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Abstract

In this paper we explore the novel idea of building a single universal reordering model from En-
glish to a large number of target languages. To build this model we exploit typological features
of word order for a large number of target languages together with source (English) syntactic
features and we train this model on a single combined parallel corpus representing all (22) in-
volved language pairs. We contribute experimental evidence for the usefulness of linguistically
defined typological features for building such a model. When the universal reordering model is
used for preordering followed by monotone translation (no reordering inside the decoder), our
experiments show that this pipeline gives comparable or improved translation performance with
a phrase-based baseline for a large number of language pairs (12 out of 22) from diverse language
families.

1 Introduction

Various linguistic theories and typological studies suggest that languages often share a number of prop-
erties and that their differences fall into a small set of parameter settings (Chomsky, 1965; Greenberg,
1966; Comrie, 1981). While this intuition has influenced work on multilingual parsing (Zeman and
Resnik, 2008; McDonald et al., 2011), it has found less practical use in other areas of natural language
processing, such as the task of machine translation. In machine translation, significant word order differ-
ences between languages often constitute a challenge to translation systems. Word order differences are
frequently given special treatment, such as in the case of preordering (Xia and McCord, 2004; Neubig
et al., 2012; Stanojević and Sima’an, 2015, inter alia), which is a technique heavily used in practice
as a means to improve both translation quality and efficiency. In preordering, word order is predicted
based on manually created rules or based on statistical models estimated on word-aligned training data
exploiting only source language features. This approach works well for some language pairs, however it
usually demands a separate, dedicated preordering model for every source-target language pair, trained
on a word-aligned corpus specific for the particular language pair.

But if the similarities and differences between languages can indeed be captured with a small set of
features, as linguistic theory suggests, then it seems more expedient to try to benefit from the similarities
between target languages in the training data, which is not possible when training a separate preordering
model for every new target language. Ideally, the word-aligned data obtained for various target languages
should be combined to train a single, universal reordering model with a single set of features. The
questions addressed in this paper are (1) could a linguistically inspired universal reordering model show
any promising experimental results and (2) how can such a universal reordering model be built?

For building an effective universal reordering model, we need access to a resource that describes the
similarities and differences between (target) languages in a small set of properties. The World Atlas
of Language Structures (Dryer and Haspelmath, 2013), WALS, is a major resource which currently
specifies the abstract linguistic properties of 2,679 languages.1 In this paper we explore the use of the

This work is licensed under a Creative Commons Attribution 4.0 International License. License details: http://
creativecommons.org/licenses/by/4.0/

1http://wals.info/languoid
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linguistically defined WALS features for a broad range of target languages and show that these features
have merit for building a single, universal reordering model. The universal reordering model is based on
a feed-forward neural network which is trained to predict the target word order given source syntactic
structure and all available WALS parameter settings for each of the 22 target languages involved. By
training the feed-forward neural network on the WALS-enriched data from a broad range of target lan-
guages, we enable the universal reordering model to both learn how much to trust the WALS parameters
and to exploit possible interactions between them for different target languages. When the universal re-
ordering model is followed by monotone translation (no reordering inside the decoder), our experiments
show that this pipeline gives comparable or improved translation performance to a Moses baseline with
standard distortion settings, for a large number of language pairs. This suggests that typological target
language features could play a key role in building better, more general preordering models, which have,
heretofore, been trained solely on source sentences and word alignments, but had no access to other
target-side information.

We believe that the experiments presented in this paper have both theoretical and practical implica-
tions. Firstly, they show the utility and provide empirical support for the value of linguistic typology.
Secondly, they enable building more compact preordering models that should generalize to a broad set
of target languages and which potentially apply for the low resource setting where no or little parallel
data is available for a specific target language.

2 Related Work

The most basic usage of linguistic knowledge in preordering is in restricting the search space of possible
reorderings by using syntactic parse trees. Earlier work was done mostly on constituency trees (Khalilov
and Sima’an, 2012; Xia and McCord, 2004) while more recent versions of preordering models mostly
use dependency trees (Lerner and Petrov, 2013; Jehl et al., 2014). Preordering in syntax-based models
(whether dependency or constituency) is done on the local level where for each constituent (or head
word) the classifier decides how the children (or dependent words) should be reordered.

Employing classifiers to make local decisions on each tree node is one machine learning approach to
solving this problem. An alternative to employing machine learning techniques is the use of linguistic
knowledge that can in some cases give clear rules for the reordering of children in the tree. An early
example of rule-based preordering is by Collins et al. (2005), who develop linguistically justified rules
for preordering German into English word order. Similar in spirit but much simpler is the approach of
Isozaki et al. (2010), who exploit the fact that Japanese word order is in large part the mirror image of
English word order—the heads of constituents in English are in final position while in Japanese they
are in initial position. Preordering English sentences into Japanese word order thus only involves two
simple steps: (1) Finding the parse tree of the English sentence (the authors used HPSG derivations) and
(2) moving the head of each constituent to the initial position. However, this approach does not seem to
scale up easily because manually encoding reordering rules for all the world’s language pairs would be a
rather difficult and very slow process.

In contrast to manually encoding rules for language pairs, we could use similarities and differences be-
tween target languages encoded in existing typological databases of structural properties of the world’s
languages, e.g., the World Atlas of Language Structures, WALS (Dryer and Haspelmath, 2013). There-
fore, the challenge taken up in the present work is how to exploit typological databases such as WALS
to guide the learning algorithm into making the right decisions about word order. So if, for instance,
a feature indicates that the target language follows VSO (verb-subject-object) word order, then the pre-
ordering algorithm should learn to transform the English parse tree from SVO into a VSO tree. Using
typological features like these in a machine learning system for preordering constitutes a compromise
between knowledge-based (rules) and data-driven (learning) approaches to preordering.

Researchers in linguistic typology have produced various initiatives to collect typological data in a
centralized and structured format out of which WALS is the most comprehensive one. We briefly discuss
WALS in Section 3. WALS has been used before in computational linguistics, e.g., by Östling (2015)
who performed a typological study of word order based on a corpus of New Testament translations in 986
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Feature Name Distribution of Values Feature Name Distribution of Values

37A Definite Articles 82A Order of Subj. and Verb
46A Indefinite Pronouns 83A Order of Object and Verb
48A Person Marking on Adpositions 84A Order of Object, Oblique, and Verb
52A Comitatives and Instrumentals 85A Order of Adposition and NP
53A Ordinal Numerals 86A Order of Genitive and Noun
54A Distributive Numerals 87A Order of Adjective and Noun
55A Numeral Classifiers 88A Order of Demonstrative and Noun
56A Conj. and Universal Quantifiers 89A Order of Numeral and Noun
57A Pos. of Pron. Poss. Affixes 90A Order of Relative Clause and Noun
61A Adjectives without Nouns 91A Order of Degree Word and Adj.
66A The Past Tense 92A Position of Polar Quest. Particles
67A The Future Tense 93A Position of Interr. Phrases
68A The Perfect 94A Order of Adv. Subord. + Clause
69A Pos. of Tense-Aspect Affixes 95A Rel. of Obj. + Verb and Adp. + NP
81A Order of Subj., Obj. and Verb 96A Rel. of Obj. + Verb and Rel. Clause + Noun
81B Two Dominant SVO Orders 97A Rel. of Obj. + Verb and Adj. + Noun

Table 1: WALS features potentially relevant to determining word order.

languages. This study found that the word order typology created from such data and the information
in WALS show a high level of agreement. Finally, Bisazza and Federico (2016) survey word reordering
in machine translation and categorize languages based on their WALS features. In the present work, we
make novel use of linguistic typological features from WALS for building a universal reordering model.

3 Linguistic Typology

The field of linguistic typology studies the similarities and distinguishing features between languages
and aims to classify them accordingly. Among other areas, the World Atlas of Language Structures
describes general properties of each language’s word order. Overall, WALS contains 192 features, but
not all features are relevant to determining word order. Many WALS features deal with phonology,
morphology or lexical choice: Feature 129A, for example, describes whether the language’s words for
“hand” and “arm” are the same. Hence, for simplicity’s sake we pre-select the subset of WALS features
potentially relevant to determining word order and describe this subset in the following. Table 1 provides
an overview of these features, along with an indication of the relative frequency distribution of each of
their values over all languages in WALS.

One of the most common ways to classify languages is according to the order of the subject, the
object and the verb in a transitive clause. Accordingly, a number of WALS features describe the order
of these elements. WALS Feature 81A classifies languages into 6 dominant clause-level word orders.
For languages such as German or Dutch, which do not exhibit a single dominant clause-level order,
Feature 81B describes 5 combinations of two acceptable word orders. Additionally, two features describe
whether the verb precedes the subject (82A) and whether the verb precedes the object (83A). The position
of adjuncts in relation to the object and the verb are described in Feature 84A and the internal structure
of adpositional phrases is described in Feature 85A, which specifies whether the language uses pre-,
post- or inpositions. Finally, the following properties describe the order of words in relation to nouns:
Feature 86A specifies the position of genitives (e.g. the girl’s cat), Feature 87A the position of adjectives
(e.g. yellow house), Feature 89A the position of numerals (e.g. 10 houses) and Feature 90A the position
of relative clauses (e.g. the book that I am reading) in relation to the noun.

4 Universal Reordering Model

Our universal reordering model uses a preordering architecture similar to the (non-universal) preorder-
ing model of De Gispert et al. (2015), which in turn is based on the authors’ earlier work on logistic
regression and graph search for preordering (Jehl et al., 2014).

4.1 Basic Preordering Model

In this neural preordering model, a feed-forward neural network is trained to estimate the swap probabil-
ities of nodes in the source-side dependency tree. The learning task is defined as follows: How likely is
it that two nodes a and b are in the linear order (a, b) or (b, a) in the target language? Preordering then
consists of finding the best sequence of swaps according to this model. While De Gispert et al. (2015)
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Figure 1: Training and application of basic preordering models and the universal reordering model.

use a depth-first branch-and-bound algorithm to find the best permutation, we use the k-best version of
this algorithm and minimize the resulting preordering finite-state automaton to produce a lattice of word
order choices (Daiber et al., 2016).

Model estimation Training examples are extracted from all possible pairs of children of the source
dependency tree node, including the head itself. The crossing score of two nodes a and b (a precedes b
in linear order) and their aligned target indexes Aa and Ab is defined as follows:

cs(a, b) = | {(i, j) ∈ Aa × Ab : i > j} |
A pair (a, b) is swapped if cs(b, a) < cs(a, b), i.e. if swapping reduces the number of crossing align-

ment links. Training instances generated in this manner are then used to estimate the order probability
p(i, j) for two indexes i and j. The best possible permutation of each node’s children (including the
head) is determined via graph search. The score of a permutation π of length k consists of the order
probabilities of all possible pairs:

score(π) =
∏

1≤i<j≤k|π[i]>π[j]

p(i, j) ·
∏

1≤i<j≤k|π[i]<π[j]

1 − p(i, j)

De Gispert et al. (2015) use a feed-forward neural network (Bengio et al., 2003) to predict the orien-
tation of a and b based on 20 source features, such as the words, POS tags, dependency labels, etc.2

Permutation lattices To find the sequence of swaps leading to the best overall permutation according
to the model, the score of a permutation is obtained by extending a partial permutation π′ of length k′ by
one index i (Jehl et al., 2014). This score can be efficiently computed as:

score(π′ · ⟨i⟩) = score(π′) ·
∏

j∈V |i>j

p(i, j) ·
∏

j∈V |i<j

1 − p(i, j)

Instead of extracting the single-best permutation, we use the k-best extension of branch-and-bound
search (van der Poort et al., 1999). The resulting k-best permutations are then compressed into a minimal
deterministic acceptor and unweighted determinization and minimization are performed using OpenFST
(Allauzen et al., 2007).

4.2 Estimating a Universal Reordering Model
The universal reordering model differs from the basic neural preordering model in terms of features and
training data collection. Differences in training data collection and application are illustrated in Figure 1.

2Full set of features: words, word classes, dependency labels, POS tags, coarse POS tags, word and class of the left-most
and right-most child token, and the tokens’ distance to their parent.
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(a) Absolute 1-best Kendall τ improvements.

Manual word alignments Automatic word alignments

Language τ@10 τ@100 τ@1000 τ@10 τ@100 τ@1000

French +01.95 +03.05 +03.05 +01.28 +02.12 +02.13
German +04.03 +05.61 +05.61 +06.85 +08.27 +08.27

Italian +06.39 +06.75 +06.75 +03.07 +03.32 +03.32
Portuguese +05.87 +07.89 +07.89 +03.24 +03.55 +03.55

Spanish +05.97 +06.57 +06.57 +04.28 +05.11 +05.11
Romanian +02.49 +03.37 +03.37 +01.23 +02.09 +02.10

Swedish +00.13 +00.42 +00.42 +00.71 +01.18 +01.18

(b) N-best permutation quality on manually and autom. aligned data.

Figure 2: Intrinsic quality of word order predictions (improvement over source word order).

In addition to the source features used in the standard neural preordering model (cf. Section 4.1), we
add a feature indicating the source word order of the two tokens, as well as the type of end-of-sentence
punctuation. We then add WALS features 37, 46, 48, 52–57, 61, 66–69 and 81–97. WALS features are
represented by their ID and the value for the current target language (e.g. “WALS 87A=Adj-Noun” or
“WALS 87A=Noun-Adj”). For the most basic word order features (81, 82 and 85–91), we additionally
add a feature indicating if the order of the node pair agrees with the order specified by the WALS feature.3

While the training data for a standard preordering model consists of source sentences and their target-
language order retrieved via word alignments, the training data for the universal reordering model is
comprised of training examples from a large number of language pairs. Because of the diversity of this
data, special care has to be taken to ensure a balanced dataset. We use an equal number of sentences from
each language-specific training subcorpus. Additionally, we reduce class imbalance by further randomly
shuffling the source tokens when creating training instances. This ensures a balanced distribution of
classes in the training data. The distribution of the two classes is 84.5%/15.5% in the original and
50.1%/49.9% in the randomized dataset.

4.3 Intrinsic Evaluation

We use NPLM (Vaswani et al., 2013) to train a feed-forward neural network to predict the orientation of
two nodes a and b based on the features described in Section 4.2. The network consists of 50 nodes on
the input layer, 2 on the output layer, and 50 and 100 on the two hidden layers. We use a learning rate of
0.01, batch sizes of 1000/64 and perform 60 training epochs, ensuring convergence of the log-likelihood
on a validation set.

Preordering data The training data for the universal reordering model consists of a combined corpus
of 30k sentence pairs each from the Tatoeba corpus (Tiedemann, 2012) for French, German, Japanese,
Portuguese, Russian, and Spanish as well as 100k sentence pairs each from the OpenSubtitles 2012
corpus (Tiedemann, 2012) for Spanish, Portuguese, Italian, Danish, Romanian, Swedish, French, Greek,
Russian, Polish, Arabic, Hebrew, Hungarian, Czech, Finnish, Icelandic, Dutch, Slovak, Chinese, German
and Turkish. Word alignments for all corpora were produced using MGIZA (Och and Ney, 2003) using
grow-diag-final-and symmetrization and performing 6, 6, 3 and 3 iterations of IBM M1, HMM, IBM M3
and IBM M4 respectively. To evaluate the model, we also use sets of manually word-aligned sentence for
the following language pairs: En–Ja (Neubig, 2011), En–De (Padó and Lapata, 2006), En–It (Farajian et
al., 2014), En–Fr (Och and Ney, 2003), En–Es and En–Pt (Graça et al., 2008).

Quality of word order predictions Figure 2a shows the intrinsically measured quality of the predic-
tions by the universal reordering model. We use Kendall τ (Kendall, 1938) to measure the correlation

3Example for WALS feature 87A=Adj-Noun: f(a, b) =

{
”W87A:ab” if a = adj ∧ b = noun
”W87A:ba” if a = noun ∧ b = adj
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Language # sent. # tok. BiHDE ↑ Language # sent. # tok. BiHDE ↑ Language # sent. # tok. BiHDE ↑

Spanish 800k 14.29 0.57 Greek 800k 14.36 0.65 Finnish 800k 14.36 0.69
Portuguese 800k 14.29 0.58 Russian 800k 15.08 0.65 Icelandic 800k 14.10 0.69

Italian 800k 14.68 0.61 Polish 800k 14.22 0.67 Dutch 800k 14.37 0.70
Danish 800k 14.50 0.62 Arabic 800k 14.84 0.68 Slovak 638k 15.08 0.70

Romanian 800k 14.24 0.64 Hebrew 800k 14.61 0.68 Chinese 636k 10.39 0.71
Swedish 800k 14.49 0.64 Hungarian 800k 14.33 0.68 German 800k 14.62 0.72

French 800k 14.25 0.65 Czech 800k 14.19 0.69 Turkish 800k 14.25 0.72

Table 2: Properties of training data from the 2012 OpenSubtitles corpus.

between the predicted word order and the oracle word order determined via the word alignments. Fig-
ure 2a plots absolute Kendall τ improvement over the original, i.e. unreordered, source sentence for the
single best permutation for a number of language pairs. The three worst-performing target languages
in Figure 2a, Estonian, Finnish and Hungarian, are all morphologically rich, indicating that additional
considerations may be required to improve word order for languages of this type. Figure 2b shows the
quality of n-best permutations of the universal reordering model for both manually and automatically
word-aligned sentence pairs. This table allows two observations: Firstly, the evaluation of word order
quality using automatic alignments shows good agreement with the evaluation using manually word-
aligned sentences, thus highlighting that automatic alignments should suffice for this purpose in most
cases. Secondly, we can observe that for all datasets presented in this table little is gained from in-
creasing the number of extracted permutations beyond 100 predictions. We therefore apply a maximum
number of 100 permutations per sentence in all experiments presented in the rest of this paper.

5 Translation Experiments

To evaluate the universal reordering model in a real-world task, we perform translation experiments on
various language pairs. As a baseline system, we use a plain phrase-based machine translation system
using a distortion-based reordering model with a distortion limit of 6. When applying the universal
reordering model, we produce a lattice from each sentence’s best 100 word order permutations. This
lattice is then passed to the machine translation system and no additional reordering is allowed. During
training, we choose the source sentence permutation closest to the gold word order determined via the
word alignments (lattice silver training; Daiber et al., 2016). The word alignments for the preordered
training corpus are then recreated from the original MGIZA alignments and the selected permutation.4

Translation experiments are performed with a phrase-based machine translation system, a version of
Moses (Koehn et al., 2007) with extended lattice support.5 We use the basic Moses features and perform
15 iterations of batch MIRA (Cherry and Foster, 2012). To control for optimizer instability, we perform
3 tuning runs for each system and report the mean BLEU score for these runs (Clark et al., 2011). As a
baseline we use a translation system with distortion limit 6 and a distance-based reordering model. For
each language pair, a 5-gram language model is estimated using lmplz (Heafield et al., 2013) on the target
side of the parallel corpus.

5.1 Evaluating on a Broad Range of Languages
In order to test the ideas presented in this paper, we evaluate our model on a broad range of languages
from various language families. While doing so, it is important to ensure that the results are not skewed
by differences in the corpora used for training and testing each language pair. We therefore build transla-
tion systems from the same corpus and domain for every language pair. We use the 2012 OpenSubtitles
corpus6 (Tiedemann, 2012) to extract 800,000 parallel sentences for each language pair, ensuring that
every sentence pair contains only a single source sentence and that every source sentence contains at
least 10 tokens. For each language pair, 10,000 parallel sentences are retained for tuning and testing.
We use English as the source language in all language pairs. Table 2 summarizes properties of the data

4To keep the experiments manageable, we opted not to re-align the preordered training corpus using MGIZA. Re-alignment
often leads to improved translation results, therefore we are likely underestimating the potential preordered translation quality.

5Made available at https://github.com/wilkeraziz/mosesdecoder.
6http://opus.lingfil.uu.se/OpenSubtitles2012.php
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BLEU ∆ BLEU BLEU ∆ BLEU

Language Baseline No WALS WALS ↓ Gold Language Baseline No WALS WALS ↓ Gold

Dutch 13.76 +0.11 +0.79 +3.44 Greek 7.22 −0.02 +0.01 +0.49
Italian 23.59 +0.04 +0.48 +1.83 Arabic 5.36 −0.10 −0.01 +0.36

Turkish 5.89 −0.36 +0.43 +0.80 Swedish 25.60 −0.14 −0.03 +2.04
Spanish 23.82 −0.27 +0.29 +1.98 Slovenian 10.56 −0.35 −0.10 +1.21

Portuguese 25.94 −0.48 +0.21 +1.64 Slovak 15.56 −0.09 −0.13 +1.98
Finnish 9.95 +0.13 +0.16 +0.51 Icelandic 14.97 −0.31 −0.14 +0.66
Hebrew 11.64 +0.30 +0.11 +2.24 Polish 17.68 −0.45 −0.16 +0.40

Romanian 16.11 +0.11 +0.11 +1.14 Russian 20.12 −0.47 −0.17 +0.92
Hungarian 8.26 −0.10 +0.10 +0.61 German 17.08 −0.21 −0.19 +3.31

Danish 26.36 −0.13 +0.08 +1.56 Czech 12.81 −0.47 −0.21 +0.70
Chinese 11.09 −0.32 +0.05 +0.44 French 19.92 −0.70 −0.23 +1.20

Table 3: Translation experiments with parallel subtitle corpora.

used in these experiments. Apart from the average sentence length and the number of training examples,
we report Bilingual Head Direction Entropy, BiHDE (Daiber et al., 2016), which indicates the difficulty
of predicting target word order given the source sentence and its syntactic analysis. The language pairs
in Table 2 are sorted by their BiHDE score, meaning that target languages whose word order is more
deterministic are listed first. For each language pair, we train four translation systems:

Baseline The baseline system is a standard phrase-based machine translation system with a distance-
based reordering model, a distortion limit of 6, and a maximum phrase length of 7.

Gold The gold system provides an indication for the upperbound achievable translation quality using
preordering. In this system, the tuning and test sets are word-aligned along with the training por-
tion of the corpus and the word alignments are then used to determine the optimal source word
order. While this system provides an indication for the theoretically achievable improvement, this
improvement may not be achievable in practice since not all information required to determine the
target word order may be available on the source side (e.g. morphologically rich languages can
allow several interchangeable word order variations). Apart from the source word order, the gold
system is equivalent to the Baseline system.

No WALS As a baseline for our preordering systems, we create a translation system that differs from our
universal reordering model only in the lack of WALS information. The preordering model is trained
using the standard set of features described in Section 4.1 with only a single additional feature: the
name of the target language. As in the WALS system, this system is applied by generating a mini-
mized lattice from the 100-best permutations of each sentence and restricting the decoder’s search
space to this lattice. This system therefore isolates two potential sources of improvement: (1) im-
provement due to restricting the search space by the source dependency tree and (2) improvement
from the preordering model itself, independent of the typology information provided by WALS.

WALS The WALS system applies the universal reordering model introduced in Section 4.2. For each
language pair, the preordering model is provided with the target language and all the WALS features
available for this language. The MT system’s search space is then restricted using the minimized
lattice of the 100-best word order permutations for each sentence and no additional reordering
within the MT decoder is allowed.

The results of the translation experiments using the OpenSubtitles corpora are presented in Table 3.
BLEU scores for the No WALS, WALS and Gold systems are reported as absolute improvement over the
Baseline system (∆ BLEU). Over the three tuning runs performed for each system, we observe minor
variance in BLEU scores (mean standard deviations: Baseline 0.04, No WALS 0.05, WALS 0.05, Gold
0.07), thus we report the mean BLEU score for each system’s three runs.

While performing monotone decoding (i.e., allowing no reordering on top of the input lattice), the
universal reordering model (WALS) enables improvements or comparable performance for the majority
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Dataset Baseline WALS

Language Domain # sent. # tok. BiHDE BLEU ∆ BLEU ↓

Turkish News 0.20m 23.54 0.73 8.27 +0.34
Spanish Parl. + News 1.73m 23.47 0.58 24.34 +0.18

Italian Parl. + News 1.67m 24.49 0.61 24.83 +0.13
Portuguese Parl. + News 1.73m 23.67 0.58 32.13 −0.08
Hungarian Parl. + News 1.41m 17.11 0.70 7.63 −0.19

Table 4: Translation experiments with varying training data and domains.

of the language pairs we evaluated while the No WALS system performs worse for most language pairs.
This suggests that the improvements are not due to the neural preordering model or the lattice-based
translation alone, but that the WALS information is crucial in enabling these results.

5.2 Influence of Domain and Data Size

While the experiments using the subtitle corpora presented in the previous section allow a fair comparison
of a large number of language pairs, they also exhibit certain restrictions: (1) all experiments are limited
to a single domain, (2) the source sentences are fairly short, and (3) to ensure consistent corpus sizes,
a limited number of 800k sentence pairs had to be used. Therefore, we perform an additional set of
experiments with data from different domains, longer sentences and a larger number of sentence pairs.

To train the translation systems for these experiments, we use the following training data: For En–
It, En–Es and En–Pt, we train systems on Europarl v7 (Koehn, 2005). En–Hu uses the WMT 2008
training data,7 En–Tr the SETIMES2 corpus (Tiedemann, 2009). Tuning is performed on the first 1512
sentences of newssyscomb2009+newstest2009 (En–It), newstest2009 (En–Es), newsdev2016 (En–Tr),
newstest2008 (En–Hu), and the first 3000 sentences of news commentary v11 (En–Pt). As test sets we
use the rest of newssyscomb2009+newstest2009 (En–It), newstest2013 (En–Es), newstest2016 (En–Tr),
newstest2009 (En–Hu), and the first 3000 sentences of news commentary v11 not used in the dev set (En–
Pt). All datasets are filtered to contain sentences up to 50 words long, and tokenization and truecasing
is performed using the Moses tokenzier and truecaser. Statistics about each dataset and the dataset’s
domains, as well as translation results for the baseline system and the universal reordering model are
summarized in Table 4. The results indicate that despite the longer sentences and different domains, the
universal reordering model performs similarly as in the experiments performed in Section 5.1.

Our intrinsic evaluation (Section 4.3) as well as the extrinsic evaluation on a translation task (Section 5)
indicate that a universal reordering model is not only feasible but can also provide good results on a
diverse set of language pairs. The performance difference between the No WALS baseline and the
universal reordering model (cf. Table 3) further demonstrates that the typological data points provided
by WALS are the crucial ingredient in enabling this model to work.

6 Conclusion

In this paper, we show that linguistics in the form of linguistic typology and modern methods in natural
language processing in the form of neural networks are not rivaling approaches but can come together in
a symbiotic manner. In the best case, combining both approaches can yield the best of both worlds: the
generalization power of linguistic descriptions and the good empirical performance of statistical models.
Concretely, we have shown in this paper that it is possible to use linguistic typology information as input
to a preordering model, thus enabling us to build a single model with a single set of model parameters for
a diverse range of languages. As an empirical result, our findings provide support for the adequacy of the
language descriptions found in linguistic typology. Additionally, they open the way for more compact
and universal models of word order that can be especially beneficial for machine translation between
language pairs with little parallel data. And finally, our results suggest that target-language typological
features could play a key role in building better preordering models.

7http://www.statmt.org/
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Declerck, Mehmet Uğur Doğan, Bente Maegaard, Joseph Mariani, Jan Odijk, and Stelios Piperidis, editors,
Proceedings of the Eighth International Conference on Language Resources and Evaluation (LREC-2012),
pages 2214–2218, Istanbul, Turkey, May. European Language Resources Association (ELRA).

Edo S van der Poort, Marek Libura, Gerard Sierksma, and Jack A.A van der Veen. 1999. Solving the k-best
traveling salesman problem. Computers & Operations Research, 26(4):409 – 425.

Ashish Vaswani, Yinggong Zhao, Victoria Fossum, and David Chiang. 2013. Decoding with large-scale neural
language models improves translation. In Proceedings of the 2013 Conference on Empirical Methods in Natural
Language Processing, pages 1387–1392, Seattle, Washington, USA, October.

Fei Xia and Michael McCord. 2004. Improving a statistical mt system with automatically learned rewrite patterns.
In Proceedings of the 20th International Conference on Computational Linguistics, COLING ’04, Stroudsburg,
PA, USA. Association for Computational Linguistics.

Daniel Zeman and Philip Resnik. 2008. Cross-language parser adaptation between related languages. In IJCNLP
2008 Workshop on NLP for Less Privileged Languages, pages 35–42, Hyderabad, India. International Institute
of Information Technology.

3176


