suggested
in (McCarthy et al., 2004a), who focus only on the predominant sense, but also has a larger potential if
acquisition is guided by strategies to match meta properties.

The paper is structured as follows: in Section 2 we discuss related work, following by a descrip-
tion of the resources and the evaluation framework (Section 3). The experiments and the results are
presented in Section 4. Finally, we discuss the results in Section 5 and conclude the paper in Sec-
tion 6. All the training data, system output files and scripts required to fully reproduce the experi-
ments presented in this paper have been made publicly available at: https://github.com/cltl/
MoreIsNotAlwaysBetter.

2 Related Work

Many natural phenomena can be described by power laws (Newman, 2005), ranging from city popula-
tions to name frequencies. Word sense distributions are no exception to this interesting phenomenon and
also show Zipfian characteristics (McCarthy et al., 2007; Kilgarriff, 2004). This means that, given any
document or collection of documents, one sense of a lemma is usually overrepresented, while the other
senses are barely used. The MFS consequently plays a critical role in the task of WSD and establishes a
challenge for systems. In evaluation, the MFS is usually used as a hard to beat baseline and it is therefore
also used as a fallback strategy by systems.

In general, WSD systems perform well on the MFS instances, whereas their performance drops dra-
matically for the LFS instances (Postma et al., 2016). This is not surprising considering the Zipfian
distribution of senses which has a big impact on supervised approaches. Given the dominance of MFS
examples in the training data, this results in better sense representations for these cases. This unbalance
contributes to the system bias towards the MFS. For unsupervised approaches, in particular graph-based
approaches, the MFS of a lemma also appears to have a higher connectivity in the graph (Calvo and
Gelbukh, 2015), hence also favoring it in the sense assignment phase of a WSD system. Overall, less
attention has been paid to the less represented and less frequent senses, despite the fact that these provide
the biggest room for improvement (Postma et al., 2016).

Although the MFS in the training data often coincides with the MFS of the task, this is not always the
case, specially in cross-domain or genre scenarios. A system able to detect the predominant sense of a
lemma within a target document would obtain a vast increase in accuracy. McCarthy et al. (2004b) and
Koeling et al. (2005) provided the first proof of concepts in order to demonstrate this. They collected for
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each target word k nearest neighbors using distributional similarity, where the similarity between each
sense of the target word and the nearest neighbors is determined by WordNet similarity measures. The
sense with the highest similarity is chosen as the predominant sense. Building upon the same idea, Chan
and Ng (2005) apply two algorithms, a confusion matrix algorithm and an Expectation-maximization-
based algorithm, to determine the sense distribution of the test data. This information is fed into the
systems to improve the sense assignment.

Similar approaches have been used to tackle the task of Word Sense Induction. The work presented in
Lau et al. (2012) introduces a Topic Modeling approach based on LDA (Blei et al., 2003) and HDP (Teh
et al., 2012) for deriving clusters that can be identified for different senses of a word. As an intermediate
outcome, the authors also provide the expected predominant senses in the target corpus. Similarly, Boyd-
Graber and Blei (2007) apply a model that considers the words of a document generated coherently to the
topic distribution of that document. The most likely sense for each instance of a word is predicted from
this topic distribution considering the words in the context. Finally, Lau et al. (2014; 2012) focused on
the detection of novel senses, which might be considered as an extreme case of unbalanced acquisition
with respect to training and evaluation distributions.

Mismatches between the training and test data have been of central interest to research on domain
adaptation (Daume III, 2007; Carpuat et al., 2013; Jiang and Zhai, 2007). The 2010 edition of the
SemEval series (SemEval-2010) proposed a task called “All-words Word Sense Disambiguation on a
Specific Domain” (Agirre et al., 2010). The aim was to analyze to what extent WSD systems are sensitive
to specific domains when there is no annotated data available for that domain. In the same direction,
another goal was to investigate how a general domain WSD system should be adapted to perform properly
when the sense distribution is unknown and different to the sense distribution of traditional corpora
used for training machine learning models. This evaluation showed that the most successful approaches
included knowledge from the specific domain in different forms. For example, Kouno et al. (2015)
present a framework for WSD where an unsupervised approach is applied to abstract the features across
different domains and then feeds these features into a Support Vector Machine. A semi-supervised
framework is introduced by Agirre and Lopez de Lacalle (2008). Several domains are used to establish
cross-domain experiments, where two supervised machine learning WSD systems (k-NN and SVM)
are applied on one domain and evaluated on a different one. Singular Value Decomposition (SVD) is
employed to find correlations between terms, alleviate the scarcity of data, and extract examples from
unlabeled data. The authors show an improvement on the cross-domain setting when including the SVD
technique to add training data of the target domain.

The importance of the MFS bias in training data was already highlighted in previous work. For in-
stance, Agirre and Martinez (2004) try to overcome the problem of this skewness by automatically ac-
quiring examples from the Internet using an heuristic based on monosemous words. Improvement is
achieved on the Senseval-2 task for nouns with less than 10 examples in SemCor (Miller et al., 1993).

Finally, researchers combined the task of WSD with Entity Linking to improve the performance on
the disambiguation part. For example, Weissenborn et al. (2015) jointly disambiguate nouns and entities
by exploiting the links between them in BabelNet (Navigli and Ponzetto, 2012). In addition, the Babelfy
system (Moro et al., 2014) goes one step further by also making use of interlingual relations.

Despite these efforts to either acquire more data or adapt the distributions, none of these systems
gained an improvement big enough to consider the problem as solved. Our work differs from these
approaches mainly in that we analyze more precisely the contribution of the volume, nature, and distri-
bution of the training data in relation to the properties of the test data. The experiments are designed to
isolate each phenomenon and be able to extract meaningful conclusions. For example, whereas Agirre
and Martinez (2004) acquire more data for all senses of low frequent words, we focus on adding more
examples for the less frequent senses instead. Just by obtaining more examples for a word does not
imply that we are able to create better sense representations for all the senses of this word. Similarly,
whereas McCarthy et al. (2004b) and Koeling et al. (2005) restrict the system to find a deterministic
predominant sense, we propose that the probabilities of the target data need to be used to obtain a more
fine-grained behavior. We show that properly balancing the probabilities of the acquired data gives a
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major improvement even using a straight-forward machine learning system with a basic set of features.

3 Methodology

In this section we describe our training and evaluation framework: which WSD system has been selected,
what corpora have been used to create our models and how these models have been evaluated. We have
set up the framework in such a way that we can systematically vary the type of training data used,
the volume of training data and the sense distribution in this data. The impact of the variables is then
tested using the same state-of-the-art supervised WSD system. We measure the overall performance in
addition to the performance on the MFS and LFS cases and also generate some statistics to highlight the
characteristics of the training data.

3.1 Training data sets

In our experiments, we exploit three sources of English sense annotated data: SemCor, Princeton Word-
Net Gloss Corpus, and what we have called “Wordnet2Wikipedia”. The last corpus was created as part
of the experiments and hence its creation will be described in more detail below.

Semcor (SC) The Semantic Concordance (Miller et al., 1993), or SemCor (SC), is a corpus containing
approximately 240,000 sense annotated words. The tagged documents originate from the Brown corpus
(Francis and Kucera, 1979) and cover various genres. The corpus contains annotations for more than
20,000 lemmas. The creators note that the main focus when creating the corpus was on word frequencies,
and not on sense frequencies. This might explain why the proportion of the MFS on the total amount of
annotated senses in this corpus is (unnaturally) high: more than 70%.

Princeton WordNet Gloss Corpus (GC) The Princeton WordNet Gloss Corpus, or GC, is a special
sense annotated corpus. It does not contain annotations of natural text in documents but of the WordNet
glosses (Fellbaum, 1998). The corpus contains more than 310,000 annotated words, which is signifi-
cantly more than in SemCor. Annotations exist for approximately 15,000 lemmas, which is less than in
SemCor. The MFS proportion is around 55%, which makes sense given that glosses are tagged and not
natural text.

Wordnet2Wikipedia (WW) For the last source of sense annotated data, WordNet2Wikipedia, or WW,
we exploit the existing relation between WordNet and Wikipedia as present in BabelNet 2.5 (Navigli and
Ponzetto, 2012). BabelNet 2.5 contains the relations direct and redirect, which link a WordNet sense
to a Wikipedia entry. This relation only exists for nouns in the resource. For each target sense of a
target lemma: 1. we check whether a link to Wikipedia exists for this target sense. 2. if so, we extract
all sentences from the Wikipedia article with the target lemma and tag the target lemmas with the target
sense. By exploiting this relation in BabelNet, we are able to extract 43,000 training examples for the
751 lemmas of the sem2013-aw competition. In addition, on average, 63% of the examples we extract
are examples of LFS instances.

3.2 The WSD System

We used the “It makes sense” (IMS) WSD system in our experiments (Zhong and Ng, 2010). There are
several reasons for choosing IMS. First of all, IMS has shown to achieve a very high performance in the
Senseval and SemEval all-words tasks. Secondly, it is an open source system that provides a flexible
framework, allowing us to train and evaluate it with different kinds and amounts of data. Finally, IMS is
based on a Support Vector Machine (SVM) learning engine, which is a linear classifier known to suffer
not as much from unbalanced training as other learning paradigms (e.g. probabilistic learning paradigms
like Naive Bayes).1

IMS uses three features in its default setting: surrounding words, part-of-speech tags, and collocations
in a certain window around the target word. We used the system with the default setting in terms of
features and learning parameters. IMS creates word experts, which means that one single classifier is

1http://www.win-vector.com/blog/2015/02/does-balancing-classes-improve-
classifier-performance
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built for a specific lemma (with the corresponding part-of-speech tag). We could easily adapt the specific
word experts by manipulating the input training data while keeping all the other settings the same.2

3.3 Evaluation framework
For evaluation, we selected the test set from SemEval-2013, task 12: Multilingual Word Sense Disam-
biguation (sem2013-aw, (Navigli et al., 2013)). The task consisted of two disambiguation tasks: Entity
Linking and Word Sense Disambiguation for English, German, French, Italian, and Spanish. We focused
on the WSD part using WordNet as a sense repository. The test set contains 13 articles obtained from
previous editions of the workshop on Statistical Machine Translation.3 The articles cover different do-
mains, ranging from sports to financial news. With respect to the English WSD part, there are 1,644 test
instances in total, all nouns. The sense repository used to tag these instances is WordNet version 3.0.
Based on this sense repository, we computed the number of instances annotated with the MFS, and the
number of instances annotated with one of the LFS. Out of the 1,644 test instances, the MFS applies in
1,035 cases, while one of the LFS applies in the rest of 609 cases. This gives a baseline of 62.96% for
the MFS heuristic.

3.4 Experiments
In order to gain insight into system performance with respect to the quality, quantity, and distribution of
the training data, four main research questions have been formulated, which we will repeat here for the
sake of clarity:

1. Volume: What is the influence of using more training data without distinguishing between MFS
and LFS cases?

2. LFS: What is the influence of only adding more LFS training examples?
3. Provenance: What is the effect of training using manually annotated data versus automatically

annotated data?
4. Balancing: What is the effect of mimicking the perfect target distribution in the training data?

We use several selection techniques to test each research question. We distinguish between a Base
corpus from which we add all training instances available, and an Expansion corpus, from where subsets
of instances are extracted by applying different selection techniques. SemCor (SC) is used as a Base and
the WordNet gloss-corpus (GC) and the WordNet-Wikipedia corpus (WW) as Expansions, representing
both more Volume and different types of annotation (Provenance). In addition, we defined the following
selection techniques when expanding the training data:

All: all instances, both MFS and LFS, are added. This technique will allow us to provide evidence for
the Volume and Provenance research questions.

LFS: only the LFS instances are added, which provides insight into the MFS versus LFS research
question.

Top-down: to provide evidence for this question, we use the sense distribution of the test data starting
from the MFS. For every lemma in the test set, we attempt to fit the training distribution as much as
possible to the test sense distribution. In this top-down approach, we start with the sense with the highest
relative frequency in the test set and determine the number of examples in our experiment for this sense.
We then calculate the number of examples for the other senses relative to the number of examples for the
sense with the highest relative frequency. When a sense does not occur in the test set, we assign to this
sense a default number of 1 (top-down-1) or 5 (top-down-5) training examples, which makes sure that
we perform balancing instead of filtering. Without the assignment of the default number of senses for
missing senses in the test data, we would on average reduce the average polysemy to almost one, which
would make the task almost solved.

2During our experiments, we noticed that IMS produces exceptions when using larger training sets than SemCor. We solved
this by including a number of checks in the source code and by modifying two files with respect to the original IMS distribution.
These files are included under the folder ims amended files in the data and scripts package delivered together with the paper.
The installation script will take care of copying them to the proper place in the IMS project structure and recompile the full
library. The changes have been documented in the README file.

3http://www.statmt.org
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Bottom-up: to provide evidence for this question, we use the sense distribution of the test data starting
from the LFS. This approach is almost identical to the Top-down approach but now we use the number
of examples for the sense of a lemma with the lowest relative frequency in the test set as a starting
point. When a sense does not occur in the test set, we assign a default number of 1 (Bottom-up-1) or
5 (Bottom-up-5) examples to the sense. Both the Bottom-up technique and the Top-down technique
provide evidence for the Balancing research question.

To allow replication of our results and stimulate further research, all the data and scripts for training
and evaluating the models have been made publicly available. There is an installation script to take
care of the downloading and installation of the required libraries and data sets. There is also one main
script that runs all the experiments described in Section 4. The package can be found here: https:
//github.com/cltl/MoreIsNotAlwaysBetter.

4 Results

Table 1 presents the results for all our experiments. Each experiment has been defined to analyze one of
our research questions and is hence based on a certain training dataset, which is the result of applying var-
ious selection techniques, which include the type of data, the volume, and the sense distribution. For each
run of an experiment (ID), we present the Base corpora (Base), the Expansion Corpora (Expansion), the
selection technique used on the Expansion corpora (Technique), the overall accuracy (Acc), the accuracy
on the MFS instances (Accmfs), the accuracy on the LFS instances (Accmfs), the micro average between
the accuracy on the MFS and LFS instances (MicroAV), the number of training instances (#), the aver-
age number of training instances per lemma (Avg#), and the average percentage of MFS instances per
lemma (Dommfs). The last three values provide information about the quantitative characteristics of the
training data.

WSD results Training stats
ID Base Expansion Technique Acc Accmfs Acclfs MicroAV # Avg# Dommfs

1 SC - - 65.60 95.60 14.80 55.20 22k 43 70

2 SC GC All 66.80 89.10 29.10 59.10 60k 110 59
3 SC GC+WW All 68.90 90.30 32.50 61.40 102k 187 52
4 SC WW All 69.30 92.80 29.40 61.10 65k 120 54

5 SC GC LFS 63.20 75.70 41.90 58.80 38k 71 43
6 SC GC+WW LFS 62.00 70.50 47.60 59.05 65k 120 31
7 SC WW LFS 67.50 87.50 33.30 60.40 49k 91 44

8 - SC+GC+WW Bottom-up1 85.40 95.90 67.50 81.70 46k 87 56
9 - SC+GC+WW Bottom-up5 80.40 93.30 58.50 75.90 50k 96 53
10 - SC+GC+WW Top-down1 86.80 96.50 70.30 83.40 45k 85 55
11 - SC+GC+WW Top-down5 82.00 94.40 60.90 77.65 65k 120 54

Table 1: Results of our experiments on SemEval-2013 dataset

Volume and Provenance Experiments 1, 2, 3, and 4 provide insight into the Volume and Provenance
research questions. We observe a clear trend that more training data indeed improves the performance.
By only adding the GC corpus, the accuracy improves by 1.3 points, and if we add both GC and WW
by 3.4 points. These experiments are not solely increasing the number of training examples, they also
lower the MFS dominance per lemma as shown in the last column (SC scoring 70, and the expansions
scoring lower 59, 42, and 54, respectively) and thus change the balancing or distribution of the senses
in the training data. Both factors seem to contribute to the improved overall accuracy. Surprisingly, the
best result is not found by using all of the available sense annotated data, as shown by experiment 4.
By only adding the WW corpus to SC, we improve the baseline by 3.7 points despite the fact that the
examples are extracted automatically (silver) compared to 1.2 points gain when adding an equal amount
of data from the manual annotation of GC to SC. We suspect that the WW corpus is more similar to the
test data with respect to creation time and genre since they come from Wikipedia whereas the SemCor
texts go back to 1961. The GC corpus contains usage examples and definitions, which are older than
the test data and timeless while also being more formal in style, written for a different purpose. Finally,
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the experiments 2, 3, and 4 all dramatically improve the performance on the LFS instances by more than
15(!) points compared to the baseline in experiment 1. The price for this can be found in a slight drop on
the MFS instances. In order to get a better understanding of the improvement of our best run (experiment
4), compared to the baseline, we computed the accuracy per sense rank class, as shown in Figure 1. We
can observe a clear improvement of the sense rank classes 2, 3, 4, and 10+ among the LFS cases.

Figure 1: Performance of run 1 (left column) and 4 (right column) with respect to the performance per
sense rank class.

LFS What is the effect of only adding LFS instances? We know that some senses of WordNet annotated
in the test set are not annotated in SemCor, so they are not available for the training of the IMS system.
What will happen if senses with few or no training data get boosted? Experiments 5 to 7 provide evidence
to answer these questions. We note that the dominance of the MFS in the training instances now drops
to 30-40%. On the other hand, this also results in very impressive performances on the LFS instances,
between 33.33% and 47.62%. What we gain on one side, we lose on the other and the only experiment
that is able to beat the baseline is run 7, which beats the baseline by 1.9 points.

Balancing Apparently the trick is to find the proper balancing between the MFS and LFS to maintain
the high performance of the former and still gain in the performance of the latter. To demonstrate the
potential of proper balancing, we apply the Top-down and Bottom-up balancing strategies on the training
data using the test data as an approximation of the perfect balance. This can be seen as approximating the
upper bound for systems being aware of the sense distribution of the test data. We see in experiments 8, 9,
10, and 11 that properly balancing the distribution gives us the highest gain (21 points) up to an overall
accuracy of even 86.8. We see that it enormously boosts the accuracy of the LFS to levels normally
achieved for the MFS and it also improves the accuracy of the MFS to 96.52. Note that the system
still needs to make a choice between senses in this setting since all senses are represented in the model,
including senses that do not occur in the test data. We also see that defining a lower bound for senses not
occurring in the test set makes a difference. If we define the lower bound to 5, performance drops by 4
to 5 points, confirming the earlier experiment in which we just boost the LFS cases.

5 Discussion

In general, we note that adding more training data, obtained through manual annotation or unsupervised
learning, will lead to results that exceed the standard system trained on SemCor, but will not transcend the
performance to a level where we would consider the task solved. Interestingly, balancing the distribution
to the task turns out to be very effective to boost the accuracy to an upper bound of around 85%, which
is close to what other NLP tasks, such as entity detection and linking, achieve. In addition, the amount
of training data to achieve this can be kept relatively low and can be acquired automatically. The main
conclusion we draw from this is that test sets appear to contain very specific idiosyncratic details (long-
tail details) when it comes to semantic tasks (as opposed to for instance syntactic tasks). These details
are difficult to capture using the available training data in general. Just providing more does not help.

3502



What helps is determining the semantic specifics of the test data. We believe that this is not just a matter
of finding the predominant sense as argued by McCarthy et al. (2004a), since the distribution of both
predominant and nondominant senses play a role. We have seen that also MFS distributions continue
to play a role as they show shifts that need to be captured as well. We thus expect that acquisition, and
likewise modeling, should be considered as problem-driven tasks rather than applying bulk acquisition.
This is exactly what Figure 2 indicates. The improvements are for very specific low frequent senses and
not for others. We believe that each test set has a unique long tail profile that needs to be captured by the
system. In future work, we hope to perform well on this task without any prior knowledge on the sense
distribution of the task, but by analyzing the properties of the texts.

The results from our experiment show that a lot of recent silver data results in better performance than
a small amount of old manually-annotated data. It would be interesting to perform experiments with
old silver data and manually annotated recent data. The practical obstacle towards achieving this is the
availability of the data. For manual annotation, this would require a big annotation effort. For silver data,
this would require an innovative approach that is different from recent approaches, which are mostly
based on Wikipedia, e.g. Babelfied Wikipedia (Scozzafava et al., 2015).

One could argue that our system just uses the prior probabilities and that the machine learning is not
adding anything on top of this. This is undeniable a factor but we also see that the Provenance of the
training data has some impact, as the WW data help more than the GC data. Furthermore, it is not the
case that the lemmas in the test set only occur in a single sense. The system does need to make a choice
between different instances of a lemma in the test set for 41.4% of the lemmas.

Figure 2: Comparison of sense rank distributions from the corpora: SC (left column), GC (middle col-
umn), and sem2013-aw (right column) for the sense ranks 1 till 10.

To our knowledge, only two systems (out-of-competition) achieved a better accuracy score on the
sem2013-aw competition compared to our best run, experiment 4, from the unbalanced systems (ex-
periments 1 to 7). The Game-Theoretic approach to WSD in Tripodi and Pelillo (2016) leads to an
accuracy of 70.8, which is achieved by not only relying on the sentence as the context, but on the full
document. Weissenborn et al. (2015) achieve the best result to date with an accuracy of 72.28%. The
improvement is mainly due to the joint disambiguation of nouns and entities. Besides the fact that our
system is more basic and uses a poorer context, we also see that even a simple system as ours can achieve
far better results if we would know the distribution of the test set. We can expect that more advanced sys-
tems such as Tripodi and Pelillo (2016) and Weissenborn et al. (2015) may even exceed our best results
of 86.8 with perfect balancing.

For future work, we hence intend to develop models that are problem-driven and attempt to obtain
meta properties of the target data to estimate better sense distributions. An interesting starting point is
a Word Sense Induction system called HCA-WSI (Bennett et al., 2016). This system could be used to
determine the sense distributions of the time period in which a document in the test data was written,
which would remove the dependence on sense distributions from manually annotated corpora.
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6 Conclusions

We addressed the problem that most WSD systems perform well on the MFS and extremely poorly on
the LFS, due to the skewness of the training data to the MFS. We analyzed the impact of adapting the
training data with regard to this skewed performance: more data, better data, and balanced data. In
general, we observe that more training data does indeed improve the results. However, the provenance of
the data proved to be more important than the volume. We observed that automatically-acquired training
data that was closer to the test data with respect to time and genre yielded better results than manually-
created training data from the WordNet glosses. Finally, the real improvement was found by mimicking
the sense distribution of the test data in the training data, which lead to results close to where we would
consider the task solved. Hence, we argue that the solution to the task can be found in problem-driven
approaches that attempt to adapt their models with respect to properties of the test set. In future work,
we will focus on unsupervised methods to identify the meta properties of a test set and to capture its
idiosyncratic long-tail details.
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