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Abstract

Existing work learning distributed representations of knowledge base entities has largely failed
to incorporate rich categorical structure, and is unable to induce category representations. We
propose a new framework that embeds entities and categories jointly into a semantic space, by
integrating structured knowledge and taxonomy hierarchy from large knowledge bases. Our
framework enables to compute meaningful semantic relatedness between entities and categories
in a principled way, and can handle both single-word and multiple-word concepts. Our method
shows significant improvement on the tasks of concept categorization and dataless hierarchical
classification.

1 Introduction

Hierarchies, most commonly represented as tree or directed acyclic graph (DAG) structures, provide a
natural way to categorize and locate knowledge in large knowledge bases (KBs) . For example, Word-
Net (Fellbaum, 1998), Freebase (Bollacker et al., 2008), and Wikipedia 1 use hierarchical taxonomy to
organize entities into category hierarchies. These hierarchical categories could benefit applications such
as object and concept categorization (Verma et al., 2012; Rothenhäusler and Schütze, 2009), document
classification (Gopal and Yang, 2013; Hu et al., 2016), and link prediction on knowledge graphs (Lin et
al., 2015; Zhang et al., 2016). In all of these applications, it is essential to have a good representation of
categories and entities as well as a good semantic relatedness measure.

In this paper, we propose two models to learn distributed representations of both entities and categories
from large-scale knowledge bases (KBs). The Category Embedding (CE) model extends the entity
embedding method of (Hu et al., 2015) and induces category embeddings in addition to entity vectors.
The Hierarchical Category Embedding (HCE) model further enhances the CE model by integrating
category hierarchical structure. The resulting entity and category vectors effectively capture meaningful
semantic relatedness between entities and categories.

We train the category and entity vectors on Wikipedia, and evaluate our methods from two applica-
tions: concept categorization (Baroni and Lenci, 2010) and dataless hierarchical classification (Song
and Roth, 2014). Our method achieves state-of-the-art performance on both tasks.

Figure 1 shows an overview of the research elements in this paper. In summary, we make the following
contributions:

• We incorporate category information into entity embeddings with the proposed CE model to get
entity and category embeddings simultaneously.
• We leverage category hierarchies and develop the HCE model to enhance the embedding quality.
• We propose a new concept categorization method based on nearest neighbor classification. Our

method avoids the granularity disparity issue of categories which has plagued traditional clustering-
based methods.

This work is licensed under a Creative Commons Attribution 4.0 International License. License details: http://
creativecommons.org/licenses/by/4.0/
This work has been partially funded by ARO award #W911NF1210416

1https://www.wikipedia.org
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Figure 1: The organization of research elements comprising this paper.

• We construct a new concept categorization dataset from Wikipedia.

• We show strong potential of utilizing entity embeddings on dataless classification.

2 Related Work

Entity embedding method is based on the analysis of distributional semantics, e.g., the recently pro-
posed skip-gram model (Mikolov et al., 2013) that learns to predict context words given target words.
This model tries to maximize the average log likelihood of the context words so that the embeddings
encode meaningful semantics. For instance, entity hierarchy embedding (Hu et al., 2015) extends it to
predict context entities given target entity in KBs. (Yamada et al., 2016) proposed a method to jointly
embed words and entities by optimizing word-word, entity-word, and entity-entity predicting models.
Our models extend this line of research by incorporating hierarchical category information to embed
categories and entities in a joint semantic space.

Relational embedding, also known as knowledge graph embedding, is a family of methods to represent
entities as vectors and relations as operations applied to entities such that certain properties are preserved
(Paccanaro and Hinton, 2001; Bordes et al., 2011; Nickel et al., 2012; Bordes et al., 2013; Neelakantan
and Chang, 2015). For instance, the linear relational embedding (Paccanaro and Hinton, 2001) applies a
relation to an entity based on matrix-vector multiplication, while TransE (Bordes et al., 2013) simplifies
the operation to vector addition. To derive the embedding representation, they minimize a global loss
function considering all (entity, relation, entity) triplets so that the embeddings encode meaningful se-
mantics. Our approach differs from this line as we learn from raw text in addition to knowledge graphs,
and methodologically use probabilistic models instead of transition-based models.

Category embedding has been widely explored within different context. (Weinberger and Chapelle,
2009) initially proposed a taxonomy embedding to achieve document categorization and derive the em-
beddings of taxonomies of topics in form of topic prototypes. Furthermore, (Hwang and Sigal, 2014)
proposed a discriminative learning framework that can give category embeddings by approximating each
category embeddings as a sum of its direct super-category plus a sparse combination of attributes. These
methods have primarily targeted on documents/object classification rather than entity representations.

Several recent methods are proposed to extend word representation to phrases (Yin and Schütze, 2014;
Yu and Dredze, 2015; Passos et al., 2014). However, they do not use structured knowledge to derive
phrase representations.

3 Joint Embedding of Categories and Entities

In order to find representations for categories and entities that can capture their semantic relatedness, we
use existing hierarchical categories and entities labeled with these categories, and explore two methods:
1) Category Embedding model (CE Model): it replaces the entities in the context with their directly
labeled categories to build categories’ context; 2) Hierarchical Category Embedding (HCE Model): it
further incorporates all ancestor categories of the context entities to utilize the hierarchical information.
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3.1 Category Embedding (CE) Model

Our category embedding (CE) model is based on the Skip-gram word embedding model(Mikolov et al.,
2013). The skip-gram model aims at generating word representations that are good at predicting context
words surrounding a target word in a sliding window. Previous work (Hu et al., 2015) extends the entity’s
context to the whole article that describes the entity and acquires a set of entity pairs D = {(et, ec)},
where et denotes the target entity and ec denotes the context entity.

Our CE model extends those approaches by incorporating category information. In KBs such as
Wikipedia, category hierarchies are usually given as DAG or tree structures, and entities are catego-
rized into one or more categories as leaves. Thus, in KBs, each entity et is labeled with one or more
categories (c1, c2, ..., ck), k ≥ 1 and described by an article containing other context entities (see Data in
Figure 1).

To learn embeddings of entities and categories simultaneously, we adopt a method that incorporates
the labeled categories into the entities when predicting the context entities, similar to TWE-1 model (Liu
et al., 2015) which incorporates topic information with words to predict context words. For example, if
et is the target entity in the document, its labeled categories (c1, c2, ..., ck) would be combined with the
entity et to predict the context entities like ec1 and ec2 (see CE Model in Figure 1). For each target-context
entity pair (et, ec), the probability of ec being context of et is defined as the following softmax:

P (ec|et) =
exp (et · ec)∑
e∈E exp (et · e) , (1)

where E denotes the set of all entity vectors, and exp is the exponential function. For convenience, here
we abuse the notation of et and ec to denote a target entity vector and a context entity vector respectively.

Similar to TWE-1 model, We learn the target and context vectors by maximizing the average log
probability:

L =
1
|D|

∑
(ec,et)∈D

[
logP (ec|et) +

∑
ci∈C(et)

logP (ec|ci)
]
, (2)

where D is the set of all entity pairs and we abuse the notation of ci to denote a category vector, and
C(et) denotes the categories of entity et.

3.2 Hierarchical Category Embedding(HCE) Model

From the design above, we can get the embeddings of all categories and entities in KBs without capturing
the semantics of hierarchical structure of categories. In a category hierarchy, the categories at lower
layers will cover fewer but more specific concepts than categories at upper layers. To capture this feature,
we extend the CE model to further incorporate the ancestor categories of the target entity when predicting
the context entities (see HCE Model in Figure 1). If a category is near an entity, its ancestor categories
would also be close to that entity. On the other hand, an increasing distance of the category from the
target entity would decrease the power of that category in predicting context entities. Therefore, given
the target entity et and the context entity ec, the objective is to maximize the following weighted average
log probability:

L =
1
|D|

∑
(ec,et)∈D

[
logP (ec|et) +

∑
ci∈A(et)

wi logP (ec|ci)
]
, (3)

where A(et) represents the set of ancestor categories of entity et, and wi is the weight of each cate-
gory in predicting the context entity. To implement the intuition that a category is more relevant to its
closer ancestor, for example, “NBC Mystery Movies” is more relevant to “Mystery Movies” than “En-
tertainment”, we set wi ∝ 1

l(cc,ci)
where l(cc, ci) denotes the average number of steps going down from

category ci to category cc, and it is constrained with
∑

iwi = 1.
Figure 2 presents the results of our HCE model for DOTA-all data set (see Section 5.1.1). The visual-

ization shows that our embedding method is able to clearly separate entities into distinct categories.
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Figure 2: Category and entity embedding visualization of the DOTA-all data set (see Section 5.1.1). We
use t-SNE (Van der Maaten and Hinton, 2008) algorithms to map vectors into a 2-dimensional space.
Labels with the same color are entities belonging to the same category. Labels surrounded by a box are
categories vectors.

3.3 Learning

Learning CE and HCE models follows the optimization scheme of skip-gram model (Mikolov et al.,
2013). We use negative sampling to reformulate the objective function, which is then optimized through
stochastic gradient descent (SGD).

Specifically, the likelihood of each context entity of a target entity is defined with the softmax function
in Eq. 1, which iterates over all entities. Thus, it is computationally intractable. We apply the standard
negative sampling technique to transform the objective function in equation (3) to equation (4) below
and then optimize it through SGD:

L =
∑

(ec,et)∈D

[
log σ(ec · et) +

∑
ci∈A(et)

wi log σ(ec · ci)
]
+ (4)

∑
(e′

c,et)∈D′

[
log σ(−e′c · et) +

∑
ci∈A(et)

wi log σ(−e′c · ci)
]
,

where D′ is the set of negative sample pairs and σ(x) = 1/(1 + exp(−x)) is the sigmoid function.

4 Applications

We apply our category and entity embedding to two applications: concept categorization and dataless
hierarchical classification.

4.1 Concept Categorization

Concept2 categorization, also known as concept learning or noun categorization, is a process of assigning
a concept to one candidate category, given a set of concepts and candidate categories. Traditionally, con-
cept categorization is achieved by concept clustering due to the lack of category representations. Since
our model can generate representations of categories, we propose a new method of using nearest neigh-
bor (NN) classification to directly categorize each concept to a certain category.

The concept clustering is defined as: given a set of concepts like dog, cat, apple and the corresponding
gold standard categorizations like animal, fruit, apply a word space model to project all the concepts to

2In this paper, concept and entity denote the same thing.
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a semantic space and perform clustering. The clustering results can be evaluated by comparing with the
gold standard categorizations. Since we have representation of categories, we propose nearest neighbor
(NN) classification to categorize concepts by directly comparing concept vectors with candidate cate-
gory vectors. Precisely, given a set of concepts E and a set of candidate categories C, we convert all
concepts to concept vectors and all candidate categories to category vectors. Then we use the equation
c = argminci∈C ||ci − e|| to assign the concept vector e with category c.

Since purity works as a standard evaluation metric for clustering (Rothenhäusler and Schütze, 2009),
to compare our model with the concept clustering, we also use purity to measure our model’s perfor-
mance. Specifically, purity is defined as:

purity(Ω,G) =
1
n

∑
k

max
j
|ωk ∩ gj |, (5)

where Ω denotes a clustering solution, G is a set of gold standard classes, n is the number of instances,
k is the cluster index and j is the class index, ωk represents the set of labels in a cluster and gj is the set
of labels in a class. A higher purity indicates better model performance.

4.2 Dataless Classification

Dataless classification uses the similarity between documents and labels in an enriched semantic space
to determine in which category the given document is. It has been proved that explicit semantic analysis
(ESA) (Gabrilovich and Markovitch, 2007) has shown superior performance on dataless classification
(Song and Roth, 2014). ESA uses a bag-of-entities retrieved from Wikipedia to represent the text. For
example, the document ”Jordan plays basketball” can be represented as a ESA sparse vector of {Michael
Jordan:48.3, Basketball:29.8, Air Jordan: 28.8, Outline of basketball: 28.5, Chicago Bulls: 23.6} in an
ESA implementation. After converting documents and short label descriptions to ESA vectors, a nearest
neighbor classifier is applied to assign labels for each document.

Due to sparsity problem of ESA vectors, sparse vector densification is introduced to augment the
similarity calculation between two ESA vectors (Song and Roth, 2015). This is achieved by considering
pairwise similarity between entities in ESA vectors. However, they simply use word2vec (Mikolov et
al., 2013) to derive entity representation. We extend it by directly applying entity embeddings and show
the potential of entity embeddings to improve dataless classification.

We use averaged F1 scores to measure the performance of all methods (Yang, 1999). Let TPi, FPi,
FNi denote the true-positive, false-positive and false-negative values for the ith label in label set T , the
micro- and macro-averaged F1 scores are defined as: MicroF1 = 2P ∗ R/(P + R) and MacroF1 =
1
|T |

∑|T |
i

2Pi∗Ri
Pi+Ri

, where Pi = TPi/(TPi + FPi) and Ri = TPi/(TPi + FNi) are precision and recall

for ith label, P =
∑|T |

i TPi/
∑|T |

i (TPi + FPi) and R =
∑|T |

i TPi/
∑|T |

i (TPi + FNi) are averaged
precision and recall for all labels.

5 Experiments

In the experiments, we use the dataset collected from Wikipedia on Dec. 1, 20153 as the training data. We
preprocess the category hierarchy by pruning administrative categories and deleting bottom-up edges to
construct a DAG. The final version of data contains 5,373,165 entities and 793,856 categories organized
as a DAG with a maximum depth of 18. The root category is “main topic classifications”. We train
category and entity vectors in dimensions of 50, 100, 200, 250, 300, 400, 500, with batch size B = 500
and negative sample size k = 10.

With the training dataset defined above, we conduct experiments on two applications: concept catego-
rization and dataless hierarchical classification.

3https://dumps.wikimedia.org/wikidatawiki/20151201/
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5.1 Concept Categorization

5.1.1 Datasets
There are two datasets used in this experiment. The first one is the Battig test set introduced by (Baroni
and Lenci, 2010), which includes 83 concepts from 10 categories. The Battig test set only contains
single-word concepts without any multiple-word concepts (e.g., “table tennis”). Hence, using this dataset
restricts the power of concept categorization to single-word level. We use this dataset because it has been
used as a benchmark for most previous approaches for concept categorization.

Due to the limitations of the Battig test set, we construct a new entity categorization dataset DOTA
(Dataset Of enTity cAtegorization) with 450 entities categorized into 15 categories (refer to Appendix
A). All the categories and entities are extracted from Wikipedia, so the resulting dataset does not nec-
essarily contains only single-word entities. Thus, the dataset can be split into two parts, DOTA-single
that contains 300 single-word entities categorized into 15 categories and DOTA-mult that contains 150
multiple-word entities categorized into the same 15 categories. We design the DOTA dataset based on
the following principles:

Coverage vs Granularity: Firstly, the dataset should cover at least one category of Wikipedia’s main
topics including “Culture”, “Geography”, “Health”, “Mathematics”, “Nature”, “People”, “Philosophy”,
“Religion”, “Society” and “Technology”. Secondly, categories should be in different granularity, from
large categories (e.g.,“philosophy”) to small categories (e.g., “dogs”). Large categories are ones that are
located within 5 layers away from the root, medium categories are 6-10 layers away from the root, while
small categories have distance of 11-18 to the root. Our dataset consists of 1/3 large categories, 1/3
medium categories, and 1/3 small categories.

Single-Words vs Multiple-Words: Previous concept categorization datasets only contain single-
words. However, some concepts are multiple-words and cannot be simply represented by single-
words. For example, the concept “hot dog” is very different from the concept “dog”. Therefore, we
make each category of the dataset contain 10 multiple-word entities and 20 single-word entities.

5.1.2 Baselines
We compare our entity and category embeddings with the following state of the art word and entity
embeddings.

WEMikolov(Mikolov et al., 2013): We trained word embeddings with Mikolov’s word2vec toolkit4

on the same Wikipedia corpus as ours (1.7 billion tokens) and then applied the Skip-gram model with
negative sample size of 10 and window size of 5 in dimensionality of 50, 100, 200, 250, 300, 400, 500.

WESenna (Collobert et al., 2011): We downloaded this 50-dimension word embedding5 trained on
Wikipedia over 2 months. We use this embedding as a baseline because it is also trained on Wikipedia.

Given the above semantic representation of words, we derive each entity/category embedding by aver-
aging all word vectors among each entity/category label. If the label is a phrase that has been embedded
(e.g., Mikolov’s embedding contains some common phrases), we direct use the phrase embedding.

HEE (Hu et al., 2015): This Hierarchical Entity Embedding method uses the whole Wikipedia hierar-
chy to train entity embeddings and distance metrics. We used the tools provided by the authors to train
entity embeddings on the same Wikipedia corpus as ours. We set the batch size B = 500, the initial learn-
ing rate η = 0.1 and decrease it by a factor of 5 whenever the objective value does not increase, and the
negative sample size k = 5 as suggested by the authors. This method doesn’t provide a way of learning
category embeddings. Therefore, it cannot be used in the nearest neighbor classification method.

TransE (Bordes et al., 2013): It is a state of the art relational embedding method introduced in Sec-
tion. 2, which embeds entities and relations at the same time. It can be extended to derive category
embeddings, since categories can be seen as a special entity type. To make comparisons fair enough, we
adopt three different versions of TransE to derive entity and category embedding to compare with our
methods. TransE1: Use entities and categories as two entity types and the direct-labeled-category rela-
tion. So the triplets we have is in the form of (entity, direct-labeled-category, category). TransE2: Add

4https://code.google.com/archive/p/word2vec/
5http://ronan.collobert.com/senna/
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to TransE1 with the hierarchy structure of wikipedia categories. Namely, add the super-category relation
between categories. Therefore we have new triplets in the form of (category, super-category, category).
TransE3: To make it use full information as ours, we extend TransE2 to utilize context entity relationship
described in Section. 3.1. Therefore we add new triplets in the form of (entity, context-entity, entity).

HC: To further evaluate the advantage of utilizing category hierarchy in training entity and category
embedding, we also compare our Hierarchical Category Embedding (HCE) model with our Category
Embedding (CE) model that has no hierarchical information.

5.1.3 Results

In the experiments, we used scikit-learn (Pedregosa et al., 2011) to perform clustering. We tested k-
means and hierarchical clustering with different distance metrics (euclidean, cosine) and linkage crite-
rion (ward, complete, average). All these choices along with the vector dimensionality are treated as
our models’ hyper-parameters. For selecting hyper-parameters, we randomly split the Battig and Dota
datasets to 50% of validation data and 50% of test data, evenly across all categories. We trained all the
embeddings (except SENNA) on the same Wikipedia dump and tuned hyper-parameters on the valida-
tion set. For experiments on Dota dataset, since the ground truth is contained in our Wikipedia corpus,
we deleted all category-entity links contained in Dota dataset from our category hierarchy to train HEE,
TransE and HCE embeddings to make comprison fair enough.

Table. 1a shows the experimental results of the concept clustering method. It is clear that hierarchical
category embedding (HCE) model outperforms other methods in all datasets. Our model achieves a
purity of 89% on Battig and 89% on DOTA-all.

Battig DOTA-single DOTA-mult DOTA-all
WESenna (50,50) 0.74 0.61 0.43 0.45

WEMikolov (400,400) 0.86 0.83 0.73 0.78
HEE (400,400) 0.82 0.83 0.80 0.81

TransE1 (300,250) 0.67 0.71 0.68 0.69
TransE2 (400,300) 0.73 0.78 0.75 0.76
TransE3 (200,400) 0.43 0.53 0.50 0.51

CE (300,200) 0.84 0.86 0.83 0.85
HCE (400,400) 0.89 0.92 0.88 0.89

(a) Purity of concept clustering method

Battig DOTA-single DOTA-mult DOTA-all
WESenna (50,50) 0.44 0.52 0.32 0.45

WEMikolov (400,400) 0.74 0.74 0.67 0.72
HEE - - - -

TransE1 (300,250) 0.66 0.72 0.69 0.71
TransE2 (400,300) 0.75 0.80 0.77 0.79
TransE3 (300,400) 0.46 0.55 0.52 0.54

CE (200,200) 0.79 0.89 0.85 0.88
HCE (400,400) 0.87 0.93 0.91 0.92

(b) Purity of NN classification method

Table 1: Purity of nearest neighbor (NN) classification and concept clustering methods with different
embeddings on Battig and DOTA datasets. The two numbers given in each parentheses are the vector
dimensionality among {50,100,200,250,300,400,500} that produce the best results on Battig and Dota
validation set respectively. All the purity scores are calculated under such choices of hyper-parameters
on the test set.

For word embeddings like Mikolov and Senna, the performance drops a lot from single-word entity
categorization to multiple-word entity categorization, because these embeddings mainly contain single
words. To get the embeddings of multiple-word, we use the mean word vectors to denote multiple-word
embeddings. However, the meaning of a multiple-word is not simply the aggregation of the meaning of
the words it contains. The good performance of HEE shows the high quality of its entity embeddings. By
incorporating category hierarchy information, TransE2 gets an advantage over TransE1. This advantage
can also be observed when we incorporate category hierarchy information into CE. However, further
incorporating of context entities deteriorates the performance of TransE. This may due to the nature of
transition-based models that assume relationships as transitions among entities. They get much noise
when introduced with many context entity triplets along with only one entity-to-context-entity relation
type.

Table.1b shows the experimental results of the nearest neighbor (NN) classification method. The
results indicate the feasibility of using category vectors to directly predict the concept categories without
clustering entities. Our model achieves a purity of 87% on Battig and 92% on DOTA-all.
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5.2 Dataless Classification

5.2.1 Datasets
20Newsgroups Data(20NG):The 20 newsgroups dataset (Lang, 1995) contains about 20,000 news-
groups documents evenly categorized to 20 newsgroups, and further categorized to six super-classes.
We use the same label description provided by (Song and Roth, 2014).

RCV1 Dataset: The RCV1 dataset (Lewis et al., 2004) contains 804,414 manually labeled newswire
documents, and categorized with respect to three controlled vocabularies: industries, topics and regions.
We use topics as our hierarchical classification problem. There are 103 categories including all nodes
except for the root in the hierarchy, and the maximum depth is 4. To ease the computational cost of
comparison, we follow the chronological split proposed in (Lewis et al., 2004) to use the first 23,149
documents marked as training samples in the dataset. The dataset also provides the name and the de-
scription of each category label.

5.2.2 Implementation Details
The baseline of similarity measure between each label and each document is cosine similarity between
corresponding ESA vectors. We use ESA with 500 entities, and augment similarity measure by plugging
in different embeddings introduced in Section. 5.1.2 with Hungarian sparse vector densification method
described in (Song and Roth, 2015). The Hungarian method is a combinatorial optimization algorithm
aiming to find an optimal assignment matching the two sides of a bipartite graph on a one-to-one basis.
We average over all cosine similarities of entity pairs produced by the Hungarian method to produce
similarity between ESA vectors. In addition, we cut off all entity similarities below 0.85 and map them
to zero empirically.

For classification, We use the bottom-up pure dataless hierarchical classification algorithm which
proved to be superior in (Song and Roth, 2014) and set the threshold δ to be 0.95 empirically.

5.2.3 Results

(a) 20newsgroups: bottom-up (ESA:0.682) (b) RCV1: bottom-up (ESA:0.371)

Figure 3: MicroF1@1 results of ESA augmented with different embeddings for dataless hierarchical
classification. It is clear the ESA densified with HCE performs best on dataless hierarchical classification.

We perform dataless hierarchical classification using the same ESA settings, densified with different
embedding methods for similarity calculation. Figure. 3 presents the classification performance with
different embedding methods in dimensionality of {50,100,200,250,300,400,500}. It is clear that ESA
densified with HCE stably outperform other competitive methods on these two datasets, which indicates
the high quality of entity embeddings derived by HCE.

Besides, we observe that entity embedding methods such as TransE2, HEE and HCE perform better
than word embedding methods. This is because ESA represents text as bag-of-entities, and entity embed-
dings successfully encode entity similarities. Compared with bag-of-words baselines in (Song and Roth,
2014), it is clear that bag-of-entities models can better capture semantic relatedness between documents
and short category descriptions.
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6 Conclusion

In this paper, we proposed a framework to learn entity and category embeddings to capture semantic
relatedness between entities and categories. This framework can incorporate taxonomy hierarchy from
large scale knowledge bases. Experiments on both concept categorization and dataless hierarchical clas-
sification indicate the potential usage of category and entity embeddings on more other NLP applications.
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A The DOTA dataset: 300 single-word entities and 150 multi-word entities from 15
Wikipedia Categories

Category Entities
beverages juice, beer, milk, coffee, tea, cocktail, wine, liqueur, sake, vodka, mead, sherry, brandy, gin, rum, latte, whisky,

cider, gose, rompope, orange juice, masala chai, green tea, black tea, herbal tea, coconut milk, corn syrup, soy
milk, rose water, hyeonmi cha

sports bowling, football, aerobics, hockey, karate, korfball, handball, floorball, skiing, cycling, racing, softball, shoot-
ing, netball, snooker, powerlifting, jumping, wallball, volleyball, snowboarding, table tennis, floor hockey,
olympic sports, wheelchair basketball, crab soccer, indoor soccer, table football, roller skating, vert skating,
penny football

emotions love, anxiety, empathy, fear, envy, loneliness, shame, anger, annoyance, happiness, jealousy, apathy, resentment,
frustration, belongingness, sympathy, pain, worry, hostility, sadness, broken heart, panic disorder, sexual desire,
falling in love, emotional conflict, learned helplessness, chronic stress, anxiety sensitivity, mental breakdown,
bike rage

weather cloud, wind, thunderstorm, fog, snow, wave, blizzard, sunlight, tide, virga, lightning, cyclone, whirlwind,
sunset, dust, frost, flood, thunder, supercooling, fahrenheit, acid rain, rain and snow mixed, cumulus cloud,
winter storm, blowing snow, geomagnetic storm, blood rain, fire whirl, pulse storm, dirty thunderstorm

landforms lake, waterfall, stream, river, wetland, marsh, valley, pond, sandstone, mountain, cave, swamp, ridge, plateau,
cliff, grassland, glacier, hill, bay, island, glacial lake, drainage basin, river delta, stream bed, vernal pool, salt
marsh, proglacial lake, mud volcano, pit crater, lava lake

trees wood, oak, pine, evergreen, willow, vine, shrub, birch, beech, maple, pear, fir, pinales, lauraceae, sorbus, buxus,
acacia, rhamnaceae, fagales, sycamore, alhambra creek, alstonia boonei, atlantic hazelwood, bee tree, blood
banana, datun sahib, druid oak, new year tree, heart pine, fan palm

algebra addition, multiplication, exponentiation, tetration, polynomial, calculus, permutation, subgroup, integer, mono-
mial, bijection, homomorphism, determinant, sequence, permanent, homotopy, subset, factorization, associativ-
ity, commutativity, real number, abstract algebra, convex set, prime number, complex analysis, natural number,
complex number, lie algebra, identity matrix, set theory

geometry trigonometry, circle, square, polyhedron, surface, sphere, cube, icosahedron, hemipolyhedron, digon, midpoint,
centroid, octadecagon, curvature, curve, zonohedron, cevian, orthant, cuboctahedron, midsphere, regular poly-
gon, uniform star polyhedron, isogonal figure, icosahedral symmetry, hexagonal bipyramid, snub polyhedron,
homothetic center, geometric shape, bragg plane, affine plane

fish goldfish, gourami, koi, cobitidae, tetra, goby, danio, wrasse, acanthuridae, anchovy, carp, catfish, cod, eel,
flatfish, perch, pollock, salmon, triggerfish, herring, cave catfish, coachwhip ray, dwarf cichlid, moray eel,
coastal fish, scissortail rasbora, flagtail pipefish, armoured catfish, hawaiian flagtail, pelagic fish

dogs spaniel, foxhound, bloodhound, beagle, pekingese, weimaraner, collie, terrier, poodle, puppy, otterhound,
labradoodle, puggle, eurasier, drever, brindle, schnoodle, bandog, leonberger, cockapoo, golden retriever, ti-
betan terrier, bull terrier, welsh springer spaniel, hunting dog, bearded collie, picardy spaniel, afghan hound,
brittany dog, redbone coonhound

music jazz, blues, song, choir, opera, rhythm, lyrics, melody, harmony, concert, comedy, violin, drum, piano, drama,
cello, composer, musician, drummer, pianist, hip hop, classical music, electronic music, folk music, dance
music, musical instrument, disc jockey, popular music, sheet music, vocal music

politics democracy, law, government, liberalism, justice, policy, rights, utilitarianism, election, capitalism, ideology,
egalitarianism, debate, regime, globalism, authoritarianism, monarchism, anarchism, communism, individual-
ism, freedom of speech, political science, public policy, civil society, international law, social contract, election
law, social justice, global justice, group conflict

philosophy ethics, logic, ontology, aristotle, plato, rationalism, platonism, relativism, existence, truth, positivism, meta-
logic, subjectivism, idealism, materialism, aesthetics, probabilism, monism, truth, existence, western philos-
ophy, contemporary philosophy, cognitive science, logical truth, ancient philosophy, universal mind, visual
space, impossible world, theoretical philosophy, internal measurement

linguistics syntax, grammar, semantics, lexicon, speech, phonetics, vocabulary, phoneme, lexicography, language, prag-
matics, orthography, terminology, pronoun, noun, verb, pronunciation, lexicology, metalinguistics, paleolin-
guistics, language death, historical linguistics, dependency grammar, noun phrase, comparative linguistics,
word formation, cognitive semantics, syntactic structures, auxiliary verb, computational semantics

vehicles truck, car, aircraft, minibus, motorcycle, microvan, bicycle, tractor, microcar, van, ship, helicopter, airplane,
towing, velomobile, rocket, train, bus, gyrocar, cruiser, container ship, school bus, road train, tow truck, audi
a6, garbage truck, hydrogen tank, light truck, compressed air car, police car
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