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Abstract

Human concept representations are often grounded with visual information, yet some aspects
of meaning cannot be visually represented or are better described with language. Thus, vision
and language provide complementary information that, properly combined, can potentially yield
more complete concept representations. Recently, state-of-the-art distributional semantic mod-
els and convolutional neural networks have achieved great success in representing linguistic and
visual knowledge respectively. In this paper, we compare both, visual and linguistic representa-
tions in their ability to capture different types of fine-grain semantic knowledge—or attributes—
of concepts. Humans often describe objects using attributes, that is, properties such as shape,
color or functionality, which often transcend the linguistic and visual modalities. In our setting,
we evaluate how well attributes can be predicted by using the unimodal representations as inputs.
We are interested in first, finding out whether attributes are generally better captured by either
the vision or by the language modality; and second, if none of them is clearly superior (as we hy-
pothesize), what type of attributes or semantic knowledge are better encoded from each modality.
Ultimately, our study sheds light on the potential of combining visual and textual representations.

1 Introduction

Vision and language capture complementary information that humans automatically integrate in order to
build mental representations of concepts. Certain concepts or properties of objects cannot be explicitly
visually represented while, at the same time, not all the properties are easily expressible with language.
For example, there are clearly visual differences between cats and dogs although these are not easy to
describe with language. Recent advances in deep learning had led to breakthroughs in learning unimodal
representations (a.k.a. embeddings) in both, computer vision (CV) and natural language processing
(NLP) (LeCun et al., 2015). However, the automatic integration of visual and linguistic modalities is still
a challenging—and usually task-dependent—problem that has gained increasing popularity within the
NLP and CV communities. Lately, several studies have achieved reasonable success in integrating visual
and linguistic representations, showing improvement over the unimodal baselines in simple linguistic
tasks such as concept similarity (Lazaridou et al., 2015; Kiela and Bottou, 2014; Silberer and Lapata,
2014)—which is only possible if vision and language encode complementary knowledge.

In this paper we do not tackle the problem of how to integrate both modalities, but instead, we sys-
tematically study what type of fine-grain semantic knowledge is encoded in each modality, shedding
light on the potential benefit of combining vision and language. By fine-grain semantics we refer to the
recognition of different types of attributes or properties (e.g., shape, function, sound, etc.) that concrete
nouns might exhibit. A recent study by Rubinstein et al. (2015) evidenced that state-of-the-art linguistic-
only representations do not succeed at capturing all types of attributes equally well. Here, we extend
their work into the multimodal domain by comparing the performance between visual and linguistic
representations at encoding different types of attributes. In contrast with Rubinstein et al. (2015)’s uni-
modal research, here we aim to answer two different research questions. First, whether either vision or
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language provide a superior ground for capturing fine-grain attributes; and second, if none of them is
clearly superior—as we hypothesize—what type of attributes are better captured by each modality. To
the best of our knowledge, no studies have systematically compared vision and language in these terms.
Ultimately, this work provides insight on building better representations of concepts, which in turn is
essential towards improving automatic language understanding.

The rest of the paper is organized as follows. In the next section we review and discuss related work.
In Section 3 we describe our design for evaluating the success of visual and text embeddings in encoding
attributes. Next, we present and discuss our experimental results. Finally, in conclusions and future
work, we summarize our findings and suggest future lines of research.

2 Related Work

2.1 Unimodal Representations

Convolutional neural networks (CNN) have rapidly become the state-of-the-art approach in computer
vision (Krizhevsky et al., 2012). To some extent, CNN algorithms emulate human visual perception, in
which the learning occurs at different levels of abstraction—or layers of a network. On the language
side, distributional models (DMs) have been employed for learning semantic representations a long time
ago. These are based on the distributional hypothesis: Words which are similar in meaning occur in
similar contexts (Rubenstein and Goodenough, 1965). Recently, neural-based distributional models or
word embeddings (Mikolov et al., 2013; Pennington et al., 2014) have achieved great success, rapidly
replacing the old DMs (Turney et al., 2010) based on word co-occurrence counts (Baroni et al., 2014).
Instead of counting words, neural-based DMs capture words co-occurrences by trying to predict the
context given a word (skip-gram) or by trying to predict a word given its context (CBOW). Alternative
approaches such as generative probabilistic models that learn the probability distribution of a vocabulary
word in a context window as a latent variable have also been proposed (Deschacht et al., 2012; Deschacht
and Moens, 2009).

2.2 Multimodal Representations

There exist certain properties of perceptible objects that are poorly captured by language. For exam-
ple, everyone can easily tell from an image whether a face is attractive, yet if one has to describe with
language what properties make a face attractive will certainly struggle. Recently, CNN-based com-
puter vision models have achieved reasonable success in the task of recognizing attractiveness (Rothe
et al., 2015). Furthermore, psychological research evidences that human concept formation is strongly
grounded in visual perception (Barsalou, 2008). All this suggests that linguistic representations can ben-
efit from visual grounding. In this direction, recent studies have shown that multimodal embeddings
are often able to outperform text-only embeddings in simple semantic tasks such as concept similarity
(Lazaridou et al., 2015; Silberer and Lapata, 2014; Kiela and Bottou, 2014) or categorization (i.e., group-
ing objects into categories such as “fruit”, “furniture”, etc.) (Silberer and Lapata, 2014). Several ways of
combining representations from both modalities have been devised so far—yet an exhaustive review of
them would deviate from the target of this work. To name a few, Kiela and Bottou (2014) proposed the
simple concatenation of visual and text representations, although more sophisticated methods such as the
extension of skip-gram models into the multimodal domain (Lazaridou et al., 2015) or to apply stacked
autoencoders to the unimodal representations (Silberer and Lapata, 2014) have also been considered.

2.3 Attribute Representations

Previous multimodal research often evaluates representations in word similarity tasks (Lazaridou et al.,
2015; Silberer and Lapata, 2014; Kiela and Bottou, 2014) which offer rather a coarse-grain indicative
of the quality of the embeddings and are not very informative about fine-grain aspects of meaning—or
attributes. This gap is thus an important motivation for the present study. Attributes are often used by
humans to describe objects (McRae et al., 2005), providing a powerful way to represent knowledge in
terms of shape, color, taxonomic information, etc. Several studies have leveraged attributes to build
representations that can be used in linguistic and visual tasks. For example, Silberer and Lapata (2014)
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used an attribute-based hidden representation from stacked autoencoders as multimodal embeddings.
The attributes were learned from both, visual and textual input. In contrast with Silberer and Lapata
(2014), here we aim at spotting differences on the fine-grain semantic knowledge encoded by vision and
language instead of building multimodal representations and to use them in a task. Furthermore, attribute
representations exhibit the advantage that they can be learned transcending the task or the modality at
hand, e.g., from either linguistic or visual input. Leveraging this transcendence, Lampert et al. (2009)
showed that it is possible to classify objects from unseen classes (i.e., zero-shot learning) by training
with attributes specified by humans—such as shape or color—instead of using images. Afterwards,
new classes can be identified provided that one has their list of attributes at hand. Further, attributes
transcend class boundaries. For instance, the attribute “stripped” can be learned from zebras, bees or
tigers (Lampert et al., 2009). In this direction, Farhadi et al. (2009) proposed that the goal of image
recognition should be describing rather than naming, that is, for instance, labeling “spotty dog” instead
of just “dog” or replacing “unknown class” by “hairy and four-legged.”

2.4 Attribute Prediction

The categorization of attributes proposed by McRae et al. (2005) has been widely used in NLP and CV
studies (Baroni and Lenci, 2008; Silberer and Lapata, 2014; Rubinstein et al., 2015). Their attribute
taxonomy includes individual attributes that belong to more general attribute types (e.g., tactile or taxo-
nomic). For example, has legs is a form and surface attribute, while is a bird or is a fruit are instances
of taxonomic attributes.

Rubinstein et al. (2015) distinguished between two types of attributes: taxonomic and attributive prop-
erties. An attributive property is any of the remaining attribute types from McRae et al. (2005) catego-
rization that are not taxonomic (Tab. 1). These include attribute types such as tactile (e.g., is soft),
form and surface (e.g., is made of metal) or encyclopedic (e.g., is dangerous). By trying to predict at-
tributes using word embeddings as input, Rubinstein et al. (2015) concluded that DMs are significantly
better at capturing taxonomic attributes rather than attributive properties—showing thus a limitation
of the distributional hypothesis for certain attributes. Their findings align with previous research that
showed that taxonomic attributes are generally more abundant in text compared to attributive properties
(Baroni and Lenci, 2008). While Rubinstein et al. (2015) investigated whether DMs are equally good at
capturing each type of attribute, our research questions are different. First, we want to answer whether
there are differences between textual and visual representations in the type of attributes that they encode;
and second, where these differences are. In other words, we present an inter-modality analysis while
Rubinstein et al. (2015) performed only intra-modality comparisons.

In addition to the survey of Rubinstein et al. (2015), the closest work to ours is a study by Bruni et
al. (2012) who showed that a very particular type of attribute, namely color, is better captured by visual
representations than by DMs. Here, we go one step further and compare performance between visual
and text embeddings for a larger number of visual attributes, as well as for other non-visual attributes
such as taxonomic, functional or encyclopedic.

3 Approach and Experimental Settings

In this section we describe the procedure that we follow in order answer our research questions. An
explanatory diagram is shown in Fig. 1.

3.1 Visual Representations

We use ImageNet (Russakovsky et al., 2015) as our source of visual information. ImageNet is currently
the largest labeled image bank, with a coverage of 21,841 WordNet synsets (or meanings) (Fellbaum,
1998) and 14,197,122 images. Our choice of ImageNet is motivated by: (i) large word coverage; (ii)
images are generally clean and with the relevant object at the foreground; and (iii) replicability of our
experiments. Here, we only keep synsets with more than 50 images, and we set an upper bound of 500
images per synset for computational reasons. After this selection, 11,928 synsets are kept.

We extract a 4096-dimensional vector of features for each image using the output of the last layer
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Figure 1: Overview of our experimental setting. Attributes are learned from the embeddings of each
modality (left side), and afterwards new concepts are classified on whether the attribute is present or
not (classification) or to which degree the attribute is present (regression). For clarity, we omitted the
regression problem since its setting is identical to classification except for a continuous output Y instead
of 0/1.

(before the softmax layer) of a pre-trained AlexNet CNN model implemented with Caffe toolkit (Jia et
al., 2014). Other than CNN, there exist a variety of methods for obtaining visual features such as SIFT
(Lowe, 1999), HOG (Dalal and Triggs, 2005) or SURF (Bay et al., 2006); to name a few. An exhaustive
comparison will deviate from the goal of this paper, which is to show that at least some visual embeddings
are able to better represent certain attributes than state-of-the-art DMs. Thus, we employ an off-the-shelf
CNN model, as CNNs generally outperform the old approaches such as SIFT, HOG or SURF (LeCun
et al., 2015). Additionally, we have repeated our experiments with ResNet (He et al., 2015), a more
recent CNN model known to outperform AlexNet in image classification. Similar results are obtained
with both models, suggesting thus that our vision-language comparisons are relatively independent of
the CNN choice.

For each concept, several ways of integrating the representations from its individual images into a
single vector could be devised. Here, we apply the following two common approaches (Kiela and Bottou,
2014):

(i) Averaging: Computes the component-wise average of the CNN feature vectors of individual im-
ages. This is equivalent to the cluster center of the individual representations.

(ii) Maxpool: Computes the component-wise maximum of the CNN feature vectors of individual
images. This approach makes sense intuitively because CNN vector components can be interpreted as
“visual properties.”

For simplicity of notation we henceforth refer to the averaged and maxpooled visual representations
as V ISavg and V ISmax respectively.

3.2 Word Embeddings

We employ 300-dimensional GloVe vectors (Pennington et al., 2014) pre-trained in the largest available
corpus (840B tokens and a 2.2M words vocabulary from Common Crawl corpus) from the author’s
website1. For completeness, we have repeated our experiments with word2vec embeddings (Mikolov et
al., 2013) and we have found GloVe to perform slightly better. Thus, we report results with GloVe as it
provides a stronger baseline to compare visual representations with.

3.3 McRae et al. Dataset

The data set collected by McRae et al. (2005) consists of data gathered from human participants that
were asked to list properties—attributes—of concrete nouns. For each noun, 30 participants listed its
attributes. For example, for “airplane”, the attribute has wings (i.e., a form and surface attribute) was

1http://nlp.stanford.edu/projects/glove
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listed by 20 subjects, while the attribute used for travel (i.e., a function attribute) was listed by 7. The
McRae et al. (2005) data contains 541 concepts, 2,526 different attributes, and 10 attribute types.

3.4 Binary Classification Setup

To evaluate fine-grain semantic understanding of the different embeddings, we evaluate how well the
attributes from McRae et al. (2005) can be predicted by using the embeddings as input (Fig. 1). We use
both a classification and a regression setting.

For each attribute a, we build a data set with the concepts to which this attribute applies as the positive
class instances and the rest of concepts form the negative class. For example, a “beetle” is a negative
instance and “airplane” a positive instance for the attribute a = is large. We consider that an attribute
applies to a noun if a minimum of 5 people have listed it2. Table 1 shows a summary of the number of
positive class concepts per attribute type. For each attribute a we learn a predictor:

fa : X → Y

where X ⊂ Rd is the input space of (d-dimensional) concept representations and Y = {0, 1} the
binary output space.

To guarantee that the number of positive instances is enough to actually learn the attributes, only
attributes with at least 25 positive instances are kept. This leads to a total of 43 attributes (Fig. 3), which
can be seen as a total of 43 data sets. The concept selection in ImageNet described in Sect. 3.1 results
in a visual coverage of 400 concepts (out of 541 from McRae et al. (2005) data), and, for a fair vision-
language comparison, only the word embeddings (from GloVe) of these nouns are employed. Hence,
our training data {(−→xi , y)}400

i=1 consists of 400 instances. Since we have three types of representations
(GloVe, V ISavg and V ISmax), three different models fGloV e

a , favg
a and fmax

a are learned from the three
different input data XGloV e ∈ R400×300, Xavg ∈ R400×4096 and Xmax ∈ R400×4096 respectively, where
X = {−→xi}400

i=1 and −→xi ∈ X , y ∈ Y .
Classification performance is evaluated with the F1 measure of the positive class—that is, the harmonic

mean of precision and recall—since F1 is insensitive to class imbalance.

Attribute type # Attr. Avg. # concepts SD

encyclopedic 4 32.7 1.5
function 3 46 27.9
sound 1 34 -
tactile 1 26 -
taste 1 33 -
taxonomic 7 42 24.8
color 7 42.4 12.0
form and surface 14 63.7 29.9
motion 4 37.5 5.7

Table 1: Attribute types, number of attributes per attribute type (# Attr.), and average number of concepts
(i.e., positive instances) per attribute type (Avg. # concepts) with their respective standard deviations
(SD).

3.5 Regression Setup

Let us consider the same scenario as in the classification one above, yet with a continuous output space
Y = [0, 1] instead of a binary. The proportion of participants (out of 30) who have listed the attribute a
for a given concept is taken as ground truth y ∈ Y . This can be interpreted as the saliency of attribute
a for this concept. Regression performance is evaluated with the Spearman ρ correlation coefficient
between the predicted outputs and the ground truth.

2This threshold was set by McRae et al. (2005)
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3.6 Experimental Setup

In both classification and regression we perform 2 runs of 5-fold stratified cross validation. That is, we
create 5 (stratified) disjoint splits, repeating it with two different seeds. The use of 5 folds is convenient
since the data set is small and contains just a few instances of the minority class—which ranges from
6.25% to 30.5% of the data. Thus, the use of 4/5-th of the data for learning (and 1/5-th for testing) is
more likely to yield well-learned attributes than smaller training proportions. To handle class imbalance
in classification we set the training class weights inversely proportional to the class priors.

This work relies on the basic assumption that, if a given attribute can be predicted using some em-
beddings as input (e.g., by means of a classifier or a regressor), then these embeddings contain encoded
information about this attribute. The inverse is not necessarily true, that is, if an attribute cannot be pre-
dicted from a given embedding, this does not necessarily mean that the information is not present. In this
case, the bottleneck might be any sort of technical issue such as our classifier choice, regularizer choice,
data scaling, etc. Thus, in order to validate our conclusions, we repeated the same experiments with dif-
ferent classifier choices (SVM, logistic regression, bagging ensemble of decision trees and AdaBoost);
different regressors (SVM, neural networks, ensemble of regression trees and gradient boosting); and
data scalings (max/min scaling and component-wise centering plus normalizing by the standard devia-
tion). We found results to be notably stable across classifier and regressor choices. We report results with
a linear SVM regressor and a linear SVM classifier, both implemented with the scikit machine learning
toolkit (Pedregosa et al., 2011). Data scaling affected only the performance of V ISmax, conceivably
because their values are extreme by definition.

4 Results and Discussion

4.1 Intra-Modality Performance per Attribute Type

Figure 2: Averages of F1 (classification) and Spearman (regression) measures per attribute type (i.e.,
averaging individual attributes) for V ISavg (A), V ISmax (B) and GloVe (C). Error bars show standard
error.

As a first noteworthy finding, one may observe from Fig. 2 the—perhaps unexpected—resemblance
that visual and textual representations present at predicting different types of attributes, which suggests
interesting commonalities between visual and textual representations. Further, this seems to indicate
that some attribute types are genuinely more difficult to predict than others (e.g., tactile), conceivably
because the nouns to which these attributes apply tend to have little in common in terms of both, visual
resemblance and word co-occurrences in similar contexts. This can be further appreciated in Fig. 5
(bottom row) from the scattered pattern of the attribute is soft, which proves to be a difficult target for
both, vision and language. In turn, this suggests that neither vision nor language might be sufficiently
informative about certain attribute types (e.g., tactile or sound).
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From Fig. 2 (C) it can also be observed that our results align with Rubinstein et al. (2015)’s findings
with DMs. That is, from text-only embeddings, taxonomic attributes can be generally more accurately
predicted than most of the attributive properties (i.e., all attribute types from Tab. 1 except taxonomic).
We additionally find a similar behavior for visual embeddings (Fig. 2 A and B).

4.2 Visual Vs. Text Performance
Fig. 3 provides an answer to our first research question, showing that, clearly, neither vision nor lan-
guage absolutely dominates the other in grasping fine-grain semantic knowledge but they rather show
preference for different attributes. In general, visual embeddings (especially V ISavg) perform better
than GloVe in three main attribute types: motion, form and surface and color (Fig. 3 and 4). On the
other hand, GloVe clearly outperforms vision in encyclopedic and function attribute types (Fig. 3 and
4), which are seldom visual. For the taxonomic type, vision or language clearly dominate in different
individual attributes (Fig. 3). The visual performance gains with respect to GloVe (in e.g., is a bird)
are particularly interesting since previous research evidenced that taxonomic is the attribute type where
text-only DMs are the strongest (Baroni and Lenci, 2008; Rubinstein et al., 2015). Hence, these results
suggest that the representation of taxonomic knowledge can further benefit from visual grounding.

Figure 3: Difference of performance between V ISavg minus GloVe. Attributes are shown on the hor-
izontal axis and grouped by their type. Positive bars indicate better performance of visual embeddings
and negative bars otherwise. Results with V ISmax are omitted as they exhibit almost identical patterns
as V ISavg, yet slightly worse.

Interestingly, even in the attribute types where either vision or language generally dominate, there
are exceptions. For example, V ISavg seems to outperform GloVe in classifying lays eggs (i.e., an
encyclopedic attribute), while GloVe seems to capture better has a handle (a form and surface attribute)
which is predominantly visual. It is important to notice that visual attributes do not equal “less abstract”
knowledge. For example, the visual attribute has a handle clearly requires more abstract semantic
understanding than purely sensory visual attributes such as is green since the definition of “handle” is
clearly functionally-motivated rather than visual. For instance, the ball-shaped handle of a door has
virtually no visual resemblance with the handle of a bag, yet they both have the same function. All
this suggests that not only the attribute type is important but there are other factors to be taken into
account. More concretely, the visual resemblance among objects to which the same attribute applies
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Figure 4: Averages of performance difference per attribute type. For each attribute type (e.g., taxonomic,
taste, etc.), the bar indicates the average performance difference of its set of attributes. Plot A shows
performance difference between V ISavg and GloVe and B between V ISmax and GloVe. As in Fig. 3,
positive bars indicate better performance of visual embeddings and negative bars otherwise. Error bars
show standard error.

Figure 5: T-SNE visualization (Maaten and Hinton, 2008) of the V ISavg embeddings (left column) and
of the GloVe embeddings (right column). Red triangles show the positive class for the attribute a weapon
(top row) and is soft (bottom row), while blue circles correspond to the negative class words.

seems to play a role. For example, a weapon and is a bird are both taxonomic attributes although GloVe
clearly dominates in the first and vision in the second one (Fig. 3). A closer inspection reveals that
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the concepts from is a bird (e.g., “canary”, “chicken”, “eagle”, “penguin”) exhibit an important visual
resemblance, whilst those from a weapon (e.g., “rock”, “bow”, “rifle”, “axe”) do not. From Fig. 5
(top row) one can observe that the instances of a weapon present a more scattered pattern in the visual
embeddings (left) than in the linguistic ones (right). The same applies to has a handle, which one
would perhaps—wrongly—expect that it might be better captured by vision. Contrarily, visual resem-
blance generally yields vectors that are closer in the visual space, making class boundaries easier to learn.

Even though the performances of classification and regression models (F1 and Spearman, respec-
tively) are markedly correlated (Fig. 2, 3 and 4), there are a few exceptions. Small “contradictions”
are plausible considering that classification and regression are two different problems—detection and
estimation respectively—in which the learner is exposed to different (output) data. However, just a few
bars show an opposite sign, none of them showing extreme opposite values.

5 Conclusions and Future Work

Overall, the present study adds evidence to the fact that visual and textual representations encode different
semantic aspects of concepts. Crucially, we find that neither vision nor language are superior to the
other in grasping every aspect of meaning, but they rather dominate in different attribute types. More
concretely, vision proves generally better at capturing form and surface, color and motion attributes
while language proves better at encyclopedic and function attributes. However, even within these general
trends, we find that there are important exceptions in which visual resemblance among the concepts to
which an attribute applies seems to play an important role. As an additional finding, we find that vision
and language present a surprisingly similar pattern of predictive capacity for the different attributes types
(Fig. 2), and that neither vision nor language succeed at capturing certain attribute types (e.g., tactile or
sound). This suggests that other perceptual modalities can further improve the representations.

Taken together, we conclude that fine-grain attribute understanding can benefit from the integration of
visual and textual representations. Thus, our results align with previous multimodal research that evalu-
ates vision and language in coarse-grain tasks such as concept similarity and conclude that multimodal
representations outperform the unimodal baselines (Lazaridou et al., 2015; Silberer and Lapata, 2014;
Kiela and Bottou, 2014). Ultimately, our findings provide insights that can help building better multi-
modal representations by taking into account the types of semantic knowledge that vision and language
selectively capture. In turn, better representations can improve automatic language understanding by
providing a more human-like and perceptually grounded processing. Furthermore, we believe that the
taxonomic knowledge encoded in visual representations can be further exploited towards building meth-
ods that automatically identify taxonomic relationships between concrete (perceptible) nouns, offering
potential alternatives to WordNet (Fellbaum, 1998). Finally, recent work in computer vision showed that
better fine-grain semantic understanding of objects can be achieved if images are segmented into the
objects’ individual parts (Vedaldi et al., 2014). We believe that this is an interesting direction to extend
our work.

Acknowledgements

This work has been supported by the CHIST-ERA EU project MUSTER3.

References
Marco Baroni and Alessandro Lenci. 2008. Concepts and properties in word spaces. Italian Journal of Linguistics,

20(1):55–88.

Marco Baroni, Georgiana Dinu, and Germán Kruszewski. 2014. Don’t count, predict! a systematic comparison of
context-counting vs. context-predicting semantic vectors. In ACL, pages 238–247.

Lawrence W Barsalou. 2008. Grounded cognition. Annu. Rev. Psychol., 59:617–645.

3http://www.chistera.eu/projects/muster

2815



Herbert Bay, Tinne Tuytelaars, and Luc Van Gool. 2006. Surf: Speeded up robust features. In ECCV, pages
404–417. Springer.

Elia Bruni, Gemma Boleda, Marco Baroni, and Nam-Khanh Tran. 2012. Distributional semantics in technicolor.
In ACL, pages 136–145. ACL.

Navneet Dalal and Bill Triggs. 2005. Histograms of oriented gradients for human detection. In CVPR, volume 1,
pages 886–893. IEEE.

Koen Deschacht and Marie-Francine Moens. 2009. Using the latent words language model for semi-supervised
semantic role labeling. In EMNLP.

Koen Deschacht, Jan De Belder, and Marie-Francine Moens. 2012. The latent words language model. Computer
Speech & Language, 26(5):384–409.

Ali Farhadi, Ian Endres, Derek Hoiem, and David Forsyth. 2009. Describing objects by their attributes. In CVPR,
pages 1778–1785. IEEE.

Christiane Fellbaum. 1998. WordNet. Wiley Online Library.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2015. Deep residual learning for image recognition.
arXiv preprint arXiv:1512.03385.

Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey Karayev, Jonathan Long, Ross Girshick, Sergio Guadar-
rama, and Trevor Darrell. 2014. Caffe: Convolutional architecture for fast feature embedding. arXiv preprint
arXiv:1408.5093.
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