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Abstract
The recent proliferation of smart devices necessitates methods to learn small-sized models. This
paper demonstrates that if there are m features in total but only n = o(

√
m) features are required

to distinguish examples, with Ω(log m) training examples and reasonable settings, it is possible
to obtain a good model in a succinct representation using n log2

m
n +o(m) bits, by using a pipeline

of existing compression methods: L1-regularized logistic regression, feature hashing, Elias–Fano
indices, and randomized quantization. An experiment shows that a noun phrase chunking task
for which an existing library requires 27 megabytes can be compressed to less than 13 kilobytes
without notable loss of accuracy.

1 Introduction

The age of smart devices has arrived. Cisco reports that, as of 2015, smartphones and tablets account for
15% of IP traffic (against 53% for PCs), and further predicts that, by 2020, this share will have grown
to 43%, surpassing the 29% of PCs (Cisco Systems, 2016). This trend increases the need for intelligent
processing for these platforms. Hence, the study of statistical methods for natural language process-
ing (NLP) systems on mobile devices has received considerable attention in recent years (Ganchev and
Dredze, 2008; Hagiwara and Sekine, 2014; Chen et al., 2015).

Among the various issues in this setting, storage costs pose a particular challenge, because the size of
the resulting models often grow quickly. Even a simple noun phrase (NP) chunker can easily take dozens
of megabytes if naı̈vely implemented. Suppose we have m features. A direct implementation then
consumes Z(A)+O(mζ), where Z(A) represents the size of an alphabet A, or a feature dictionary that
maps a feature string to an index into its parameter vector, and O(mζ) represents the space complexity
of a dense real vector as the parameter where using ζ bits to achieve a certain amount of float precision
(64m if using double-precision floats). These large-sized models are not only inefficient in terms of
network bandwidth, but also significantly increase energy consumption (Han et al., 2016). Therefore, it
is vital to devise a method that achieves as small a model as possible.

One of the basic properties of information theory says that, to represent a set of n non-negative
integers less than m (or, equivalently, a bit vector of size m containing n 1s), we need at least
Bm,n = ⌈log2

(
m
n

)⌉ ≈ n log2
m
n bits. Recent studies in theoretical computer science show that it is

possible to compress a set of non-negative integers while keeping some primitive operations under suc-
cinct representations, that is, data structures using only Bm,n + o(m) bits.

As an analogy to succinct data structures, one may ask a question: if there are m features, but only n
of these are useful for distinguishing data, how many bits are required to obtain a good classifier? This
paper shows that under several reasonable assumptions such as n = o(

√
m), with Ω(log m) examples, it

is possible to obtain a model that performs similarly to the original classifier, by using only Bm,n +o(m)
bits.

To evaluate our method, we implemented conditional random fields (CRFs) by using our pipelined
architecture and conducted an experiment on an NP chunking model. The results show that 27 megabytes
can be reduced to about 13 kilobytes.
This work is licensed under a Creative Commons Attribution 4.0 International Licence. Licence details: http://
creativecommons.org/licenses/by/4.0/
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In summary, our work is significant in that

1. we present a pipelined method to acquire a succinct model that also has almost the same predictive
performance as the model of Ng (2004),

2. although the above method is achieved under some conditions and penalties, the conditions are not
ungrounded for NLP tasks and the the penalties are neglible for large m,

3. we also introduce a bitwise trick to perform fast unbiased feature hashing, a part of the pipeline,

4. and our experimentations on sequential labeling tasks achieve smaller models than existing libraries
by a factor of one thousand, demonstrating the high practical value of our approach.

This paper is organized as follows. In Section 2, we mention related work. In Section 3, we explain
the notation used in the paper. In Section 4, we introduce and analyze our methods. In Section 5, we
evaluate our approach by an experiment.

2 Related Work

Ganchev and Dredze (2008) were one of the earliest groups to recognize the importance of acquir-
ing small models for mobile platforms. They also showed that naı̈ve hashing tricks for features (now
commonly known as feature hashing) can greatly improve the memory efficiency without much loss of
accuracy. Shi et al. (2009) showed that feature hashing could be applied to graph models. Weinberger
et al. (2009) proposed an unbiased version of feature hashing. Bohnet (2010) applied the method to
dependency parsing, and found that it improves not only memory efficiency, but also speed performance.
Recent studies (Chen et al., 2015) suggest that hashing tricks also work well in deep neural networks too.

Feature selection through the L1 regularization is also known to be effective, since, roughly speaking,
the number of features in the final model results in being logarithmic to the number of total features (Ng,
2004). Online optimization (vis-á-vis batch optimization) with the L1-regularization term gained atten-
tion from around 2010 (Duchi and Singer, 2009; Tsuruoka et al., 2009), and with the AdaGrad (Duchi et
al., 2011) method becoming particularly popular, because of its theoretical and practical performance.

Compression by quantization is closely related to machine learning. For eaxmple, the Lloyd quan-
tization (Lloyd, 1982) is now used as a popular clustering method known as the K-means clustering.
Golovin et al. (2013) showed that simple (simplistic, in fact) quantization techniques actually exhibit
good performance in common settings used in NLP; although their methods themselves were basic, they
analyzed theoretical effects in detail, and these serve as the key ingredients for our error analysis in
Section 4.

The compression of indices is a classical topic in information retrieval (IR). Vigna (2013) introduced
the Elias–Fano structure (Fano, 1971; Elias, 1974) into IR, although this was alreadly a popular theme
in the succinct data structures community (Grossi and Vitter, 2005; Okanohara and Sadakane, 2007;
Golynski et al., 2014). Although other types of succinct structures are common in NLP as well (Watanabe
et al., 2009; Sorensen and Allauzen, 2011; Shareghi et al., 2015), the Elias–Fano structure is in that, if
regarded as a binary vector, the order of compression ratio depends on the number of 1s (rather than
the total length of a vector) and achieves better compression ratio than other succinct models for binary
vectors if the ratio of 1s is very low (empirically, below 10%); to put it more concretely, the structure
is very attractive when unnecessary indices are culled by some techniques such as L1-regularization.
Because of its simplicity and compression ratio, the Elias–Fano structure even gained a certain degree of
popularity in industry; for example, as of 2013, it is used as one of the backbones of Facebook’s social
graph engine (Curtiss et al., 2013). Several variants have been proposed, including sdarry (Okanohara
and Sadakane, 2007) and the partitioned Elias–Fano indices (Ottaviano and Venturini, 2014).

Driven by these successes, the study of pipelining compression techniques has flourished in recent
years. The web-based morphological parser developed by Hagiwara and Sekine (2014) is similar to our
work in its aim and basic scheme, but some parts were not implemented and they gave no theoretical
explanation of why pipelined compression would work well. For large-scale neural networks, by using
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Han et al. (2015)’s three-step pruning process, Han et al. (2016) gained great empirical success using deep
compression, or pipelined compression for a deep neural network with pruning, trained quantization, and
Huffman coding.

3 Notation

The base of logarithm is e if not stated explicitly. If the base is x (x ̸= e), we write logx. E denotes an
expectation, R denotes a set of real values, and N denotes a set of non-negative integers. δi,j represents
the Kronecker’s delta, that is, δi,j = 1 if i = j, and 0 otherwise. Bm,n represents the information-
theoretic lower bound of encoding a bit vector of size m with n 1s, that is, n

⌈
log2

(
m
n

)⌉
.

4 Learning Succinct Models

Figure 1: Overview of pipelined compression.

In this section, we present a supervised learning method to obtain a small-sized model for classification
tasks. For simplicity, we assume binary classification for each label y ∈ {0, 1} by logistic regression.
Suppose there is a set of m features and a dataset T =

{
(x(0), y(0)), (x(1), y(1), ..., (x(T−1), y(T−1))

}
of

T training examples drawn i.i.d. from some distribution D.
Consider the following optimization problem with the L1-regularization term R(θ) = ||θ||1

max
θ

T−1∑
i=0

log p(yi | xi ; θ)

subject to R(θ) ≤ B.

(1)

Our goal is to obtain a good parameter θ that minimizes the expected logistic log loss, that is,

ε(θ) = E(x,y)∼D[− log p(y | x ; θ)] (2)

with as small a model as possible. We also define the empirical loss

ε̂(θ) = ε̂T (θ) =
1
T

T−1∑
i=0

− log p(yi | xi ; θ). (3)

The m-dimensional vector θ is often implemented as a float array of size m, consuming O(mζ) bits.
Concretely, it occupies 64m bits if we use double-precision (ζ = 64) and 32m bits if single-precision
(ζ = 32). As m can be millions, billions, or more in NLP tasks, this size complexity is often non-
negligible for mobile and embedded devices (e.g., 762.9 megabytes for 100,000,000 features when using
double-precision).

In addition to the parameter vector, we need to store an alphabet or a feature dictionary A : N →
{0, ..., m− 1} such thatA(fi) = i for f0, ..., fm−1 ∈ N. For example, if the 12-th element in a feature set
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represents “the current token is appropriate, the previous token is I, and the current label is VERB”,
one possible formulation is f12 = utf8("bigram[-1:0]=I:appropriate&label=VERB"),
where utf8 denotes a non-negative integer given by the UTF-8 bit representation of a string. A weight
value for this feature can then be accessed as θA(f12). There are two problems with the use of alphabets.
First, they consume too much storage space (Ganchev and Dredze, 2008). Second, if implemented with
a hash table (as is often the case), they are so slow that they become the bottleneck of the entire learning
system (Bohnet, 2010). In the following, Z(A) denotes the size of an alphabet A.

4.1 Pipelined method

Let us now introduce a pipelined method to reduce both O(mζ) and Z(A).

Definition 4.1. Given inputs T ,

1. Train the model by using L1-regularization according to the method of Ng (2004):

(a) Divide the data T into a training set T1 of the size (1 − γ)T and a development set T2 of the
size γT , for some γ ∈ R.

(b) For B = 0, 1, 2, 4, ..., C, solve the optimization under each of these hyperparameters with T1,
giving θ0, ...,θC .

(c) Choose θ = arg min{i∈0,1,2,...,C} ˆεT2(θi), or the best model for the development data set.

As we performed the L1-regularization, it is safe to assume that the non-zero components are quite
small. Z(A)+O(n log m)+O(nζ) ; Z(A) for the alphabet, ⌈log m⌉ bits for each of the n indices,
and zeta) bits for each of the n values.

2. Eliminate the alphabet and reduce the dimensionality of vectors by using the unbiased feature hash-
ing (Weinberger et al., 2009). Given two hash functions h : N → {0, ..., m′ − 1} and ξ : N →
{−1, 1}, we define the (unbiased) hashed feature map ϕ such that ϕ(h,ξ)(x) =

∑
j : h(j)=i ξ(i)xi.

We apply this ϕ to the parameter vector and all future input vectors. As this map acts as a proxy
for the alphabet, we no longer need to store the alphabet. As a side-effect, if we choose m′ < m,
the dimensionality is reduced from m to m′. Note that this is said to be unbiased because given
⟨x,x′⟩ϕ :=

⟨
ϕ(h,ξ)(x), ϕ(h,ξ)(x′)

⟩
, E⟨x,x′⟩ϕ = ⟨x,x′⟩. In other words, on average, prediction

using a hashed map space is the same as the original version.

At this point, the size has been reduced to O(n log m′) + O(nζ); ⌈log m′⌉ for each of the n indices
and ζ) bits for each of the n values.

3. Compress the set of n indices by using the Elias–Fano scheme (Fano, 1971; Elias, 1974). In brief,
n integers are compressed to n⌈log2 m/n⌉+ f(n), where f(n) = O(n) and f(n) ≤ 2Sn for some
speed-memory trade-off hyperparameter 1 ≤ S < 2 (usually less than 1.01). We omit the details
here, but interested readers may consult Vigna (2013)’s good introduction.

At this point, the size has been reduced to n⌈log2 m′/n⌉+ O(n) + O(nζ).

4. Compress the set of values by using the unbiased randomized rounding (Golovin et al., 2013). Let
µ and ν be some non-negative integers, then it encodes each value as a fixed-point number with
Qµ.ν encoding, that is, as µ integer bits and ν fractional bits (e.g., if µ = ν = 2, we can represent a
maximum of (11.11)2 = 3.75). Including a sign bit, µ + ν + 1 for each value. µ and ν are chosen
so that they satisfy the conditions of the error anaysis in the following subsection.

At this point, the size has been reduced to n⌈log2 m′/n⌉+ O(n).

Overall, because n⌈log2 m/n⌉ = Bm,n+O(n) (Golynski et al., 2014), choosing m′ < m and assuming
n = o(m) achieves a model with Bm,n + o(m). In the next subsection, however, we assume tighter
conditions such as n = o(

√
m) to achieve good error bounds.
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4.2 Error analysis

Each compression technique (except Elias–Fano) adds several penalties to the predictive performance.
Therefore, intuitively, pipelined compression should lower the performance significantly. Contrary to
such intuition, however, the increase in the error is negligible under certain circumstances.

Theorem 4.2. Suppose that there exist m features in total, but only n features are important, so that the
optimal parameter vector θ∗ ∈ Rm has only n non-zero components with indices 0 ≤ i0, i1, ..., in−1 <
m. Further, assume that each non-zero component is bounded by some constant no less than 1, that is,
0 < |θij | ≤ K for j = 0, ..., n− 1 with K ≥ 1.

Let us be given a training data set T =
{
(x(0), y(0)), (x(1), y(1), ..., (x(T−1), y(T−1))

}
of T training

examples drawn i.i.d. from some distribution D. Assume that the number of non-zero components of
each input is always bounded by some non-negative constant much smaller than m, and that n is also
much smaller than m as follows:

||x||0 ≤ k for any (x, y) ∼ D, k ≥ 0, k = o(
√

m), n = o(
√

m), and K = o(m). (4)

Then, with probability at least (1 − δ)(1 + f1(m)) where f1(m) = o(1), it is possible to obtain a
model with size (in bits) at most

Bm,n + o(m) (5)

with errors to the expected logistic loss

ε(θ̂) ≤ ϵmul (ε(θ∗) + ϵadd) (6)

where ϵmul = 1 + f2(m) with f2 such that f2(m) = o(1), by performing C ≥ nk iterations to find a
good hyperparameter and by using the T examples such that

T = Ω((log m) · poly(n,K, log(1/δ), 1/ϵadd, C)). (7)

Prior to its proof, let us explain what the above theorem says. If we omit the conditions of Equation (4),
we have the same setting used in Ng (2004, Theorem 3.1). Thus, if we perform L1-regularized learning as
defined in 1 of Definition 4.1, Ng’s theorem implies that Equations (6) and (7) hold, satisfying f1(m) = 0
and f2(m) = 0.

In other words, the above theorem implies that if we add the conditions defined in Equation (4)) to Ng’s
theorem, it is possible to obtain a succinct representation (Equation (5)) whose predictive performance
is nearly as good as that of Ng’s theorem, albeit with a probabilistic penalty f1(m) and an error penalty
f2(m). However, the penalties are negligible because f1(m) = o(1) and f2(m) = o(1).

Note that for NLP tasks, some of the conditions can be justified to a certain extent by the power
law. Let us follow the discussion presented by Duchi et al. (2011, Section 1.3). In NLP tasks, the
appearance of features often follows the power law. Thus, we can assume that the i-th most frequent
feature appears with probability pi = min(1, ci−α) for some a ∈ (1, +∞) and a positive constant c.
Given x, E||x||0 ≤ c

∑m
i=1 i−α/2 = O(log d) for α ≥ 2 and ||x||0 ≤ O(m1−α/2) for α ∈ (1, 2). Thus

E||x||0 = o(
√

m) for any x and α ∈ (1, +∞). This assumption and derivation by Duchi et al. imply
that the condition k = o(

√
m) is not ungrounded. The same discussion applies to n = o(

√
m) too. The

condition K = o(m) is less obvious than the other two, but we often assume a good parameter does not
have any excessively large values.

We now prove the above theorem.

Proof. If we omit the conditions of Equation (4)), then the method in 4.1.1 can be used to show that
Equations (6) and (7) hold, satisfying ϵmul = 1 (Ng, 2004, Theorem 3.1).

Next, we apply the unbiased feature hashing defined in 4.1.2. As the expected dot-product between
vectors in a reduced space is the same as the original, this does not change the expected error (Weinberger
et al., 2009). There is, however, one problem: hash collisions. When a collision occurs for an input x,
for the vector converted from x, the absolute value for some index may exceed 1. However, the error
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analysis of randomized rounding requires the absolute value of any index to be bounded by 1. Hence,
applying feature hashing before randomized rounding can break the subsequent analysis. Thankfully,
if we use h : N → 0, ..., m′ such that ||x||0 = o(m′) for any x ∈ D, with high probability (that is,
1 − o(1)), collisions never occur. This is a well-known fact resulting from Sterling’s approximation (in
the following , f, g, h, i are o(1) and irrelevant to the rest of this proof).

(
n

k

)
=

n!
k!(n− k)!

=
(1 + f(n))

√
2πne−nnn

k!(1 + g(n− k))
√

2π(n− k)e−(n−k)(n− k)n−k

=
(1 + f(n))

(1 + g(n− k))
· 1
k!
·
(

n

n− k

)1/2

e−k

(
n

n− k

)−k (
n

n− k

)n

nk

=
(1 + f(n))

(1 + g(n− k))
· n

k

k!
·
(

1− k

n

)k−1/2

e−k

(
1− k

n

)−n

=
(1 + f(n))

(1 + g(n− k))
· n

k

k!
· (1 + o(1))e−k 1(

1− k
n

)n

=
(1 + f(n))(1 + h(k))

(1 + g(n− k))(1 + i(n))
· n

k

k!
· e−k · 1

e−k
=

(1 + f(n))(1 + h(k))
(1 + g(n− k))(1 + i(n))

· n
k

k!

Using this equation, it is possible to estimate the hash collision ratio. If we assume Equation (4),
m′ = c

√
m for some positive c satisfies the condition we mentioned above.

We then apply the Elias–Fano structure defined in Definition 4.1.3. Because this is a lossless compres-
sion method for indices, the error analysis remains the same. The remaining problem is how to store the
values in o(m) bits.

Finally, we apply the unbiased randomized rounding as in Definition 4.1.4. Golovin et al. (2013,
Theorem 4.3) implies that if the value of each non-zero component of θ∗ is bounded by some K and
the number of non-zero components of any input is bounded by some k such that K ≥ 1 and k ≥ 0,
then it is possible to derive a new parameter vector θ̂, with each value using (1 + µ + ν) bits, such that
ε(θ̂) ≤ ϵmul · ε(θ∗), where

0 ≤ ϵmul ≤ 2χ
√

2πk exp
(

χ2n

2

)
, (8)

µ = ⌈log2 K⌉(= o(log m) if K = o(m)), and ν = − log2 χ (so χ = 1
2ν ). If we use ν = ⌈cm1/2⌉(=

Θ(
√

m)) for some positive constant c, assuming the conditions (4) hold, ϵmul = f2(m) with f2 such
that f2(m) = o(1). Here f2(m) = o(1) holds because limm→+∞ χ

√
k = limm→+∞

√
k · χ2 =

limm→+∞
√

o(
√

m)/O(2m1/2) = 0 and the same limit also applies to the χ2n term.
Thus, to store the values, we need n(1 + µ + ν) = o(

√
m) · (1 + o(log m) + Θ(

√
m)) = o(m) bits

in total. This completes the proof.

4.3 Practical settings

In practical situations, several violations of the method can make it more efficient.
For example, as presented by Weinberger et al. (2009), it is possible to reduce both storage and RAM

usage during training by applying feature hashing prior to training with L1-regularization. In this case,
it is not clear whether the above theorem holds, as we solve the optimization problem in the reduced-
dimension space rather than the original one. Nevertheless, the predictive performance of resulting
models will not change significantly. Weinberger et al. (2009, Corollary 5) pointed out that the number
of instances enters logarithmically into the analysis of the maximal canonical distortion. Additionally,
Ng (2004) showed that the number of features m affects the number of required instances only logarith-
mically. Combining these results implies that, if we carefully choose informative instances for training,
the distortion in the reduced space is only affected by log log m, which should be negligible. Thus, we
expect the theorem to virtually hold even in this setting.
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Another issue involves solving Equation (1). Several concrete optimization algorithms
such as AdaGrad (Duchi et al., 2011) solve the dual problem of Equation (1), that is,
arg maxθ

∑T−1
i=0 log p(yi|xi; θ) − λR(θ) where λ ∝ 1

B for B > 0. This is said to be dual because, for
any θ obtained by Equation (1) with some hyperparameter B, there is exactly one hyperparameter λ that
gives the same θ. Unfortunately, it is often impossible to get the exact relationship between the hyperpa-
rameters B and λ. However, because λ ∝ 1

B , a good value may be found by trying λ = 1, 1
2 , 1

4 , 1
8 , ....

4.4 Bitwise feature hashing
On first examination, unbiased feature hashing (Weinberger et al., 2009) may appear to be twice as
costly as the naı̈ve version (that is, always ξ(i) = 1 in Definition 4.1.2), as it requires two hash functions
to be computed: h and ξ. Actually, by leveraging some bitwise operations, we need only one hash
computation and just another three CPU cycles per feature to perform the unbiased version. Let us
consider the following algorithm to convert k items of an original index–value pair to the same number
of items of pairs under feature hashing. In the algorithm, >> denotes an arithmetic right shift (also
called a signed right shift).

Data: A 2-tuple of indices and values (I;V ) such that I ∈ Nk and V ∈ Rk for some k.
Dimensionality m′ satisfying m′ = 2a for some a ∈ N.

Result: A 2-tuple of indices and values (I∗; V ∗) such that I∗ ∈ Nk and V ∗ ∈ Rk for some k and
0 ≤ i′ < m′ < 232 for any i ∈ I∗.

1 MASK ← m′ − 1 ;
2 for int i = 0; i < k; i← i + 1 do
3 t← h(Ii) ;
4 sign← (t >> 31) | 1 ;
5 I∗i ← t & MASK ;
6 V ∗

i ← sign · Vi ;
7 end
8 return (I∗; V ∗) ;

Algorithm 1: Bitwise unbiased feature hashing

The improvements over the original version are:

1. the original version requires two hash functions, whereas our version requires only one,

2. the resulting index–value pairs are not merged—because the dot-product between two vectors is
distributive (a · (b + c) = a · b + a · c), there is no need to merge indices—so there is no need to use
slow data structures such as hash maps for merging, and

3. compared with Bohnet (2010)’s approach, which uses a % (modulo) operator to gain the desired
dimension, our approach uses & (bitwise mask), so it runs faster in common architectures. The
downside is that the resulting dimension will be limited to a power of two.

5 Experimental Results

To evaluate our approach, we implemented a linear-chained conditional random field (CRF) (Lafferty et
al., 2001; Sha and Pereira, 2003) and tested it on an NP chunking task. For the optimization problem,
we used the AdaGrad, an online optimization algorithm, with the L1-regularization term by diagonal
primal-dual subgradient update (Duchi et al., 2011).

5.1 Implementation
We implemented our CRF library with ECMAScript 6, but its core component for optimization computa-
tion was handwritten by asm.js1, a subset of ECMAScript 6 (that is, so-called JavaScript 6). The language

1“.js” is not a file extension, but a part of the name of the language.
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was designed mainly by Mozilla as a performance improvement technique for web platforms. Although it
is conformant to ECMAScript 6, the language is actually lower-level than C, and Mozilla claims it is only
at most twice as slow as native code. We used the language because, by using a JavaScript-compatible
language, it is possible to embed the resulting classifier in web pages for use as a fundamental library in
web systems, not only on desktop machines but also on mobile platforms.

5.2 NP chunking

µ
ν

3 2 1

3 0.9720 0.9703 0.9621
2 0.9673 0.9681 0.9610
1 0.9470 0.9460 0.9392

Table 1: Macro-averaged F1 values under various µ and ν values for Qµ.ν encoding.

To test our CRF implementation, following Sha and Pereira (2003), we performed an NP chunking
task using the CoNLL-2000 text chunking task data (Tjong Kim Sang and Buchholz, 2000). In the shared
task data, the labels B-NP and I-NP were retained, but all other labels were converted to O. Therefore,
this is basically a sequential labeling problem with three labels. The features are the same as those used
by Sha and Pereira (2003), except that they reformulated two consecutive labels as a new one, whereas
we used the original labels. The total number of features is 1,015,621.

The training dataset consists of 8,936 instances, and the test dataset contains 2,012. Of the training
data set, we used 7,148 instances (4/5) for training and the remaining 1,788 instances as development
data.

For feature hashing, we used 220 as the resulting dimension. There are three hyperparameters for
AdaGrad: δ, η, and λ. For the first two, we simply used δ = η = 1.0. To find a good value for λ, or the
coefficient of the regularization term, we tried {1.0, 0.5, 0.25, 0.125, ...., }, and found that λ = 0.514 ∼
0.00006104 gave the best results, with a macro-averaged F1 score of 0.9722. The number of active
features (L0-norm) was 8,824. We also tested various µ and ν for the unbiased randomized rounding,
and found that µ = ν = 3 gave a macro-averaged F1 score of 0.9720, which is slightly less than the
original. In this case, the number of active features further decreased to 6,785. Overall, the size of our
model was compressed to 12,745 bytes.

We compared our implementation with CRFSuite 1.2, a popular linear-chained CRF library written in
C++ (Okazaki, 2007). The library has a convenient functionality that allows strings to be used as feature
IDs. The downside is that the resulting model tends to be large, because it requires an alphabet to be
stored. Using this library, the obtained model had a size of 27 megabytes, and achieved a macro-averaged
F1 score was 0.973009.

In summary, although our method is inferior to the existing implementation by 0.001 in terms of F1
score, the size efficiency is more than 2,000 times better.

5.3 Performance of bitwise feature hashing

We also tested the performance of the bitwise feature hashing described in Section 4.4. For comparison,
we prepared three functions as follows.

1. Unbiased feature hashing. The algorithm is similar to the one given by Bohnet (2010) but we
employed two hash functions to implement the unbiased version and added values when collisions
occurred, whereas Bohnet’s method just overwrites the previous value. We used JavaScript’s built-in
object type as a dictionary (or hash map).

2. Non-merge feature hashing. This is almost identical to the standard version, but instead of using
a dictionary (or hash map) structure, it emits the resulting index–value pairs into array structures
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without merging the indices. The code was implemented without asm.js tuning, as this does not
leverage bitwise operations.

3. Bitwise feature hashing with asm.js tuning (Section 4.4).

The environment used in this experiment was OS X 10.11.6 with 2.2 GHz Intel Core i7. The code was
micro-benchmarked by Benchmark.js 2.1.0, developed by Mathias Bynens 2, under the following web
browsers: Apple Safari 10.0 (with the JavaScript engine JavaScriptCore, also known as Nitro), Google
Chrome 53.0.2785.143 (V8), and Mozilla Firefox 49.0.1 (SpiderMonkey). The experimental results are
shown below.

Standard Non-merge Bitwise
Apple Safari 10 1,108 3,426 6,670

Google Chrome 53 506 2,524 4,710
Mozilla Firefox 49 239 737 4,446

Table 2: Performance of each feature hashing implementation. Higher is better. Unit: 1k ops/sec.

The results in this table show that the bitwise version is more than five times faster than the standard
one in all environments.

As we see, Safari was faster than the other browsers, possibly because the code was run under Apple’s
OS. Firefox was slightly slower than Chrome in general settings, but with asm.js enabled it achieved
almost the same performance.

In conclusion, the bitwise feature hashing can offer powerful performance improvement when the task
involves a number of features and processing those features is the bottleneck of the learning system.

6 Conclusions

This paper showed that pipelining compression methods for machine learning can achieve a succinct
model, both theoretically and practically. Although each technique is classical and well-studied, our re-
sult is significant in that these techniques actually complement each other, leading to drastic compression
without harming the predictive power. We also examined bitwise feature hashing, a subtle but powerful
modification for improving processing performance. In future work, we will try to incorporate other
compression techniques to build various pipeline configurations and compare the performance of each
configuration.
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