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Abstract

Selecting appropriate translations for source words with multiple meanings still remains a chal-
lenge for statistical machine translation (SMT). One reason for this is that most SMT systems
are not good at detecting the proper sense for a polysemic word when it appears in different
contexts. In this paper, we adopt a supersense tagging method to annotate source words with
coarse-grained ontological concepts. In order to enable the system to choose an appropriate
translation for a word or phrase according to the annotated supersense of the word or phrase, we
propose two translation models with supersense knowledge: a maximum entropy based model
and a supersense embedding model. The effectiveness of our proposed models is validated on
a large-scale English-to-Spanish translation task. Results indicate that our method can signifi-
cantly improve translation quality via correctly conveying the meaning of the source language to
the target language.

1 Introduction

Phrase-based SMT has achieved better performance than word-based SMT. One of the reasons is that
continuous phrases, rather than single words, are used as translation units so that useful context in-
formation can be captured for selecting appropriate translations. Even so, when translating sentences
containing ambiguous words, which have multiple meanings, the state-of-the-art phrase-based SMT is
still suffering from inaccurate lexical choice which makes translations unable to correctly convey the
meaning of source sentences. Recent studies show that in order to improve translation quality, one must
correctly identify the most likely senses of source-side ambiguous words when selecting target transla-
tion (Gao et al., 2013; Zou et al., 2013; Zhang et al., 2014).

One common approach to deal with ambiguity is to incorporate a word sense disambiguation (WSD)
system into SMT system. At first, Carpuat and Wu (2005) attempt to use the senses of source ambiguous
words predicted by a standard formulation of WSD directly in a word-based SMT but results are dis-
appointing. They are skeptical of the assumption that WSD systems are useful for SMT. Instead of the
standard WSD task, Vickrey et al. (2005) propose a novel formulation of WSD for SMT: directly pre-
dicting possible target translation candidates as senses for ambiguous source words. This reformulated
WSD has been shown to help SMT by several subsequent studies, including later work by Carpuat and
Wu (2007). Following this WSD reformulation for SMT, they integrate the WSD training, where sense
definitions are drawn automatically from all phrasal translation candidates rather than from a predefined
sense inventory into a phrase-based SMT.

In addition to WSD, topic model (Blei et al., 2003) is yet another technique used to detect most likely
senses of source words. Various topic-specific lexicon translation models are proposed to improve trans-
lation quality. These models can be classified into two categories: word-level translation models (Zhao
and Xing, 2006; Tam et al., 2007) and phrase-level models (Xiao et al., 2012). Especially, Xiong and
Zhang (2014) propose a sense-based translation model that integrates hidden word senses into machine
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translation to investigate whether hidden senses are useful for SMT. They resort to word sense induction
(WSI) and build a broad-coverage sense tagger that relies on the nonparametric Bayesian model to obtain
hidden senses for each source word in large-scale corpora. Different from what the previous reformu-
lated WSD does, they first predict word senses which are automatically learned from data for ambiguous
words and then make use of predicted word senses along with other context features to predict possible
target translations for these words. They conclude that word senses automatically induced by WSI are
very useful for SMT in dealing with inaccurate lexical choice.

However, all the models mentioned above are focusing on investigating how to exploit fine-grained
word senses (e.g., predefined senses, target translation candidates, hidden senses) in SMT to improve
translation quality. Then how about coarse-grained word senses such as supersenses that are WordNet
(Fellbaum, 1998) semantic labels grouping semantically close synsets into a coarse-grained ontology?
Are they useful for SMT? Since supersense tagging is the task of assigning high-level ontological classes
to open-class words such as nouns, verbs, it is thus a coarse-grained word sense disambiguation task.
To the best of our knowledge, we are the first to be dedicated to systematically investigating whether
supersenses can be used in SMT to alleviate source word sense translation errors. Specifically, we try to
model supersenses for SMT in the following two ways:

• A maximum entropy (MaxEnt) based model: Building multiple MaxEnt classifiers with one classi-
fier per source word type, which incorporate supersenses as features.

• And a supersense embedding model: Projecting word supersenses to a multidimensional vector
space with word2vec1, and inducing source phrase supersense embeddings for phrasal translation.

These two supersenses-based translation models are integrated into a state-of-the-art SMT system and
a series of experiments are conducted on English-to-Spanish translation based on large-scale training
data. Results show that supersenses, high-level ontological concepts, are capable of improving translation
quality and the supersense embedding model outperforms the MaxEnt classifiers-based model.

Our work is different from previous standard WSD, reformulated WSD and WSI with hidden senses
for SMT. The first uses fine-grained senses predefined by WordNet. The second explores surrounding
words to disambiguate word senses. And the third integrates topics inferred from pseudo documents as
hidden senses. We employ coarse-grained predefined categories from WordNet to disambiguate ambigu-
ous words for SMT.

The remainder of this paper is organized as follows. Section 2 introduces related studies exploiting
word sense knowledge to improve lexical selection in SMT and various applications of supersenses
and word embeddings. Section 3 elaborates how we obtain supersense tags for words in large-scale
data. Section 4 describes our supersense-based translation models. Section 5 presents the way that we
integrate supersense-based translation models into SMT. Section 6 discusses our experiments and results.
In section 7 we summarize our findings and directions for future work.

2 Related Work

The problem of accurate lexical choice is an unsolved challenge for phrase-based SMT. Much work has
been done to identify proper senses of source ambiguous words to aid system in choosing appropriate
translations. Integrating WSD into an SMT system is typical of this work as described in Section 1
(Carpuat and Wu, 2005; Vickrey et al., 2005; Carpuat and Wu, 2007; Chan et al., 2007). Exploring
topic model for SMT is another attempt. Gong et al. (2010) introduce document-level topics to help
SMT generate target translations. They use a monolingual LDA model to assign a specific topic to the
document to be translated. Similarly, each phrase pair is also assigned with one specific topic. A phrase
pair will be filtered from phrase table if its topic mismatches the document topic. Xiao et al. (2012)
propose a topic similarity model which incorporates the rule-topic distributions on both the source and
target side into a hierarchical phrase-based system for rule selection.

1https://code.google.com/archive/p/word2vec/
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noun Tops act animal artifact attribute
body cognition communication event feeling
food group location motive object

person phenomenon plant possession process
quantity relation shape state substance

time
verb body change cognition communication competition

consumption contact creation emotion motion
perception possession social stative weather

Table 1: Supersense labels for nouns and verbs in WordNet.

Supersenses are useful and have been used as high-level features in various tasks. Ciaramita and
Altun (2006) define a tagset based on WordNet supersenses to perform broad-coverage word sense dis-
ambiguation and information extraction which they approach as a unified tagging problem. They achieve
considerable improvements over the first sense baseline. Koo and Collins (2005) utilize supersense re-
ranking that provides a partial disambiguation step in syntactic parse to build useful latent semantic
features. Other tasks like preposition sense disambiguation (Ye and Baldwin, 2007), noun compound
interpretation (Tratz and Hovy, 2010) can also employ supersenses to improve performance.

Word embeddings, also called distributed word representations, are used in many natural language
processing areas such as information retrieval (Manning et al., 2008), search query expansions (Jones
et al., 2006), or representing semantics of words (Reisinger and Mooney, 2010). As to SMT, Zou et al.
(2013) propose a method to learn bilingual word embeddings for recognizing and quantifying semantic
similarities across languages.

Our work is to integrate supersenses into a phrase-based SMT. We adopt two ways to train our
supersense-based models: one is a MaxEnt classifier-based model which is closely related to Xiong
and Zhang’s (2014) work, the other is a model built on supersense embeddings that are different from
word embeddings in that supersense embeddings can provide more high-level semantic information than
word embeddings.

3 Supersense Tagging

Supersenses, first defined by Ciaramita and Johnson (2003), are coarse-grained semantic labels used by
lexicographers to facilitate the development of WordNet. There are 45 supersense labels, 26 for nouns,
15 for verbs, 3 for adjectives and 1 for adverbs, used in WordNet to classify synsets into several domains
based on syntactic category and semantic coherence. Normally, an ambiguous word belongs to several
synsets. Since supersense labels are assigned to synsets, word sense ambiguity can be preserved to a
certain degree at this level. In this paper, we focus on noun and verb supersenses. Table 1 shows the
corresponding supersense labels in WordNet.

We use supersenses as our semantic classes to tag our training data for obtaining contextual informa-
tion for the following advantages. First, this set of semantic labels is fairly general and therefore small.
The reasonable size of the label set makes it possible to have only one model. In contrast, we have one
model per word for fine-grained WSD. Second, the sensible semantic categories are easily recognizable
and not too abstract. Since similar words tent to be merged together, these semantic categories seem
promising to be used in MT. Third, while individual glossary can not embody too much about the narrow
concept it is attached to, at the supersense level this information accumulates. In order to be more intu-
itive, we take the verb “help” as an example to show how fine-grained senses are grouped in supersenses,
which is presented in Table 2.

In this paper, supersense tagging is carried out with a model based on Ciaramita and Altun’s (2006)
work. We deploy the implementation provided by Michael Heilman2. The model takes a sequence la-
beling approach to learn a model for supersense tagging. Specifically, we employ a sequential labeller

2http://www.ark.cs.cmu.edu/mheilman/questions/SupersenseTagger-10-01-12.tar.gz
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Supersense WN Senses Gloss
social 1 give help or assistance; be of service
social 6 contribute to the furtherance of
body 2 improve the condition of
stative 3 be of use
stative 4 abstain from doing; always used with a negative
change 8 improve; change for the better
consumption 5 help to some food; help with food or drink
consumption 7 take or use

Table 2: An example of grouping different fine-grained senses of a word into supersenses. WN senses:
senses from WordNet.

that is based on a Hidden Markov Model (HMM) trained in a discriminative way. That is, the model can
be seen as a perceptron-trained HMM (Collins, 2002) that jointly models observation/label sequences.
The model is trained on Semcor Corpus (Miller et al., 1993) following the experimental setting de-
scribed in Ciaramita and Altun (2006). WordNet fine-grained senses are mapped to their corresponding
supersense. In our case, only nouns and verbs are mapped, labeling as “NULL” the rest of the tokens
(including adjectives and adverbs). In some cases “noun.Tops” refers to more specific supersenses, such
as “food”, “person”, or “animal”. In those cases we substitute the “noun.Tops” with more specific label
(e.g “animal” as “noun.animal”). Although the tagger learns 41 semantic categories, we included (B)
beginning and (I) continuation as supersense prefixes to learn more categories. Thus, actual label space
to be learned increases to 83 (including “NULL”).

Semcor is divided in three parts: “brown1” and “brown2”, in which nouns, verbs, adjectives and
adverbs are annotated. But the section “brownv”, contains annotations only for verbs. To avoid many
nouns being labeled with “NULL” we take the same procedure as Ciaramita and Altun (2006) to extract
the text segment including a verb but not a noun.

Regarding features, our implementation replicates the features used in the original work, which include
words and part-of-speech tags occurring in a context-window, word-shapes of the surrounding words, the
first-sense of the word and the surrounding words, and the previous label. Please refer to the original
work for a more detailed description of the model.

4 Supersense-based Translation Model

In this section, we present two methods to build the proposed supersense-based translation models.

4.1 A MaxEnt Classifier-based Model

Given a source word c with its contextual information including supersenses, we resort to a MaxEnt
classifier to estimate the probability p(e|C(c)) of a target phrase e. The MaxEnt classifier is formulated
as follows.

P (e|C(c)) =
exp(

∑
i θihi(e, C(c)))∑

e′ exp(
∑

i θihi(e′, C(c)))
(1)

where hi are binary features, θi are weights of these features.
We use two groups of features: lexicon features and supersense features, which are used to defineC(c)

as follows:
C(c) = {c−k, sc−k

, ..., c−1, sc−1 , c, sc, c1, sc1 , ..., ck, sck
} (2)

where c represents words and s for supersenses. In this way, not only centered word c and its supersenses
sc are included, but the preceding and succeeding k words with their corresponding supersenses are also
involved. Particularly c−k is the kth preceding word of c and sc−k

is the supersense of word c−k. We
extract all training events defined by C(c) for each source word c and train multiple MaxEnt classifiers
with one classifier per source word.
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4.2 A Supersense Embedding Model

A traditional way to generate a phrase table is to use the training component of Moses3 that allows you
to automatically train translation models for any language pairs. Normally, each entry in the phrase table
contains a source phrase, a target phrase, their word alignments, and five types of translation scores.
From the training corpora where the source side is annotated with supersenses, we want to learn the
distribution of the supersenses tagged for a source-side phrase. In order to achieve this goal, we have
made some changes on the phrase extraction and scoring module of Moses training system to make them
output source word supersenses. The number of extracted phrase pairs are expanded greatly since the
same source phrase may correspond to several sequences of tagged supersenses.

With word2vec, we can train word sense embeddings on the supersense-tagged corpus. Assuming that
a source phrase src containing n words (w1, w2, ..., wn) has k supersense sequences: ps1, ps2, ..., psk.
Since each word supersense in the phrase constitutes the phrase supersense sequence, we can use Eq. (3)
to represent psi, and Eq. (4) to represent the supersense sequence embedding.

psi = (w1|ws1 w2|ws2 ... wn|wsn) (3)

−→psi =
−−−−→
w1|ws1 +

−−−−→
w2|ws2 + ...+

−−−−−→
wn|wsn (4)

where ws represents supersense labels and | is a separator between the word and its supersense label.
Each supersense sequence has a unique sense embedding according to the calculating method above.

Then how can we represent the supersense embeding of a source phrase in the phrase table? We adopt a
dividing and merging method.

The dividing method A translation rule in the original phrase table is divided into several rules for
the reason that the source phrase of the rule has several supersense sequences. Direct and indirect phrase
translation probability calculated in Eq. (5) and (6) are reformulated and recalculated according to Eq.
(7) and (8) respectively.

P (e|f) =
Count(e, f)
Count(f)

(5)

P (f |e) =
Count(f, e)
Count(e)

(6)

P (e|f, ps) =
Count(e, f, ps)
Count(f, ps)

(7)

P (f, ps|e) =
Count(f, ps, e)
Count(e)

(8)

where f , e, ps stands for source phrase, target phrase, source phrase supersense sequence respectively.
In this way, a source phrase may have multiple supersense embeddings.

The merging method Supposing a source phrase src has k supersense sequences: ps1, ps2, ..., psk,
we study the probability distribution of each supersense sequence according to the following formula.

P (psi|src) =
Count(psi, src)
Count(src)

(9)

We assign each source phrase a unique sense embedding −−→ssrc using the following formula (10).

−−→ssrc = λ1
−→ps1 + λ2

−→ps2 + ...+ λk
−→psk (10)

where λi represents the probability of the ith supersense sequence calculated according to Eq. (9).

3http://www.statmt.org/moses/
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5 Decoding

We integrate the proposed supersense-based translation models described above into a log-linear trans-
lation framework of SMT as a new knowledge source to disambiguate source words. Both supersense-
based translation models require that each sentence should be sense-tagged to annotate each word with
supersenses before being translated. We adopt an integration strategy similar to that introduced by Xiong
and Zhang (2014) to incorporate the MaxEnt classifier-based model into our SMT system. During de-
coding, once a new source word c is translated, we find its target phrase e according to word alignments
that are kept in the phrase table. Then we compute the translation probability p(e|C(c)) via the equation
(1) using the corresponding classifier. As to integrating the supersense embedding model, we load the
pre-trained word sense embeddings to calculate the source phrase sense embeddings according to Eq. (4)
when translating a sentence. We compute the similarity between a source phrase in a source sentence and
the corresponding matched phrase from the phrase table using the following formula in order to select
appropriate translation rules.

Sim(−−→sssrc,
−−→stsrc) =

−−→sssrc • −−→stsrc

||−−→sssrc|| × ||−−→stsrc|| =

∑
i

(ai × bi)√∑
i
ai

2×∑
i
bi

2
(11)

where sssrc is a phrase in a source sentence, stsrc is the same phrase in the phrase table, ai and bi are the
value of ith dimension of their sense embeddings.

Given a source sentence {ci}N1 , We define the score of supersense embedding model as follows.

ScoreMs =
∑

ssrci∈Γ

Sim(−−−→sssrci ,
−−−→stsrci) (12)

where Γ is a set of source phrases which have translation rules in the phrase table.

6 Experiments

In this section, we conducted a series of experiments on English-to-Spanish translation using massive
training data. With the trained supersense-based translation model, we would like to investigate the
following two questions:

• Whether coarse-grained supersenses can improve translation quality.

• Whether supersense embeddings can play a role in lexical selection.

6.1 Setup
Our baseline is a state-of-the-art SMT system which adapts Bracketing Transduction Grammars (Wu,
1997) to phrasal translation and augment itself with a maximum entropy based reordering model (Xiong
et al., 2006). Our training corpora are English-Spanish sentences from the Europarl parallel corpus
(Koehn, 2005) consisting of 1.9M sentence pairs with 51M English words and 54M Spanish words. We
ran GIZA++ on the training data in both directions and then applied the “grow-diag-final” refinement rule
(Koehn et al., 2003) to obtain final word alignments. Our phrase table was generated according to the
word-aligned data. As to the language model, we trained a separate 5-gram LM using the SRILM toolkit
(Stolcke, 2002) with modified Kneser-Ney smoothing (Chen and Goodman, 1996) on each subcorpus4

and then interpolated them according to the corpus used for tuning.
We trained our MaxEnt classifiers with the off-the-shelf MaxEnt tool.5 We performed 100 iterations

of the L-BFGS algorithm implemented in the training toolkit on the collected training events from the
sense-annotated data. We set the Gaussian prior to 1 to avoid overfitting.

4There are 12 subcorpora: commoncrawl, europarl, kde4, news2007, news2008, news2009, news2010, news2011,
news2012, newscommentary, openoffice, un

5http://homepages.inf.ed.ac.uk/lzhang10/maxenttoolkit.html

3119



System batch2 batch2a batch2q
Base 37.86 36.06 42.59
Max ss 38.25∗∗ 36.33 43.10∗

Max hs 38.28∗∗ 36.47∗∗ 42.94

Table 3: Results of MaxEnt-based sense models with supersenses (Max ss) vs. hidden senses (Max hs)
against the baseline. **/*: significantly better than the baseline at p < 0.01 and p < 0.05 respectively.

System batch2 batch2a batch2q
Base 37.86 36.06 42.59

Dividing SSTM(100) 38.51∗∗ 36.55∗ 43.22∗∗

SSTM(200) 38.42∗∗ 36.32 43.23∗∗

Merging SSTM(100) 38.05 36.17 42.93
SSTM(200) 38.64∗∗ 36.68∗∗ 43.17∗

Table 4: Results of using the dividing and merging method to train supersense embedding-based transla-
tion model (SSTM) with vector dimensionality varying from 100 to 200. **/*: significantly better than
the baseline at p < 0.01 and p < 0.05 respectively.

The method used to learn supersense embeddings, word2vec, in this paper was implemented based
on continuous bag-of-words model (Mikolov et al., 2013). We only varied vector dimensionality from
100 to 200 and set the value of threshold for occurrence of words to 0.00001. Default values of other
parameters such as the training algorithm and the size of the window were all taken.

The QTLeap corpus6 was divided into two parts equally to be used as our development set batch1
and test set batch2. The corpus was composed by 4000 question and answer pairs in the domain of
computer and IT troubleshooting for both hardware and software. This material was collected using
a support service via chat, this implies that the corpus is composed by naturally occurring utterances
produced by users while interacting with a service. Only interactions composed by one question and the
respective answer were included in the corpus. We also divided our test set batch2 into two parts equally
batch2a and batch2q respectively. In other words, we used three test sets to verify the effectiveness
of our proposed models. We adopted the case-insensitive BLEU-4 (Papineni et al., 2002) as evaluation
metric and ran MERT (Och, 2003) three times to alleviate the instability. We reported average BLEU
scores over the three runs as final results.

6.2 Results

Our first group of experiments are designed to investigate whether supersenses can be modeled like
hidden senses using a MaxEnt classifier. We use the same experiment settings as Xiong and Zhang (2014)
did. Especially, we also find that 10-word window is the most suitable window for extracting semantic
information according to experiments. Table 3 shows the experimental results for the two SMT systems
equipped with multiple MaxEnt classifiers trained on supersenses and hidden senses respectively.

We can easily find that resorting to a MaxEnt classifier, supersenses can also be integrated into the
SMT system and achieve an improvement over the baseline, which is comparable to that obtained by
hidden senses.

Inspired by the idea that distribution word representations can convey contextual information, we con-
duct our second group of experiments to investigate whether distributed supersense representations can
be used to improve SMT. We are also concerned about the potential impact of the sense embedding di-
mensionality on the performance of the supersense embedding model. Hence, in addition to the different
methods to represent source phrase supersense embeddings, we consider the dimension as 100 and 200
when training word supersense embeddings. Experimental results are listed in Table 4. From the table,
we can observe that

6http://metashare.metanet4u.eu/go2/qtleapcorpus
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System batch2 batch2a batch2q
Base 37.86 36.06 42.59

Dividing SSTM 38.51∗∗ 36.55∗ 43.22∗∗
HSTM 38.20∗ 36.25 42.85

Merging SSTM 38.64∗∗ 36.68∗∗ 43.17∗

HSTM 38.15∗ 36.29 42.95

Table 5: Results of using the dividing and merging method to obtain supersense embedding-based trans-
lation model (SSTM) vs. hidden sense embedding-based translation model (HSTM). **/*: significantly
better than the baseline at p < 0.01 and p < 0.05 respectively.

• No matter which method we use to calculate source phrase supersense embeddings, the supersense
embedding-based translation model is able to achieve an average of 0.7 BLEU points over the
baseline on three test sets.

• When using the dividing method to calculate source phrase sense embeddings, the sense embedding
dimension has a slight impact on the translation quality in terms of BLEU.

• On the contrary, when using the merging method to obtain source phrase supersense embeddings,
training supersense embeddings with 100-dimension performs worse than 200-dimension on the
test set. The BLEU score drops by 0.6 points on average. This may be because the merging method
uses multiple supersense sequences to compute the final supersense embeddings (see Eq. (10)). The
fluctuations caused by the dimensionality of embeddings may be amplified by the summation in Eq.
(10).

Our final group of experiments is to study 1) whether hidden senses can be integrated into the SMT
system in the way similar to supersense embeddings and 2) which kind of word senses can perform
better. When using the dividing method to obtain source phrase hidden sense embeddings, we set the
dimension value to 100 in which case supersense embeddings perform a little better than 200-dimension
according to Table 4. As for the merging method, we set the dimension value to 200 to make an equitable
comparison with supersenses. Table 5 shows the results. We find that supersense embedding-based
model performs better than hidden sense embedding-based model in all cases. The reason for this may
be that hidden senses have already encoded distributional information in themselves.

7 Conclusion

We have exploited coarse-grained supersenses which are semantic labels defined by WordNet to conduct
high-level word sense disambiguation for SMT. After each source word in the training data is tagged with
a supersense, we take two strategies to train our supersense-based translation models. One is utilizing
a maximum entropy classifier to predict the target translation for a source word given its surrounding
words and their corresponding supersenses. The other is taking advantage of a word2vec tool to learn
supersense embeddings on corpus annotated with supersenses and then calculating the semantic similar-
ity between phrases in source sentence and matched phrases from phrase table. The supersense-based
translation model is integrated into a phrase-based SMT system.

We have conducted a series of experiments to validate the effectiveness of the proposed supersense-
based translation models. Final experimental results show us that

• The supersense-based translation model is capable of improving translation quality significantly in
terms of BLEU.

• When using a MaxEnt classifier to predict target translation for a source word given its surrounding
semantic information, both supersenses and hidden senses perform well.

• When using distributed sense representations to build sense-based translation models, supersense
embeddings perform better than hidden sense embeddings.
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In the future, we would like to investigate new neural models to learn embeddings for a single word
supersense as well as a supersense sequence. We are also interested in incorporating the relations of
supersenses (i.e., high-level ontological concepts) for machine translation.
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