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Abstract

Recently, topic modeling has been widely applied in data mining due to its powerful ability. A
common, major challenge in applying such topic models to other tasks is to accurately interpret
the meaning of each topic. Topic labeling, as a major interpreting method, has attracted significant
attention recently. However, most of previous works only focus on the effectiveness of topic
labeling, and less attention has been paid to quickly creating good topic descriptors; Meanwhile,
it’s hard to assign labels for new emerging topics by using most of existing methods. To solve
the problems above, in this paper, we propose a novel fast topic labeling framework that casts
the labeling problem as a k-nearest neighbor (KNN) search problem in probability distributions.
Our experimental results show that the proposed sequential interleaving method based on locality
sensitive hashing (LSH) technology is efficient in boosting the comparison speed among probabil-
ity distributions, and the proposed framework can generate meaningful labels to interpret topics,
including new emerging topics.

1 Introduction

A wealth of topic models have been proposed to extract interesting topics in the form of multinomial
distributions from the corpus automatically, which are useful data mining tools for the statistical analysis
of document collections and other discrete data. A common, major challenge in applying all such topic
models is to accurately interpret the meaning of each topic. In general, it is very difficult for users to
understand a topic merely based on the multinomial word distribution, especially when they are not
familiar with the background knowledge. Topic labeling, which generates meaningful labels for a topic so
as to facilitate topic interpretation, has attracted increasing attention recently.

Early research on topic labeling generally either select top words in the distribution as primitive labels
(Blei et al., 2003; Ramage et al., 2009), or generate labels manually in a subjective manner (Mei et al.,
2006; Mei and Zhai, 2005). However, it is highly desirable to automatically generate meaningful labels.
Several automatical labeling methods have been proposed recently (Mei et al., 2007; Lau et al., 2010;
Lau et al., 2011; Magatti et al., 2009; Mao et al., 2012; Hulpus et al., 2013; Mehdad et al., 2013; Cano et
al., 2014). These existing approaches generally take following steps to generate meaningful labels for a
given topic: (1) extract candidate labels; (2) rank candidate labels. First, most of existing methods extract
candidate labels from a document collection by natural language processing techniques for a given topic,
which is time-consuming; for example, the candidate labels in the method proposed by Mei et al. (2007)
are extracted from a reference collection using chunking and statistically important bigrams, which is
time-consuming. Second, most of existing approaches depend on external knowledge sources such as
Wikipedia and Google Directory etc, which cannot be used to label new emerging topics learned from a
stream, such as Twitter, because there is no timely information about the new emerging topics in Wikipedia
or Google Directory; for example, the method proposed by Lau et al. (2011) uses Wikipedia article titles
as candidate labels, which is hard to assign correct labels for the new emerging topics in Twitter because
there may not be the timely articles about the new emerging topics in Wikipedia. Thus, despite the success
of these works, they are either time-consuming or hard to assign labels for new emerging topics.
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Thus, it is highly desirable to rapidly generate meaningful labels for a topic word distribution while
assign labels for new emerging topics as correctly as possible. However, to the best of our knowledge, no
existing method has been proposed to satisfy the demand, except that the simplest method which uses
top-n words in the distribution to interpret a topic. In this paper, we study this fundamental problem which
most topic models suffer from, and propose a labeling framework to rapidly label a topic while assign
labels for new emerging topics as correctly as possible.

Topics can be represented as vectors, i.e. jth topic, Tj = ( w1j , w2j , . . . , wtj )T . Each dimension
corresponds to a separate word, and its value in the vector is the probability value. Due to the characters
of distributions, we have two observations: (1) Similar topics all have higher probability values over
the relevant words, thus a topic is near its similar topics in a probability vector set; For example, the
topic “Military” and “Air Force” have both higher probability values over words like “soldier”, “missile”
and “death” than that over other words, except that the topic “Air Force” has higher probability values
over words like “warcraft”, “F22” and “pilot”, than the topic “Military”; (2) Two different probability
distributions might have the same label, because the inherent semantics of a distribution (i.e. topic) is not
only reflected by the concrete probability values, but also by the focused words; for example, the following
two topics don’t have the same distributions, but they are the same topic, and the label is “Military”.

tank bomb ... death take cup gun
topic1 0.18 0.10 ... 0.11 0.0002 0.007 0.08
topic2 0.17 0.09 ... 0.12 0.0003 0.009 0.07

Intuitively, when an event occurs, the information about the event exists in all kinds of sources (labeled
data and unlabeled data), such as news, forums and social networks. Thus, these sources are parallel
information channels. It is believed that the labels in labeled data will cover most topics in unlabeled
data. Through the idea of parallel information channels, in a domain, if there is a database where each
record consists of a topic word distribution and its corresponding label 1, and the database is updated
uninterruptedly by learning from the latest labeled data as soon as possible; we can interpret a given topic
by the labels of k-nearest distributions in the database (i.e. probability vector set) while assign labels for
new emerging topics as correctly as possible. If the database is large, timely, and cover most kinds of
topics in a domain, it’s a reasonable labeling solution to label topics in the domain.

There are two challenges to achieve the intuition: (1) how to quickly find the k-nearest neighbours in
a large probability vector set, given a high-dimensional topic word distribution; (2) how to update the
database from the latest data as soon as possible.

We proposed a fast labeling framework to solve the two challenges: (1) to finding k-nearest distributions
quickly, we use locality sensitive hashing (LSH) as a dimensionality reduction technique to accelerate
distribution similarity comparison; (2) to accelerate the update speed of the database, we modify the batch
learning algorithm for Labeled LDA to obtain an online learning algorithm.

2 Related work

In most existing research effects on statistical topic modeling, people generally either select top words
in the distribution as primitive labels (Blei et al., 2003; Ramage et al., 2009; Ramage et al., 2011), or
generate more meaningful labels manually in a subjective manner (Mei et al., 2006; Mei and Zhai, 2005).
However, extracting top terms is not very useful to interpret the coherent meaning of a topic (Mei et al.,
2007). Meanwhile manually generated labels require lots of human effort to generate such labels, and can
easily be biased towards the user’s subjective opinions.

Thus, several automatical labeling methods have been proposed recently. In 2007, Mei et al. first
proposed probabilistic approaches to automatically label multinomial topics by extracting a set of candidate
labels from a reference collection using chunking and statistically important bigrams, and the top ranked
labels were chosen to represent the topic (Mei et al., 2007). Magatti et al. (2009) introduced an algorithm
to label topics automatically according to a given category hierarchy. The hierarchy was obtained from
the Google Directory and the OpenOffice English Thesaurus. The most similar label is assigned to the
topic. Lau et al. (2010) proposed to label a topic via selecting one of the top-10 topic terms to label the

1Different distributions can have same label
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overall topic by a reranking model. Different with their previous method (Lau et al., 2010), Lau et al.
(2011) enlarged the candidate labels by making use of Wikipedia article titles.

Mao et al. (2012) proposed two effective algorithms that automatically assign concise labels to each
topic in a hierarchy by exploiting sibling and parent-child relations among topics. The structured data in
DBpedia is used to label topics (Hulpus et al., 2013). Mehdad et al. (2013) introduced a topic labeling
approach that assigns the most representative phrases for a given set of sentences covering the same topic.
Cano et al. (2014) proposed a summarisation framework to label the topics learned from Twitter, which
is independent of external sources and only relies on the identification of dominant terms in documents
related to the latent topic. Word embedding is also used to help label topics (Jin et al., 2016). Interestingly,
Aletras and Stevenson (2013) proposed to label topics with images rather than text. Candidate images
for each topic are retrieved from the web by querying a search engine using the top-n terms. The most
suitable image is selected by using a graph-based algorithm.

Overall, these methods first extract the candidate labels, then rank these labels according to correspond-
ing scoring function. The labeling framework is showed in Figure 1 (a). Despite the success of these
works, they are either time-consuming or hard to assign labels for new emerging topics. Thus, in this
paper, we will focus on the problems above, and proposed our fast topic labeling framework.

(a) (b)

Figure 1: (a) Traditional topic labeling framework and (b) Fast topic labeling framework.

3 Fast Topic Labeling Framework

In this paper, we will study topic labeling problem from a different perspective, i.e. cast it as k-nearest
neighbor (KNN) search problem in a probability vector set. As shown in Figure 1 (b), our framework
consists of two main components described in the following sections.

3.1 Online Labeled LDA

One important component of our proposed framework is to construct a “topic-label” database which
consists of probability distributions over words and corresponding labels, denoted as DBm,n, m is the
number of topics, and n is the size of vocabulary. We can use Labeled LDA (LLDA) proposed by Ramage
et al. (2009) to construct the “topic-label” database. LLDA models the documents with labels, and obtains
a probability distribution for each label. The training algorithm for LLDA runs in batch mode, and cannot
update the database timely. However, in order that the framework can assign labels for new emerging
topics as correctly as possible, the proposed framework needs to process latest labeled data timely, and
add gradually new learned records into the “topic-label” database. Thus, we propose a online algorithm
for Labeled LDA, called OLLDA, to accelerate the update speed of “topic-label” database.

We define the vector of corresponding labels of document d to be ψ(d), and the number of labels to be
Md, i.e. Md = |ψ(d)|. Similar to the batch variational inference for LDA (Blei et al., 2003), the batch
variational inference for Labeled LDA approximates the true posterior by a simpler distribution q(z, θ, β),
which is indexed by a set of free parameters. These parameters are optimized by maximizing the lower
bound:

log p(w|α, η,Ψ) ≥ L(w, φ, γ,λ,Ψ) , Eq[log p(w, z,θ,β,Ψ|α, η)]− Eq[log q(z,θ,β)]. (1)

To maximize the lower bound, we have to minimize the KL divergence between q(z,θ,β) and the
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posterior p(z,θ,β,Ψ|w, α, η). The distribution q(z,θ,β) can be fully factorized into the form:

q(zdi = l) = φdwdil; q(θd) = Dir(θd; γd); q(βl) = Dir(βl; γl), (2)

where l is the index of a label, and also the index of corresponding topic. The posterior over the per-
word topic assignments z is parameterized by φ, the posterior over the per-document topic weights θ is
parameterized by γ, and the posterior over the topics β is parameterized by λ. Equation (1) factorizes to

L(w,φ,γ,λ,Ψ) =
∑

d,zd∈Ψ

{Eq[log p(wd|θd, zd, β)] + Eq[log p(zd|θd)]− Eq[log q(zd)] + Eq[log p(θd|α)]

− Eq[log q(θd)] + (Eq[log p(β|η)]− Eq[log q(β)])/D}
=
∑
d

∑
w

ndw
∑
l∈ψ(d)

φdwl(Eq[log θdl] + Eq[log βlw]− log φdwl)− log Γ(
∑
l∈ψ(d)

γdl) +
∑
l∈ψ(d)

(α− γdl)Eq[log θdl] + log Γ(γdl) + (
∑
l∈ψ(d)

− log Γ
∑
w

λlw) +
∑
w

(η − λlw)Eq[log βlw]

+ log Γ(λlw))/D + log Γ(Mdα)−Md log Γ(α) + (log Γ(Wη)−W log Γ(η))/D

,
∑
d

l(nd, φd, γd,λ, ψ
(d)),

(3)

where W is the size of the vocabulary and D is the number of documents. l(nd, φd, γd,λ, ψ(d)) denotes
the contribution of document d to the lower bound of Formula (1). This reveals that the variational
objective relies only on ndw, the number of times word w appears in document d. Thus, an online
inference algorithm for Labeled LDA can be derived.

We can use coordinate ascent to optimize L over the variational parameters φ, γ, λ:

φdwl ∝ exp{Eq[log θdl] + Eq[log βlw]}; γdl = α+
∑
w

ndwφdwl; λlw = η +
∑
d

ndwφdwl. (4)

As the dth vector of word counts nd is observed, we perform an EM algorithm to obtain optimal
parameter values. Similar to the work (Hoffman et al., 2010), we use the weight ρd , (τ0 + d)−κ to
control the rate at which old values of λ are forgotten and τ0 ≥ 0 slows down the early iterations of
the algorithm, where κ ∈ (0.5, 1] is needed to guarantee convergence. The proposed online variational
inference for Labeled LDA (OLLDA) is described in Algorithm 1.

Algorithm 1 Online Variational Inference for Labeled LDA
1: ρd = (τ0 + d)−κ

2: Initialize λ randomly.
3: for d = 0 to∞ do
4: E step:
5: Initialize γdl = 1.
6: repeat
7: for each word w in document d do
8: for each label l of document d do
9: Set φdwl ∝ exp{Eq[log θdl] + Eq[log βlw]}

10: Set γdl = α+
∑
w φdwlndw

11: end for
12: end for
13: until 1

Md

∑
l |change in γdl| < 0.00001

14: M step:
15: Compute λ̃lw = η +Dndwφdwl
16: Set λ = (1− ρd)λ+ ρdλ̃.
17: end for

3.2 Distribution Similarity Ranking
After constructing the “topic-label” database, we have to rank distributions for a given topic. To compute
similarity between two distributions, there are many metrics, such as Kullback-Leibler divergence
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(KL divergence, KL) and Jensen-Shannon Divergence (JSD). Generally speaking, the vocabulary of a
distribution is large (over 100K) while the number of records in database is also large, thus it’s costly in
computing and storage. For example, assume that the number of vocabulary is 100,000, the number of
topics is 100,000, and the size of a float is 4 bytes, we need at least 40G space to store distributions.

Locality Sensitive Hashing (LSH), as a dimensionality reduction technique, has been widely applied
in large-scale data mining, such as near-duplicate webpage detection (Manku et al., 2007) and image
retrieval (Vogel and Schiele, 2007). The key idea of LSH is to assign a number to each point in a metric
space by a function h uniformly selected from a family of hashing functions H so that the probability of
collision (i.e., assigned by an identical number) is much higher for points close to each other than those
far apart (Charikar, 2002). LSH functions involve the creation of short signatures (fingerprints) for each
vector (point) in space such that those vectors that are closer to each other are more likely to have similar
fingerprints. LSH functions are generally based on randomized algorithms and are probabilistic.

Based on LSH technology, the proposed distribution similarity ranking method will take the following
three steps, described below.

3.2.1 Initial Ranking
To accelerate distribution similarity comparison and decrease the storage space, we will choose two
representative types of LSH, cosine hash family (Simhash (Charikar, 2002)) and the Euclidean hash
family (P-stable LSH (Datar et al., 2004)), as initial distribution similarity metrics.

Given a probability distribution (i.e. a topic), after obtained the ranked list of topics by a distribution
similarity metric (such as Simhash, P-stable LSH), the corresponding labels of returned topics can be used
to label the given topic. Because it’s useless to assign too many labels to a topic, our systems will return
top-20 topics for each given topic.

3.2.2 Re-ranking
A distribution similarity metric does not consider the inherent property of topics. For example, two
different points in a probability vector set might have the same label. Thus, we have to consider the nature
of topics. Because top-n words of similar topics should be similar, so we will re-rank the order of topics
by making use of overlap similarity between top-n word set of the given topic and each in top-20 returned
topics. Top-n, as a parameter, will be selected by experiments.

3.2.3 Sequential Interleaving of Two Lists
Given two ranking lists generated by different methods, to obtain benefit from the both results, we consider
an interleaving process on these two ranking lists to obtain a better ranking list. Lots of works have been
done to interleave two ranking lists of documents in information retrieval area (Hofmann et al., 2011;
Hofmann et al., 2012; Chukllin et al., 2015). We borrow the interleaving idea in information retrieval area
to handle this problem, and propose a a novel interleaving algorithm, called Sequential Interleaving, to
obtain a better ranking list by merging two ranking lists.

In a retrieved list generated by an algorithm, the ranking position of a topic in the list can be treated as
a reflection of “confidence level”, which is how “good” the algorithm thinks the topic is similar to the
given topic. Intuitively, the confidence level CL(p, Lr) for the probability distribution p of the position r
in the ranking list L, should be an inverse function form of the ranking position r. To define the function
form of CL(p, Lr), we inspect the metrics used to evaluating a retrieved list in information retrieval. DCG
is a ranking-aware metric which can effectively evaluate how relevant a ranking list is for the query. Its
widely-used binary value form (Chapelle et al., 2012) is defined as:

DCG(L) =

len(L)∑
r=1

relLr

log2(r + 1)
(5)

where relLr is the relevance of the document ranked at r in the ranking list L. In this formula, DCG
reflects total confidence level of all documents in the ranking list, thus we can define CL(p, Lr) as:

CL(p, Lr) =

{
1

log2 (r+1)
p ∈ L,

0 p /∈ L. (6)
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where p is a probability distribution, and r is the ranking postion of p in the ranking list L.
Given a topic, there are two ranking lists of top-k similar probability distributions (i.e. topics), and the

goal is to combine the two ranking lists to obtain a better top-k ranking list. We first obtain the union of
the two ranking lists L1 and L2, then for each probability distribution p in the union, to compute the total
confidence level of p by the following simple formula:

TotalCL(p, L1, L2) = α
∑
L1i

=p

CL(p, L1i) + (1− α)
∑
L2j

=p

CL(p, L2j ) (7)

where L1i = p denotes the probability distribution p is at the position i in the ranking list L1, and α is
a prior weighting factor. Finally, we sort all the probability distributions by using TotalCL(p, L1, L2),
and then give the top-k similar interleaved probability distributions as final ranking result; and thus the
labels of these distributions are the top-k candidate labels for the given topic. The proposed algorithm
is called Sequential Interleaving. Because the proposed framework requires the high speed of k-nearest
neighbor search for a given topic, only locality sensitive hashing algorithms satisfy the condition, thus
we combine the re-ranking lists of Simhash and P-stable by proposed Sequential Interleaving method to
obtain a ranking list, and abbreviated as si. In this paper, we fairly treat the re-ranking results of Simhash
and P-stable by setting α = 0.5.

4 Experiments and results

In this section, we present the results of the efficiency and effectiveness of the proposed method over three
data sets.

4.1 Experiment Setup

Data Sets: We explore three different genres of data sets: the Simulated data (SIMU), the Conference
proceedings (CONF), the Twitter dataset (TW). To construct the first dataset, we simulated 10,000 distribu-
tions over 10,000 words (DB10000,10000), and 100,000 distributions over 10,000 words (DB100000,10000).
After collecting 2,924 fullpapers of four conference (SIGIR, SIGKDD, CIKM, and WWW) proceedings
from the year 2010 to 2013, from Google Scholar, conference u-disks and authors’ homepage, we obtained
the second dataset. The last dataset contains 2.1G microblogs with 3503 hashtags, which removed
microblogs without hashtag and hashtags whose idf is less than 50, downloaded from Twitter website in
six days. We built “topic-label” database over the last two data sets by our OLLDA algorithm. Specifically,
for CONF, we trained OLLDA over the data from CIKM2013 to obtain probability distributions with
labels as test queries, and trained OLLDA over the remaining data as “topic-label” database; for TW,
to increase the number of points with same labels in a probability vector set, we split the dataset into
12 pieces according to the time order, and trained separately OLLDA over the 1th ∼ 11th pieces as
“topic-label” database, and over the 12th piece as test queries. All test queries in two datasets can be as the
new emerging topics. After training, the statistics of data sets are shown in Table 1 2.

Baselines: Because proposed framework is totally different with existing methods, e.g., the input
of most of existing methods is a topic and a collection which generates the topic, and the input of the
proposed framework is only a topic, thus, we cannot compare them directly. Meanwhile there is no related
work that focus on efficiency of topic labeling. Essentially, the core of the proposed framework is the
comparison among distributions, thus, we choose KL divergence (KL) and Jensen-Shannon Divergence
(JSD) as distribution similarity metrics in our framework, as baselines. All methods in this paper are
denoted as FRmetric,ranking stage, where metric means which distribution similarity metric to choose,
and ranking stage means Initial Ranking or Re-ranking. We use “1” to denote “Initial Ranking” and “2”
denote “Re-ranking”. For example, assume that the distribution similarity metric is JSD, and just use
initial ranking, the method can be denoted as FRjsd,1. The sequential interleaving result of the ranking
lists of FRsh,2 and FRps,2 is denoted as FRsi.

All experiments were conducted on a server with dual 6-core Intel i7 cpus with 3.4Ghz, 32G memory.
2All “topic-label” databases have been published at “https://github.com/TopicLabeling/tldb”.
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4.2 Efficiency of Distribution Similarity Metrics over Simulated Data
We sample respectively 20 probability distributions fromDB10000,10000 andDB100000,10000 as test queries
and rank the distributions in corresponding SIMU dataset, then compute avarage time per query and space
cost. Because the main cost in our distribution similarity ranking is spent in “Initial Ranking” stage, and
the cost of re-ranking is little, thus only report the results in “Initial Ranking” stage. Table 2 shows a
detailed comparison of FRkl,1, FRjsd,1, FRsh,1 and FRps,1 on two SIMU datasets. We can make two
observations from the table: the computing time and storage space of FRps,1 and FRsh,1, are significantly
less than that of baseline methods. In a word, the efficiency of LSH significantly outperforms the baselines
in terms of time and space.

Table 1: The statistics of CONF
and TW data sets.

CONF TW
Num. of Vocabulary 25,160 189,841

Num. of Labels 586 3,503
Num. of Distributions 957 12,139

Table 2: The efficiency of four methods over the
SIMU datasets.

DB10000,10000 DB100000,10000

Methods Time (s) Space (M) Time (s) Space (M)
FRkl,1 5.761 1,230.830 546.514 12,0206.272
FRjsd,1 5.051 1,206.972 656.120 12,211.392
FRsh,1 0.078 115.996 0.504 674.750
FRps,1 0.075 411.028 0.689 4,020.030

4.3 Performance of Proposed Framework over Real-world Data
As described above, the distributions in our “topic-label” database has their corresponding labels, which
are used as standard labels (ground truth). We first show some sample results of our fast labeling methods
in Table 4. For comparison, we also show the baselines’ labels and standard labels for the same topics. It
is clear that the rapidly generated labels can all capture the meaning of the topic to some extent; indeed,
most of them are as good as standard labels (e.g., “social network” and “michael jackson”), though some
are not (e.g., “text classification”) but they are similar to standard labels.

4.3.1 Efficiency of OLLDA
OLLDA has several learning parameters: κ ∈ (0.5, 1] and τ0 ≥ 0. Similar to Hoffman’s parameter
choosing method (Hoffman et al., 2010), we also set κ = 0.5 and τ0 = 64 as the best learning parameter
settings for both corpora.

In this experiment, we evaluated the efficiency of OLLDA, compared with batch LLDA (BLLDA). We
simulated the situation that documents are coming in a stream. For our OLLDA, the model parameters are
updated every time a new document arrives. We computed total training time cost at some points of the
seen documents using OLLDA. As for BLLDA, we computed the training time cost at the same points,
and note that each run has to use all of the documents previously seen.
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Figure 2: Training Time On Two Real Datasets

When a new document arrives, BLLDA has to run over all observed documents for many iterations
again. Since the time for each iteration grows with the number of documents, the total time for BLLDA
grows fast. However, OLLDA only processes the new coming document and update parameters. Thus,
as Figure 2 shows, BLLDA costs much more time to get the new parameters compared with OLLDA,
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especially when the number of observed documents is large. When running over the entire Conf corpus,
the training time of OLLDA is less than 400 seconds, while BLLDA takes more than 3,000 seconds,
which is about 8 times longer. Over TW dataset, BLLDA takes more than 10,000 seconds, while OLLDA
takes less than 6,000 seconds.

In Figure 2 (b), when the number of observed documents is large, the time cost increases quickly for
OLLDA and BLLDA, because of the greater number of parameters and IO cost. However, OLLDA still
performs better than BLLDA. If we use mini-batch trick and other optimize technologies in OLLDA, the
efficiency of OLLDA will get greater improvement.

4.3.2 Effectiveness of Distribution Similarity Ranking
We compute the following performance metrics over CONF and TW dataset: (1) Match at top N results
(Match@N), which indicates whether the top N results contain any correct labels; (2) Precision at top N
results (P@N).

Table 3: The effectiveness of four methods over the CONF and TW datasets.

Datasets Methods Match@N P@N
N=1 N=3 N=5 N=10 N=1 N=3 N=5 N=10

CONF

FRkl,1 0.0000 0.0000 0.0069 0.0069 0.0000 0.0000 0.0014 0.0007
FRjsd,1 0.1458 0.2569 0.2847 0.3819 0.1458 0.0949 0.0667 0.0458
FRsh,1 0.0347 0.0556 0.0764 0.1667 0.0347 0.0208 0.0181 0.0181
FRsh,2 0.0833 0.1458 0.1597 0.1806 0.0833 0.0556 0.0375 0.0236
FRps,1 0.0000 0.0208 0.0278 0.0556 0.0000 0.0069 0.0056 0.0056
FRps,2 0.0556 0.0694 0.0903 0.1042 0.0556 0.0255 0.0208 0.0125
FRsi 0.0972 0.1528 0.1736 0.2153 0.0972 0.0556 0.0389 0.0271

TW

FRkl,1 0.0500 0.0500 0.1000 0.1000 0.0500 0.0500 0.0500 0.0350
FRjsd,1 0.9000 0.9000 0.9500 1.0000 0.9000 0.6000 0.5300 0.4550
FRsh,1 0.9000 0.9500 0.9500 0.9500 0.9000 0.6167 0.5300 0.4600
FRsh,2 0.9000 0.9500 0.9500 0.9500 0.9000 0.6167 0.5300 0.4500
FRps,1 0.8500 0.9000 0.9000 0.9000 0.8500 0.6000 0.5200 0.4550
FRps,2 0.9000 0.9000 0.9000 0.9000 0.9000 0.5833 0.5200 0.4500
FRsi 0.9500 0.9500 0.9500 1.0000 0.9500 0.6167 0.5300 0.4600

Table 4: Sample topics and algorithm-generated labels from TW dataset.

CONF TW
Stand.
Label recommender systems social network text classification michaeljackson treat rugby

FRkl,1
(Top-3)

personal information m
anagement
recommender
location selection

location selection
sensemaking
spreadsheets

personal information m
anagement
image clustering
recommender

glamourkills
twitdraw
140kingofpop

voss
bonjovi
tinychat

ff
brazilmissesdemi
dietalk

FRjsd,1
(Top-3)

collaborative filtering
matrix factorization
collaborative filtering

social networks
social networks
privacy

query classification
graph regularization
active learning

michaeljackson
michaeljackson
thisisit

trick
fb
happyhalloween

fb
nhl
rugby

FRsh,1
(Top-3)

collaborative filtering
matrix factorization
recommender systems

social networks
social networks
social search

query classification
domain adaptation
hierarchical classification

michaeljackson
michaeljackson
uknowurblackwhen

trick
story09
yeg

rugby
rugby
rugby

FRps,1
(Top-3)

diversity
personalization
evaluation

topic model
social-network analysis
social network

semi-supervised learning
machine learning
evaluation

michaeljackson
mj
fb

trick
fb
love

fb
rugby
fb

FRsi
(Top-3)

collaborative filtering
matrix factorization
personalization

social networks
social-network analysis
social networks

query classification
semi-supervised learning
hierarchical classification

michaeljackson
michaeljackson
michaeljackson

trick
trick
treat

rugby
rugby
rugby

Top-10

users
item
rating
items
ratings
recommendation
collaborative
filtering
methods
recommender

social
network
graph
users
content
group
nodes
labels
such
people

training
documents
domain
classification
articles
method
text
test
used
terms

michaeljackson
jackson
michael
shirts
ringtone
jacko
ringtones
movie
kingofpop
our

brother’s
wapo
today
incredible
trife
strokes
things
when
somebody
sense

rugby
davidarchie
uia
game
beginnings
try
great
after
fatal
be4

From Table 3, we can make several observations: (1) For both datasets, FRx,2 performs better than
FRx,1, x denotes sh or ps, which shows that the step “Re-ranking” is effective. (2) For both datasets,
FRsi performs better than FRsh,2 and FRps,2, which shows that the step “Sequential Interleaving” is
effective. (3) For both datasets, FRjsd,1 performs better than FRsh,1 and FRps,1 in most cases, which
shows that JSD is good distribution similarity comparision method. However, the time cost of FRjsd,1 is
higher than LSH methods, showed in Table 5. (4) For both datasets, the performance of FRps,1 is alway
poorer than that of FRsh,1. Given a probability distribution ~p, assume that P is the set of all probability
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distributions, and the set S1 = {pi| cos−1 ~pi·~p
‖~pi‖ ‖~p‖ ≤ θ, pi ∈ P}, and assume that ~p0 is a probability

distribution, which satisfies p0 = argminpi∈S1 ‖~pi − ~p‖, and the set S2 = {pi| ‖~pi − ~p‖ ≤ ‖~p0 − ~p‖}.
It’s easy to prove that S2 ⊆ S1. That means: the point p0 locates in the bound of S1 and S2, however,
the set for Euclidean-based methods is subset of the one for angle-based methods, which means that
the ability of finding KNN points for angle-based methods are better than the one for Euclidean-based
methods in probability distributions. Thus, FRsh,1 always performs better than FRps,1. (5) For CONF
dataset, the metric values of all methods are not high. Because our metrics only count the labels which
are same as standard labels, and ignore the similar labels. Furthermore, the ratio (Num.ofDistributionsNum.ofLabels )
in CONF is small (showed in Table 1). Small ratio means that a lable has fewer points in a probability
vector set, thus it’s natural that the values of all metrics are very low. Thus, we evaluate all ranking results
judged manually by three students, and take use of voting method to obtain the final results, showed in
Table 6. The table shows that the metric values increase, and FRsi performs best. (6) For TW dataset,
the performance of FRsi is the best among all methods. The improvements are significant by t-test at
the 95% significance level. Thus, the overall results show that proposed distribution similarity ranking is
effective. Meanwhile, because the test queries in two datasets can be as the new emerging topics, thus the
results also show that the proposed method can handle the new emerging topics.

Table 5: The efficiency over the
CONF and TW datasets.

CONF TW
Methods Time (s) Time (s)
FRkl,1 0.0727 1.9823
FRjsd,1 0.2310 10.0959
FRsh,1 0.0024 0.0541
FRps,1 0.0260 0.2594

Table 6: The results of human judge over CONF dataset.

Methods Match@N P@N
N=1 N=3 N=5 N=10 N=1 N=3 N=5 N=10

FRkl,1 0.100 0.200 0.200 0.500 0.100 0.067 0.050 0.065
FRjsd,1 0.350 0.650 0.700 0.900 0.350 0.467 0.360 0.295
FRsh,1 0.350 0.600 0.700 0.750 0.350 0.300 0.280 0.210
FRps,1 0.200 0.250 0.450 0.800 0.200 0.167 0.150 0.175
FRsi 0.467 0.750 0.831 0.950 0.467 0.530 0.455 0.375

4.3.3 Efficiency of Distribution Similarity Ranking
For each query in test set, we rank the distributions in corresponding dataset, then compute avarage time
per query. Table 5 shows a detailed comparison of FRsh,1, FRps,1, FRkl,1 and FRjsd,1 on TW and
CONF. We can make following observations: the computing time of FRps,1 and FRsh,1, are significantly
less than other methods. In a word, the efficiency of the proposed distribution similarity ranking method
based on LSH significantly outperforms the baselines in terms of time.

5 Conclusion

In this paper, we cast the rapid labeling problem as a k-nearest neighbor (KNN) search problem among
existing “topic-label” database, which is updated uninterruptedly by online learning from the latest data.
The experimental results show that the proposed framework can generate meaningful labels that are useful
for interpreting topics in real time.
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