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Abstract

Knowledge base (KB) such as Freebase plays an important role for many natural language pro-
cessing tasks. English knowledge base is obviously larger and of higher quality than low re-
source language like Chinese. To expand Chinese KB by leveraging English KB resources, an
effective way is to translate English KB (source) into Chinese (target). In this direction, two
major challenges are to model triple semantics and to build a robust KB translator. We address
these challenges by presenting a neural network approach, which learns continuous triple repre-
sentation with a gated neural network. Accordingly, source triples and target triples are mapped
in the same semantic vector space. We build a new dataset for English-Chinese KB translation
from Freebase, and compare with several baselines on it. Experimental results show that the
proposed method improves translation accuracy compared with baseline methods. We show that
adaptive composition model improves standard solution such as neural tensor network in terms
of translation accuracy.

1 Introduction

Knowledge base (KB) like Freebase1 and Yago2 has attracted a lot of attention in both research and
industry communities. Knowledge Base contains massive triples (entries), each of which is a fact con-
sisting of two arguments and one predicate, such as (Una White, profession, Nurse). A large, high-quality
KB is valuable and can be applied to many natural language processing and information retrieval tasks
(Graupmann et al., 2005; Hotho et al., 2006; Ferrández et al., 2009; Bouma et al., 2009; Shi et al., 2016;
Feng et al., 2016). Let us take Freebase as an example, English KB contains 2.7 billion entries and the
accuracy is higher than 80%. This is obviously larger and better than a KB with less amount of entries
such as Chinese.

< Una_White  ,   profession  ,   Nurse >English

Triple

尤纳·白色(one color)

尤纳·蛋白(albumen)

尤纳·怀特(the name)

职业
护士 (a health worker)

保姆(a baby-sitter)

Chinese

Translation

Candidates

 Translator

Figure 1: An example of translation ambiguity in English-Chinese KB translation.

A straightforward way to enrich Chinese KB is to directly translate English KB (source) to Chinese
(target) based on the surface texts of a triple with existing machine translation system. However, we find
that they suffer from the problem of ambiguity. An example is given in Figure 1. The argument “nurse”
has two translation candidates namely “护士” (a person taking care of sick people in hospital) and “保
姆” (baby sitter). “Una White” have three translation candidates, so that there are totally six ambiguous

1http://en.wikipedia.org/wiki/Freebase
2http://en.wikipedia.org/wiki/YAGO (database)
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Figure 2: An illustration of the neural network approach for English-Chinese KB translation. It corre-
sponds to the translation example as given in Figure 1.

candidates according to Cartesian product. A preliminary statistical analysis shows that more than half
of Freebase translations (English→Chinese) are ambiguous.

There are two main challenges to effectively disambiguate these translated triples. The first challenge
is how to effectively model the semantics of English triple and Chinese triple in a unified space. It is
preferable to learn a projection function, which maps both English triples and Chinese triples in the same
semantic space. The second challenge is how to build a robust KB translator without labor-intensive
feature engineering.

In this paper, we address these two challenges by presenting an adaptive neural network to translate
English KB into Chinese. Given an English triple and a list of translated Chinese triple candidates, the
method assigns a scalar to each translation pair to represent their semantic relatedness. Specifically, we
represent each KB triple from the embeddings of words it contains, and introduce an adaptive composi-
tion model to effectively capture the semantic composition between arguments of a triple. Compared to
previous triple composition methods, the adaptive policy is inspired by highway network (Srivastava et
al., 2015b), which is a dynamic calculating process based on different triples rather than a fixed model.
In this way, source triple and target triple are naturally encoded in the same semantic vector space. We
design a ranking-type hinge loss function to effectively train the parameters of neural networks.

We evaluate the effectiveness of our method on a manually created corpus. We conduct experiments
in two settings. Empirical results show that the proposed method consistently outperforms baseline
methods. We also show that the use of gated neural network improves strong composition models such
as neural tensor network (Socher et al., 2013b) in terms of translation accuracy. The main contributions
of this work are as follows:

• We introduce an approach based on representation learning for English-Chinese KB translation in
this paper.

• We present a gated neural network to adaptively integrate entity and relational level evidences in
triple representation.

• We build a dataset for English-Chinese KB translation, and report the superior performance of our
method over baseline methods on it.

2 The Approach

In this section, we present our neural network method for KB Translation in detail. Figure 2 displays a
high-level overview of the approach. Given an English triple as input, we first get the candidate Chinese
triples (Section 2.1). Afterwards, the semantic representations of English triples and Chinese triples are
modeled with neural network (Section 2.2), which are further used for triple ranking (Section 2.3).
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2.1 Candidate Generation

In general, a triple in KB is composed of two entities and a relation. In this work, we use English triples
from Freebase as the input source, which contains a small number of pre-defined relations. Therefore,
we only translate the entities of a triple, while regarding the relation as given. To this end, it is intuitive to
use existing text translator to directly translate entities for obtaining candidates. We try to feed English
entities to Bing translator, however, a large portion of them can not be translated directly. This stems
from the fact that majority of entities are names, proper nouns and named entities which are not well
covered in existing translator. Therefore, we use a heuristic method to handle the entities not covered by
Bing translator. We split an entity as individual words, and compose the translation results of words as
its translation candidate. For example, “Una White” in Figure 2.

2.2 Semantic Composition for KB Triple

This section introduces a neural network approach to learn continuous representation for English and
Chinese KB triple. We extend this principle in this paper and state that the meaning of a triple is com-
posed from the meanings of entities, relations as well as their correlations.

We find that directly translating entity literally is not effective enough for English-Chinese triple trans-
lation. Let us take (Una White, Profession, Nurse) in Figure 1 as an example. The argument “nurse”
has two translation candidates namely “护士” (a person taking care of sick people in hospital) and “保
姆” (baby sitter). “Una White” has three translation candidates, so that there are totally six ambiguous
candidates according to Cartesian product. To effectively handle this ambiguity problem, we develop
an adaptive neural network approach to produce triple representations by effectively capturing entity
semantics and the relations between them.

We first describe entity and relational representation. After that, an adaptive composition model is
introduced to produce triple representations by automatically combining entity and relational semantics.

2.2.1 Entity Representation
We describe the method to learn continuous representation for each entity. Since an entity is typically a
phrase consisting of 2 or 3 words, we average the continuous word representation as the entity represen-
tation (Socher et al., 2013b).

Formally, we represent each word as a distributed, continuous and dense vector, which is also known
as word embedding (Bengio et al., 2003; Mikolov et al., 2013). These word vectors are stacked in an
embedding matrix L ∈ Rd×|V |, where |V | is word vocabulary size and d is the dimension of each word
vector. These word vectors can be randomly initialized from a uniform distribution U(−0.001, 0.001),
regarded as parameters of neural networks, and jointly learned with task-specific objectives. Alterna-
tively, the embedding of a word can be trained based on its context information in large-scale text cor-
pus. We use the latter approach since it can make better use of the semantics of words. We learn word
embeddings with word2vec3, which is one of state-of-the-art embedding learning algorithms and widely
used for many natural language processing tasks. We learn English word embedding from Wikipedia
dump4, and learn Chinese word embedding from Baike texts5.

To compose the entity representation from the embedding of words it contains, we follow Socher et
al. (2013b) and average the continuous word representation as entity representation. Recursive Neural
Network is not suitable to represent entity because entities are typically people names which do not
contain explicit compositional structure.

Since the English word vectors and Chinese word vectors are separately trained without using bilingual
parallel corpus, these word vectors are mapped into different semantic spaces. This is not desirable for
comparing the semantic relatedness between English triple and Chinese triple. We use linear layers to
transform English and Chinese word vectors in a same semantic vector space. A simple linear layer
is calculated as ve = We + b, where W and b are the parameters. One could also learn bilingual

3code.google.com/p/word2vec/
4https://dumps.wikimedia.org/
5http://baike.baidu.com/
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word vectors simultaneously from bilingual parallel corpus with tailored learning algorithm (Zou et al.,
2013). We leave this as a future work and we believe our method could benefit from the bilingual word
embeddings.

2.2.2 Relational Representation
We model the semantic relatedness between entities in this part. The basic idea is that the semantic
relatedness between entities is determined by the semantics of entities and their relations. Based on
this, we utilize neural tensor network, which is one of state-of-the-art semantic composition approach
for natural language processing tasks (Mitchell and Lapata, 2010; Socher et al., 2013a; Jenatton et al.,
2012).

A standard neural tensor with rank 3 is essentially a list of bilinear neural layers, each of which takes
two vectors as inputs and outputs a real-valued scalar with element wise multiplication. Furthermore,
relation-specific neural tensor can be exploited to make better use of the relation between entities, which
is calculated as follows.

vr = eT1W
[1:k]
R e2 (1)

where k is the length of output vector, e1 and e2 are the d-dimensional embeddings of two entities in a
given triple, W [1:k]

R ∈ Rd×d×k stands for the parameters of tensor. Each element in vr is computed by
one slice i ∈ {1, ..., k} of tensor.

2.2.3 Adaptive Neural Network
We have previously obtained entity representation and relational representation, both of which play im-
portant roles for representing the meaning of a triple. Furthermore, a better approach should benefit from
both aspects, and integrate them in triple semantic with an automatic method. To this end, we introduce a
gated neural network in this part. It takes entity and relational vectors of a triple as input, and adaptively
produces the composed continuous representation of them.

Given ve and vr as inputs, a traditional compositional function is to concatenate ve and vr and feed
them to a linear layer (Socher et al., 2011), which is calculated as Equation 2. Despite its computational
efficiency, tied parameters cannot easily capture the complex linguistic phenomena in natural language
expressions.

ṽ = tanh(Weve +Wrvr + b) (2)

α = σ(Wegve +Wrgvr + bg) (3)

v(t) = α · vr + (1− α) · ṽ (4)

Therefore, we add a neural gate to change parameter values for different input vectors ve and vr, which
is partly inspired by the recent success of gated recurrent neural network (Cho et al., 2014; Chung et al.,
2015) and Long Short-Term Memory (Hochreiter and Schmidhuber, 1997; Tai et al., 2015). And our
gated neural network is inspired by highway network, which allow the model to suffer less from the
vanishing gradient problem (Srivastava et al., 2015a; Srivastava et al., 2015b). The gate takes ve and
vr as inputs, and outputs as a weight α ∈ [0, 1], which linearly weights the two parts. Specifically, the
gate is calculated as Equation 3, where σ is standard sigmoid function, Weg, Wrg and bg are parameters.
Triple representation v(t) is calculated as given in Equation 4, which linearly weights the candidate com-
posed representation ṽ and relational representation vr. In this way, entity representation and relational
representation are adaptively encoded in the semantic representation of a triple.

2.3 English-Chinese Triple Translation

Given an English triple te and a list of candidate Chinese triples {tc1, ...tcj , ... tck}, we select the
most relevant Chinese candidate in terms of semantic as the translation answer. To this end, we need to
formalize a scoring function f(te, tcj), which is capable of measuring the semantic relatedness between
an English triple te and a Chinese candidate triple tcj . Specifically, we apply the continuous triple vector
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learned in Section 2.2.3 as English and Chinese triple representations without any feature engineering.
We use standard L1 and L2 norms as the dissimilarity measure f , namely:

f(te, tcj) = ||v(te)− v(tcj)||p (5)

where p = 1 means L1 norm, and p = 2 stands for L2 norm.
To effectively estimate the parameters of the neural networks, we use a ranking type loss function

based on the intuition of noise contrastive estimation (Gutmann and Hyvärinen, 2010), which has been
exploited as an effective training objective in deep learning community (Socher et al., 2013b).

In this paper, the basic idea of the optimizing objective is that: the distance between an English triple
and its correct translation candidate f(te, tc) should get a lower score than the distance between the
source triple and a corrupted incorrect candidate triple f(te, t′c) by a margin of 1.

Loss =
N∑

i=1

max(0, 1− f(te, t′c) + f(te, tc)) (6)

where N is the number of training instances. Given a correct Chinese triple (e1, r, e2), we generate
two corrupted triples by randomly replacing one entity at one time, resulting in (e1, r, e′2) and (e′1,
r, e2). We train the neural networks with supervised learning using stochastic gradient descent. We
take the derivative of the loss regarding the parameters with standard back-propagation. We learn 50-
dimensional English and Chinese word embeddings using word2vec with default setting. The vocabulary
size of English and Chinese word embeddings are 32K and 30K, respectively. For each relation type, we
use relation untied parameters, randomly initialize the values of We,Wr,Weg,Wrg,W

1
R,W

2
R, u

′, b and
bg from a uniform distribution U(−0.01/L, 0.01/L) where L is the input length of a neural layer, set the
hidden length as 30, set the learning rate as 0.03 and tune the training round on development set.

3 Experiment

We apply the proposed method for English-Chinese KB translation to evaluate its effectiveness. We
describe the data statistics, experimental settings and empirical results.

3.1 Experiment Settings
For the task of English-Chinese KB translation, since there is no publicly available benchmark dataset,
we manually annotate a dataset by ourselves. We use Freebase as the English source, which is widely
used in the field of KB population and KB completion. There are several relation types in Freebase, we
only select “Profession” and “Cause of Death” in this work because they are representative relation types
with large number of instances. We leave other relation types as future work. We use Bing translator to
get the translation candidates, and employ two experts to annotate the best result among candidate list.
The disagreements during annotation are fixed by detailed discussion.We randomly split the dataset as
training, development and testing sets. The statistical information of the datasets are given in Table 1.

Relation Type #Train # Dev # Test
Profession 3,000 500 500
Cause of death 2,000 500 500

Table 1: The statistics for Freebase including two different relations.

We conduct experiments in a supervised learning framework. For each relation type, we train the
model on training set, tune parameters on dev set and evaluate on test set. We use P@1 (Manning and
Schütze, 1999) as the evaluation metric, which indicates whether the first ranked translation results is the
correct answer.

• Surface Matching. Given an English triple (e1, r, e2), we first get the translation candidates of e1
and e2. After that, we select the top-ranked entity in each set, and merge them as the best translate
result.
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Model
L1 Norm L2 Norm

Profession C-death Avg Profession C-death Avg
Surface Matching 52.4 51.6 52.0 52.4 51.6 52.0
Hints Similarity 58.2 56.4 57.3 58.2 56.4 57.3
Entity Model 70.4 64.6 67.5 72.2 67.4 69.9
Relational (Tensor) Model 71.8 65.2 68.5 72.4 68.6 70.5
Relational (Tensor∗) Model 72.4 67.2 69.8 72.8 69.8 71.3
Average (Entity + Relational) 72.8 67.6 70.2 73.0 70.2 71.6
Linear (Entity + Relational) 73.2 68.0 70.6 73.6 70.6 72.1
Full Model 75.0 70.4 72.7 75.6 71.8 73.7

Table 2: Comparison of accuracy of the different models for English-Chinese KB translation. We run
experiments in L1 Norm and L2 Norm. Evaluation metric is P@1.

• Hints Similarity. After obtaining the list of candidates with Cartesian product, we measure the
similarity between entities in a candidate triple with web search. We concatenate two entities as a
query and put them in a Chinese search engine. We count the co-occurrence frequency in snippets,
and select the top ranked candidate as the answer.

Our model has several variations, which are detailed as below.

• Entity Model. We represent a triple by only using entity representation, without leveraging relational
representation (Bordes et al., 2012) .

• Relational Model. We represent a triple by only using relational representation, without using entity
representation. In Relational (Tensor) Model, the neural calculator only uses multiplicative compo-
sition function as described in Section 2.2.2. In Relational (Tensor∗) Model, the neural calculator
includes an additional linear layer, which is exploited in Socher et al. (2013b) and calculated as
below.

vt = [eT1W
[1:k]
R e2 + VR

[
e1
e2

]
+ bR] (7)

• Average (Entity + Relational). In this setting, we represent a triple by averaging its entity vector
and relational vector, without using gated neural network.

vt =
ve + vr

2
(8)

• Linear (Entity + Relational). In this setting, we represent a triple by concatenating its entity vector
and relational vector, and composing them with standard linear layer. This is a special case of the
gated neural network, where α is always set to zero.

3.2 Results and Analysis
Table 2 shows the empirical results of the baseline methods and our method on two relations. We can
find that the performances of these methods are consistent on two relations. Among all these algorithms,
Surface Matching is the worst performer. The reason lies in that it does not capture the interaction
between two entities in a triple, which is very important for KB translation. Hints Similarity outperforms
Surface Matching by taking into account the relatedness of entities by web search results. However,
its improvement over Surface Matching is not significant enough because it ignores the relation type.
That is to say, the semantic similarities between two entities in a triple remain the same for different
relation types (e.g. Profession, Cause of Death). This is problematic as the relation plays an important
role in discovering entity similarity. Let us take “Barack Obama（奥巴马）” and “Honolulu（火奴鲁
鲁）” as an example. Their similarity in terms of “born in” relation is high, but the similarity regarding
“working place” should be extremely lower.
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Table 2 shows that neural network models outperform Surface Matching and Hints Similarity method,
which shows the powerfulness of neural network based representation learning methods. This is because
that neural network methods map English triples and Chinese triples into a unified semantic vector space,
which shares some characteristics with the human who is assigned to do this task.

Among all these neural network methods, Entity Model is the worst method because it captures the
semantics of entities separately while ignoring the semantic interaction between them. On the other hand,
Relational (Tensor) Model only use the relational information of a triple. We can find that it shows slight
improvements over Entity Model, which indicates the importance of relation of triple for KB translation.

Relational (Tensor∗) Model is an enhanced Relational (Tensor) Model, and can also be viewed as a
tensor composition function added by a standard linear composition function (Socher et al., 2013b). We
can find that Relational (Tensor∗) Model yields better performances than previous two neural models.
The full model yields the best performances among all baseline methods by simultaneously leveraging
entity representation, relational representation and their interaction in an adaptive method.

Average (Entity + Relational) is a straight-forward method to compose entity- and relational- repre-
sentations. From Table 2, we can find that Average does not yield obvious improvements over previous
neural models. The main reason is that average function fails to model the interaction between entity
vector and relational vector, which is important to effectively capture the complex linguistic phenomena
in KB triple. In Linear (Entity + Relational), we concatenate ve and vr, and calculate their semantic
composition with a simple linear layer (Socher et al., 2011). It shows some improvements over Aver-
age (Entity + Relational), which demonstrates the importance of semantic composition algorithm for
obtaining semantic representation of a triple.

3.3 The Effect of Gated Neural Network

We explore the effectiveness of the gated neural model for English-Chinese KB translation on our
datasets. We set the gated α as a fixed value from 0.1 to 1.0, increased by 0.1. This corresponds to
a special case of gated neural network with a fixed weighted ratio between vr and ṽ. The model with α
= 1.0 means that the representation of a triple only comes from relational representation, without using
any entity representation as mentioned in Section 2.2.1.
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Figure 3: Experimental results with different α1 on the datasets.

We run experiments on two relation types with L1 and L2 norms, respectively. The results are illus-
trated in Figure 3. We can see that the performance of our full model is obviously better than the model
with fixed trade-off weights. This is partly because that it is hard to measure the importances of entity
representation and relational representation with a fixed weight for the complex phenomena in KB. The
results also reveal the importance of an adaptive weighting strategy for semantic composition.

4 Related Work

We briefly describe existing studies on representation learning for natural language processing, learning
continuous triple representation and gated recurrent neural network.
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It is well accepted that feature representation is extremely important for natural language process-
ing tasks. The main reason is that the effectiveness of a machine learner is highly dependent on the
choice of data representation (Bengio et al., 2013). In past few decades, many studies leverage human
ingenuity and prior knowledge to design hand-crafted features. Despite the effectiveness of feature engi-
neering in some tasks, it is time consuming and typically fails to extract the discriminative information
from the data. Recently, neural networks show their strengths in learning continuous representations of
word/phrase (Mikolov et al., 2013), sentence (Socher et al., 2013c), document (Le and Mikolov, 2014),
KB triple (Bordes et al., 2013) from data without any feature engineering. This study belongs to the
family of neural network based representation learning for natural language processing tasks.

There are several neural network approaches proposed to model relational data, especially in the multi-
relational case, where different kinds of relations are used to connect various data entities. Previous
works focus on knowledge link prediction and triplet classification. Bordes et al. (2011) provide a struc-
tured embedding model where the regression loss was replaced by a ranking loss for learning embed-
dings of entities. Bordes et al. (2012) introduced a semantic matching energy function to map different
instances in the same semantic vector space. Bordes et al. (2013) exploited a canonical model, which
modeled relations by regarding the task as a translations operation on the low-dimensional embeddings
of entities. Wang et al. (2014) made an extension on the translation model of TransE (Bordes et al.,
2013) by projecting KB triple in relation-specific hyperplane. In this way, they can preserve the map-
ping properties of relation to some extent. Lin et al. (2015) considered that an entity may have multiple
aspects, and different relations focused on different aspects of entities. They introduced TransR by rep-
resenting entities and relations in distinct semantic vector space. Another related approach is introduced
by Socher et al. (2013a), which used a neural tensor network to learn relational compositionality. Our
relational representation method is similar to Socher et al. (2013a), which is on the basis of multiplicative
vector-based semantic composition (Mitchell and Lapata, 2010).

The use of gated neural network in this paper shares some characteristics with the emerging gated
recurrent neural network (Cho et al., 2014; Chung et al., 2015) and Long Short-Term Memory (Hochre-
iter and Schmidhuber, 1997; Tai et al., 2015). Standard recurrent neural network uses a set of shared
parameters to represent a sequence of variable length to a vector representation. It suffers from the prob-
lem of vanishing gradient, which means that the influence of a given input on the hidden layer either
decays or blows up exponentially. LSTM and gated recurrent neural network address this problem by
adding several neural gates (e.g. input and forget gates) to adaptively memorize new content and forget
history content. The gated neural network used in this work aims at integrating entity representation and
relational representation in triple vector in an adaptive way.

5 Conclusion

We introduce a neural network approach for Knowledge Base (KB) translation from English (source) to
Chinese (target) in this paper. We represent a triple in KB with an adaptive composition model, which
produces triple representation by capturing entity- and relational- level information. The parameters of
neural networks are effectively estimated with a ranking-type hinge loss function. We compare against
several baseline methods on two KB translation datasets. Experimental results show that, our method
performs better than baseline methods. In addition, we show that the newly introduced adaptive compo-
sition model improves standard composition method such as neural tensor network in terms of translation
accuracy.
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