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Abstract

Nowadays, neural networks play an important role in the task of relation classification. In this
paper, we propose a novel attention-based convolutional neural network architecture for this
task. Our model makes full use of word embedding, part-of-speech tag embedding and position
embedding information. Word level attention mechanism is able to better determine which parts
of the sentence are most influential with respect to the two entities of interest. This architecture
enables learning some important features from task-specific labeled data, forgoing the need for
external knowledge such as explicit dependency structures. Experiments on the SemEval-2010
Task 8 benchmark dataset show that our model achieves better performances than several state-
of-the-art neural network models and can achieve a competitive performance just with minimal
feature engineering.

1 Introduction

Classifying the relation between two entities in a given context is an important task in natural language
processing (NLP). Take the following sentence as an example:

Jewelry and other smaller (e;) valuables (/e1) were locked in a (e2) safe (/es) or a closet with a
dead-bolt.

Here, the marked entities “valuables” and “safe” are of the relation “Content-Container(el; e2)”.

Relation classification plays a key role in various NLP applications, and has become a hot research
topic in recent years. Various machine learning based relation classification methods have been proposed
for the task, based on either human-designed features (Kambhatla, 2004; Suchanek et al., 2006), or
kernels (Kambhatla, 2004; Suchanek et al., 2006). Some researchers also employed the existing known
facts to label the text corpora via distant supervision (Mintz et al., 2009; Riedel et al., 2010; Hoffmann
et al., 2011; Takamatsu et al., 2012).

All of these approaches are effective because they leverage a large body of linguistic knowledge.
However, these methods may suffer from two limitations. First, the extracted features or elaborately
designed kernels are often derived from the output of pre-existing NLP systems, which leads to the
propagation of the errors in the existing tools and hinders the performance of such systems (Bach and
Badaskar, 2007). Second, the methods mentioned above do not scale well during relation extraction,
which makes it very hard to engineer effective task-specific features and learn parameters.

Recently, neural network models have been increasingly focused on for their ability to minimize the
effort in feature engineering of NLP tasks (Collobert et al., 2011; Zheng et al., 2013; Pei et al., 2014).
Moreover, some researchers have also paid attention to feature learning of neural networks in the field of
relation extraction. (Socher et al., 2012) introduced a recursive neural network model to learn compo-
sitional vector representations for phrases and sentences of arbitrary syntactic types and length. (Zeng
et al., 2014; Xu et al., 2015b) utilized convolutional neural networks (CNNs) for relation classification.
(Xu et al., 2015c¢) applied long short term memory (LSTM)-based recurrent neural networks (RNNs)
along the shortest dependency path.
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We have noticed that these neural models are all designed as the way that all words are equally im-
portant in the sentence, and contribute equally to the representation of the sentence meaning. However,
various situations have shown that it is not always the case. For example,

“The (e1) women (/e1) that caused the (e2) accident (/es) was on the cell phone and ran thru the
intersection without pausing on the median.”, where the type of relation is “Cause-Effect(e2,e1)”.

Obviously, not all words contribute equally to the representation of the semantic relation. In this
sentence, “caused” is of particular significance in determining the relation “Cause-Effect”, but “phone”
is less correlated with the semantic of the relation of “Cause-Effect”. So how to identify critical cues
which determine the primary semantic information is an important task.

If the relevance of words with respect to the target entities is effectively captured, we can find critical
words which determine the semantic information. Hence, we propose to introduce the attention mecha-
nism into a convolution neural network (CNN) to extract the words that are important to the meaning of
the sentence and aggregate the representation of those informative words to form a sentence vector. The
key contributions of our approach are as follows:

1. We propose a novel convolution neural network architecture that encodes the text segment to its
semantic representation. Compared to existing neural relation extraction models, our model can make
full use of the word embedding, part-of-speech tag embedding and position embedding.

2. Our convolution neural network architecture relies on the word level attention mechanism to choose
important information for the semantic representation of the relation. This makes it possible to detect
more subtle cues despite the heterogeneous structure of the input sentences, enabling it to automatically
learn which parts are relevant to the given class.

3. Experiments on the SemEval-2010 Task 8 benchmark dataset show that our model achieves bet-
ter performance with an F1 score of 85.9% than previous neural network models, and can achieve a
competitive performance with an F1 score of 84.3% just with minimal feature engineering.

2 Related Works

A variety of learning paradigms have been applied to relation extraction. As mentioned earlier, super-
vised methods have shown to perform well in this task. In the supervised paradigm, relation classification
is considered as a multi-classification problem, and researchers concentrate on extracting complex fea-
tures, either feature-based or kernel-based. (Kambhatla, 2004; Suchanek et al., 2006) converted the
classification clues (such as sequences and parse trees) into feature vectors. Various kernels, such as
the convolution tree kernel (Qian et al., 2008), subsequence kernel (Mooney and Bunescu, 2005) and
dependency tree kernel (Bunescu and Mooney, 2005), have been proposed to solve the relation classi-
fication problem. (Plank and Moschitti, 2013) introduced semantic information into kernel methods in
addition to considering structural information only. However, the reliance on manual annotation, which
is expensive to produce and thus limited in quantity has provided the impetus for distant-supervision
(Mintz et al., 2009; Riedel et al., 2010; Hoffmann et al., 2011; Takamatsu et al., 2012).

With the recent revival of interest in deep neural networks, many researchers have concentrated on
using deep networks to learn features. In NLP, such methods are primarily based on learning a distributed
representation for each word, which is also called a word embedding (Turian et al., 2010). (Socher et
al., 2012) presented a recursive neural network (RNN) for relation classification to learn vectors in the
syntactic tree path connecting two nominals to determine their semantic relationship. (Hashimoto et al.,
2013) also employed a neural relation extraction model allowing for the explicit weighting of important
phrases for the target task. (Zeng et al., 2014) exploited a convolutional deep neural network to extract
lexical and sentence level features. These two levels of features were concatenated to form the final
feature vector. (Ebrahimi and Dou, 2015) rebuilt an RNN on the dependency path between two marked
entities. (Xu et al., 2015b) used the convolutional network and proposed a ranking loss function with
data cleaning. (Xu et al., 2015c) leveraged heterogeneous information along the shortest dependency
path between two entities. (Xu et al., 2016) proposed a data augmentation method by leveraging the
directionality of relations.

Another line of research is the attention mechanism for deep learning. (Bahdanau et al., 2014) pro-
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Figure 1: Architecture of the attention-based convolution neural network.

posed the attention mechanism in machine translation task, which is also the first use of it in natural lan-
guage processing. This attention mechanism is used to select the reference words in the original language
for words in the foreign language before translation. (Xu et al., 2015a) used the attention mechanism
in image caption generation to select the relevant image regions when generating words in the captions.
Further uses of the attention mechanism included paraphrase identification (Yin et al., 2015), document
classification (Yang et al., 2016), parsing (Vinyals et al., 2015), natural language question answering
(Sukhbaatar et al., 2015; Kumar et al., 2015; Hermann et al., 2015) and image question answering (Lin
etal., 2015). (Wang et al., 2016) introduced attention mechanism into relation classification which relied
on two levels of attention for pattern extraction. In this paper, we will explore the word level attention
mechanism in order to discover better patterns in heterogeneous contexts for the relation classification
task.

3 Methodology

Given a set of sentences x1, 2, ...Z, and two corresponding entities, our model measures the probability
of each relation 7. The architecture of our proposed method is shown in Figure 1. Here, feature extraction
is the main component, which is composed of sentence convolution and attention-based context selection.
After feature extraction, two kinds of vectors — the sentence convolution vector and the attention-based
context vector, are generated for semantic relation classification.

¢ Sentence Convolution: Given a sentence and two target entities, a convolutional neutral network
(CNN) is used to construct a distributed representation of the sentence.

o Attention-based Context Selection: We use word-level attention to select relevant words with
respect to the target entities.

3.1 Sentence Convolution
3.1.1 Input of Model

Word Embeddings. Figure 2 shows the architecture of our convolution neural network. In the word
representation layer, each input word token is transformed into a vector by looking up word embeddings.
(Collobert et al., 2011) reported that word embeddings learned from significant amounts of unlabeled
data are far more satisfactory than the randomly initialized embeddings. Although it usually takes a
long time to train the word embeddings, there are many freely available trained word embeddings. A
comparison of the available word embeddings is beyond the scope of this paper. Our experiments directly
utilize the embeddings trained by the CBOW model on 100 billion words of Google News (Mikolov et
al., 2013).
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Figure 2: Architecture of convolution neural network.

Position Embeddings. In the task of relation extraction, the words close to the target entities are
usually more informative in determining the relation between entities. Similar to (Zeng et al., 2014), we
use position embeddings specified by entity pairs. It can help the CNN to keep track of how close each
word is to the head or the tail entity, which is defined as the combination of the relative distances from
the current word to the head or the tail entity. For example,

“The (e1) game (/e1) was sealed in the original (e2) packing (/e2) unopened and untouched.”

In this sentence, the relative distance from the word “sealed” to the head entity “game” is 2 and the
tail entity “packing” is —4. According to the above rule, we can obtain the relative distance from every
word in the above sentence to each entity. We first create two relative distance files of entity e; and
entity es. Then, we use the CBOW model to pretrain position embeddings on two relative distance files
respectively (Mikolov et al., 2013). The dimension of position embedding is set 5.

Part-of-speech tag Embeddings. Our word embeddings are obtained from the Google News corpus,
which is slightly different to the relation classification corpus. We deal with this problem by allying each
input word with its POS tag to improve the robustness. In our experiment, we only take into use a coarse-
grained POS category, containing 15 different tags. We use the Stanford CoreNLP Toolkit to obtain the
part-of-speech tagging (Manning et al., 2014) . Then we pretrain the embeddings by the CBOW model
on the taggings, and the dimension of part-of-speech tag embedding is set 10.

Finally, we concatenate the word embedding, position embedding, and part-of-speech tag embedding
of each word and denote it as a vector of sequence w = [W F, pF, POSF.

3.1.2 Convolution, Max-pooling and Non-linear Layers

In relation extraction, one of the main challenges is that, the length of the sentences is variable and impor-
tant information can appear anywhere. Hence, we should merge all local features and perform relation
prediction globally. Here, we use a convolutional layer to merge all these features. The convolutional
layer first extracts local features with a sliding window of length [ over the sentence. We assume that
the length of the sliding window [ is 3. Then, it combines all local features via a max-pooling operation
to obtain a fixed-sized vector for the input sentence. Since the window may be outside of the sentence
boundaries when it slides near the boundary, we set special padding tokens for the sentence. It means
that we regard all out-of-range input vectors w; (¢ < 1 or ¢ > m) as zero vector.

Let z; € R be the k-dimensional input vector corresponding to the ith word in the sentence. A
sentence of length n (padded where necessary) is represented as:

Tin =21 D22DxT3D ... Dy (1)

where @ is the concatenation operator. Let x;.; ; refer to the concatenation of words x;, x; 1, ..., Tiyj.
A convolution operation involves a filter w € R which is applied to a window of h words to produce
a new feature. For example, a feature c; is generated from a window of words z;.; 1,1 by
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Figure 3: Architecture of attention layer network.

¢i = f(w- Tiiyn—1) 2

Here f is a non-linear function such as the hyperbolic tangent. This filter is applied to each possible
window of words in the sentence {x1.,, 2.441, .-, Tn—h+1:n } to produce a feature map:

c=l[c1,02, ey Cp_pt1] 3)

with ¢ € R"~"*1, We then apply a max-overtime pooling operation over the feature map and take the
maximum value ¢ = max{c} as the feature. The idea is to capture the most important feature — one with
the highest value — for each feature map. This pooling scheme naturally deals with variable sentence
lengths.

3.2 Attention-based Context Selection

Our attention model is applied to a rather different kind of scenario, which consist of heterogeneous
objects, namely a sentence and two entities. So we seek to give our model the capability to determine
which parts of the sentence are most influential with respect to the two entities of interest. For instance,

“That coupled with the (e1) death (/e1) and destruction caused by the (e2) storm (/es) was a very
traumatic experience for these residents.”.

Here, the type of relation is “Cause-Effect(e2,e1)”.

In this sentence, the non-entity word “caused” is of particular significance in determining the relation
“Cause-Effect”. Fortunately, we can exploit the fact that there is a salient connection between “caused”
and “death”. We introduce a word attention mechanism to quantitatively model such contextual relevance
of words with respect to the target entities.

In order to calculate the weight of each word in the sentence, we need to feed each word in the
sentence and each entity to a multilayer perceptron (MLP). The network structure of the attention weight
computation is shown in Figure 3 (a).

Assume that each sentence contains 7" words. w;; with ¢ € [1, T represents the words in the ith sen-
tence. e;; with j € [1, 2] represents the jth entity in the ith sentence. We concatenate the representation
of entity e;; and the representation of word w;; to get a new representation of word ¢, i.e., hgt = [wit, €;5].
ugt quantifies the degree of relevance of the ¢tth word with respect to the jth entity in the ith sentence.
This relevance scoring function is computed by the MLP network between the respective embeddings of
the word w;; and the entity e;;. We named the degree of relevance as the word attention weight, namely,
uft The calculation procedure of ugt is as follows:

hl, = [wi, 5] 4)
ul, = Woltanh(Wyehl, + bye)] + ba (5)
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The output of the attention MLP network is ugt Now we can get a normalized importance weight agt
through a softmax function.

o = exp (uj,)

it T P
> exp(uy)
The architecture of our proposed attention layer is shown in Figure 3 (b). After that, we compute the
sentence context vector s;; about entity j as a weighted sum of the word in the sentence ¢ based on the
weights as follows:

(6)

s =Y adawi (7
t

The context vector s;; can be seen as a high level representation of a fixed query “what is the infor-
mative word” over the words. The weight of attention MLP network is randomly initialized and jointly
learned during the training process.

3.3 MLP Layer

At last, we can obtain the output of three networks, which includes the result of convolution network,
and the sentence context vectors of the two entities. We then concatenate all three output vectors into a
fixed-length feature vector.

The fixed length feature vector is fed to a multi-layer perceptron (MLP), which is shown in Figure 1.
More specifically, first, the vector obtained is fed into a full connection hidden layer to get a more abstrac-
tive representation, and then, this abstractive representation is connected to the output layer. For the task
of classification, the outputs are the probabilities of different classes, which is computed by a softmax
function after the fully-connected layer. We name the entire architecture of our model Attention-CNN.

3.4 Model Training

The relation classification model proposed here using attention-based convolutional neural network could
be stated as a parameter vector §. To obtain the conditional probability p(i|x, ), we apply a softmax
operation over all relation types:

e

2,0) = =<——— 8
p(ilz,0) ST oo (8

Given all the T training examples (z(?;3/(V)), we can then write down the log likelihood of the param-
eters as follows:

T
J(0) = logp(y'[a',0) ©)
=1

To compute the network parameter of 6, we maximize the log likelihood 7 using stochastic gradient
descent (SGD). 6 are randomly initialized. We implement the back-propagation algorithm and apply the
following update rule:
log p(ylz, 0)

0 — 0+ 10
—0+ 20 (10)
Minibatch size 32

Word embedding size 300

Word Position Embedding size | 5
Part-of-speech tag Embeddings | 10

Word Window size 3
Convolution size 100
Learning rate 0.02

Table 1: Hyperparameters of our model
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4 Experiments

4.1 Dataset and Evaluation Metrics

We evaluated our model on the SemEval-2010 Task 8 dataset, which is an established benchmark for
relation classification (Hendrickx et al., 2009). The dataset contains 8000 sentences for training, and
2717 for testing. We split 1000 samples out of the training set for validation.

The dataset distinguishes 10 relations, and the former 9 relations are directed, whereas the “Other”
class is undirected. In our experiments, We do not distinguish the direction of the relationship. To
compare our results with those obtained in previous studies, we adopt the macro-averaged F1-score in
our following experiments.

4.2 Parameter Settings

In this section, we experimentally study the effects of different kinds of parameters in our proposed
method: Word embedding size, Word Position Embedding size, Word Window size, Convolution size,
Learning rate, and Minibatch size. For the initialization of the word embeddings used in our model, we
use the publicly available word2vec vectors that were trained on 100 billion words from Google News.
Words not present in the set of pre-trained words are initialized randomly. The other parameters are
initialized by randomly sampling from the uniform distribution in [-0.1,0.1].

Model Feature Sets Fy
SVM POS, stemming, syntactic pattern, WordNet | 78.8
RNN - 74.8
+POS, NER, WordNet 77.6
MVRNN - 82.4
+POS, NER, WordNet 82.4
CNN - 78.9
(Zeng et al., 2014) | +WordNet, words around nominals 82.7
FCM depedency parsing, NER 83.0
CR-CNN +WordNet, words around nominals 83.7
SDP-LSTM POS, WordNet, grammar relation 83.7
- 84.3
Attention-CNN | +WordNet, words around nominals 85.9

Table 2: Comparison of the proposed method with existing methods in the SemEval-2010 Task 8 dataset.

For other hyperparameters of our proposed model, we take those hyperparameters that achieved the
best performance on the development set. The final hyper-parameters are shown in Table 1.

4.3 Results of Comparison Experiments

To evaluate the performance of our automatically learned features, we select six approaches as competi-
tors to be compared with our method.

Table 2 summarizes the performances of our model, SVM (Hendrickx et al., 2009), RNN, MV-
RNN (Socher et al., 2012), CNN (Zeng et al., 2014), FCM (Gormley et al., 2015), CR-CNN (Xu et
al., 2015b), and SDP-LSTM (Xu et al., 2015c). All of the above models adopt word embedding as repre-
sentation except SVM. For fair comparison among the different model, we also add two types of lexical
features, WordNet hypernyms and words around nominals, as part of the fixed length feature vector to
the MLP layer.

We can observe in Table 2 that, Attention-CNN, without extra lexical features such as WordNet and
words around nominals, still outperforms previously reported best systems of CR-CNN and SDP-LSTM
with F1 of 83.7%, though both of which have taken extra lexical features into account. It shows that
our method can learn a robust and effective relation representation. When added with the same lexical
features, our Attention-CNN model obtains the result of 85.9%, significantly better than CR-CNN and
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SDP-LSTM. In general, richer feature sets lead to better performance. Such neural models as RNN,
MVRNN, CR-CNN and SDP-LSTM can automatically learn valuable features, and all of these mod-
els heavily depend on the result of the syntactic parsing. However, the error of syntactic parsing will
inevitably inhibit the ability of these methods to learn high quality features.

Similarly, Attention-CNN, CNN, and CR-CNN all apply convolution neural network to the extraction
of sentence features, but we can see from Table 2 that Attention-CNN yield a better performance of
84.3%, compared with CNN and CR-CNN. One of the reason is that the input of the three models are
different. Our model uses word embeddings, position embeddings, part-of-speech embeddings as input.
CNN also leverages position embeddings and lexical features. CR-CNN makes use of heterogeneous
information along the shortest dependency path between two entities. Our experiments verify that the
part-of-speech embeddings used by us contain rich semantic information. On the other hand, our pro-
posed Attention-CNN model can still yield higher F1 without prior NLP knowledge. The reason should
be due to that word level attention mechanism is able to better choose which parts of the sentence are
more discriminative with respect to the two entities of interest.

Feature Sets Fy

WF 74.5
+pF 80.7
+POSF 82.6
+WA 84.3
+WA+(Lexical Feature) | 85.9

Table 3: Score obtained for various sets of features on the test set. The bottom portion of the table shows
the best combination of all the features.

4.4 Effect of Different Feature Component

Our network model primarily contains four sets of features, “Word Embeddings (WF)”,*Position Em-
beddings (pF)”,*Part-of-speech tag Embeddings (POSF)”, and “Word Attention (WA)”. We performed
ablation tests on the four sets of features in Table 3 to determine which type of features contributed the
most. From the results we can observe that our learned position embedding features are effective for re-
lation classification. The F1-score is improved remarkably when position embedding features are added.
POS tagging embeddings are comparatively more informative, which can boost the F1 by 1.9%. The
system achieves approximately 2.3% improvements when adding Word Attention. When all features are
combined, we achieve the best result of 85.9%.

4.5 Visualization of Attention

In order to validate whether our model is able to select informative words in a sentence or not, we
visualize the word attention layers in Figure 4 for several data from test sets.

Every line in Figure 4 shows a sentence. The size of a word denotes the importance of it. We normalize
the word weight to make sure that only important words are emphasized. Given the following sentence
as an example,

“The burst has been caused by water hammer pressure.”

we can find that the word “caused” was assigned the highest attention score, while words such as
“burst” and “pressure” also are important. This makes sense in light of the ground-truth labeling as a
“Cause-Effect” relationship. Additionally, we observe that words like “The”, “has” and “by” have low
attention scores. These are indeed rather irrelevant with respect to the “Component-Whole” relationship.

5 Conclusion

In this paper, we propose an attention-based convolutional neural network architecture for semantic
relation extraction. Here, the convolutional neural network architecture is used to extract the features
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of the sentence. Our model can make full use of word embedding, part-of-speech tag embedding and
position embedding information. Meanwhile, word level attention mechanism is able to better determine
which parts of the sentence are most influential with respect to the two entities of interest. Experiments
on the SemEval-2010 Task 8 benchmark dataset show that our model achieves better performances than
several state-of-the-art systems.

In the future, we will focus on exploring better neural network structure about feature extraction in
relation extraction. Meanwhile, because end-to-end relation extraction is also an important problem, we
will seek better methods for completing entity and relation extraction jointly.
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