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Abstract

We present an approach to mathematical information retrieval (MIR) that exploits a special kind
of technical terminology, referred to as a mathematical type. In this paper, we present and eval-
uate a type detection mechanism and show its positive effect on the retrieval of research-level
mathematics. Our best model, which performs query expansion with a type-aware embedding
space, strongly outperforms standard IR models with state-of-the-art query expansion (vector
space-based and language modelling-based), on a relatively new corpus of research-level queries.

1 Introduction

Mathematical information retrieval (MIR) systems, such as MathWebSearch (Kohlhase and Prodescu,
2013; Hambasan et al., 2014), MIaS (Sojka and Lı́ška, 2011) and Tangent (Pattaniyil and Zanibbi, 2014)
have demonstrated that indexing and matching of formulae is beneficial to MIR. However, despite the
sophistication of these methods, they leave elements of the natural language of mathematics largely
unexploited. In contrast to general text, text in mathematics follows strong domain-specific conventions
governing how content is presented (Ganesalingam, 2008). This is particularly so for research-level
mathematics text (i.e., scientific articles), which is our main focus of interest. The conventionality of this
text gives rise to many opportunities for the application of NLP to MIR. In this paper, we investigate the
role of mathematical types, a special kind of technical terminology.

The term “type” refers to sequences of one or more words used to label mathematical objects (e.g.,
‘set”, “smooth curve”), algebraic structures (e.g., “monoid”, “group”) and instantiable mathematical
notions (e.g., “cardinality of a set”). Technical terms that are not used to refer to instances of these
mathematical constructs are not types. Examples of non-types include references to the application of
mathematical procedures (e.g., “proof by contradiction”) and elements of the mathematical discourse
(e.g., “theorem 4.1”). As a subclass of mathematical terminology, types are almost exclusively noun or
prepositional phrases.

Types play a central role in communicating mathematical information by enabling mathematicians to
name mathematical concepts, assign properties to objects and prove assertions about them. We consider
types worthy of distinction from generic technical terms for two reasons: (a) types are used in the dis-
course to give sense to constituents of formulae and (b) types are used to consistently evoke mathematical
concepts in textual argumentation and mathematical reasoning.

Our goal is to evaluate the usefulness of types as standalone lexical components in the retrieval of
research-level mathematical information needs. Specifically, our hypothesis is twofold: (a) types are
important discriminators in the mathematical discourse and (b) semantic relationships between types can
be used to enrich queries and obtain significant improvements in retrieval efficiency.

A sub-task of our type-based approach is the construction of a type dictionary from a collection of
documents. We address this in section 3 and describe a simple method for automatic identification of
types. Furthermore, we evaluate our method using a gold standard set of type phrases which we have
produced using judgements from 5 mathematicians.

This work is licenced under a Creative Commons Attribution 4.0 International Licence. Licence details: http://
creativecommons.org/licenses/by/4.0/
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We focus on retrieving research-level mathematics because such material is rich in mathematical types.
For instance, our system operates on queries such as the following (types are underlined):

Let P be a parabolic subgroup of GL(n) with Levi decomposition P = MN , where N is the
unipotent radical. Let p be an irreducible representation of M(Zp) inflated to P (Zp), how

does IndGLn(Zp)
P (Zp) π decompose? It would be sufficient for me to know the result in the simplest

case, where P is a Borel subgroup.

Our experiments suggest that types are most effective when used to capture semantic relationships
between mathematical concepts. Our top-performing type-based model, TypesExp, makes use of simi-
larity in a type-aware word embedding space to identify semantically related types for query expansion.
TypesExp outperforms state-of-the-art and traditional IR/query expansion models (described in section
4.3) demonstrating experimentally that types are valuable lexical components for IR in their own right
(section 5).

2 Related Work

We use types to model mathematical concepts, but other constructs have been proposed in the literature
for the same purpose. Grigore et al. (2009) take operators listed in OpenMath content dictionaries (CDs)
to be mathematical concepts and use term clusters to model their semantics. A term cluster for a con-
cept is composed of a label and a bag of nouns extracted from the operator description in the dictionary.
This set is enriched manually using additional terms taken from online mathematical lexical resources.
Grigore et al. assign the cluster that maximises the similarity (based on PMI and DICE) between the
nouns in the local context of a target formula and those in the cluster, to represent the formula’s seman-
tics. Quoc et al. (2010) extract descriptions for formulae (phrases or sentences) from their surrounding
context using a rule-based approach. Kristianto et al. (2012), on the other hand, used pattern matching
on sentence parse trees and a “nearest noun” approach to extract descriptions, but these methods were
later outperformed by SVMs (Kristianto et al., 2012).

Figure 1: Example of extracting descriptions adapted from (Kristianto et al., 2012)

Our approach at modelling concepts with types incorporates the advantages of the described methods.
Like term clusters, types label mathematical concepts and attach meaning in a distributional manner.
However, rather than constructing type representations manually, we use types as concept labels and
automatically compute distributional profiles for the concepts, based on word embeddings. Like formulae
descriptions (Kristianto et al., 2012; Kristianto et al., 2014), our types are also extracted automatically
from text. Although in some cases descriptions extracted by Kristianto et al. (2012, 2014) are noun
phrases and resemble types, they often incorporate details that are particular to a specific context. For
example, the extracted description for formula ai presented in Figure 1 (adapted from (Kristianto et al.,
2012)) contains information that is specific to the context (i.e., time at a particular cache level measured
in cycles or seconds).

In our approach, we restrict types to relatively short technical terms which do not include context-
specific information. This decision stems from our motivation to capture references to mathematical
constructs in the form that they most consistently appear in scientific text.
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3 Types for Math IR

Our definition of types is intended to model the perception of mathematical concepts shared between
mathematicians and emerges from mathematical intuition. The notion of a type is intuitive to most math-
ematicians (as demonstrated in section 3.2). It is, however, hard to produce a concrete list of properties
a technical term must adhere to in order to be considered a type.

Linguistically, types are a special kind of mathematical technical terminology. Technical terminology
in general is well understood; for example, Justeson and Katz (1995) were among the first to define
terminology as noun phrases with particular statistical properties. As lexical tokens, types are subject to
a particularly high level of polysemy (“field” in Mathematics is a concept distinct to that in Physics) and
synonymy (e.g., “karoubi envelope” is the same as “category of idempotent arrows”). Furthermore, many
mathematical constructs are eponyms, i.e., named after their inventors, often additionally pre-modified
by adjectives (e.g., “refined Noether normalization theorem”, “abstract Hilbert space theorem”). New
types can be formed through parameterisation (e.g.,“2-Group” and “G-Function” from “Group” and
“Function” respectively) or by prepositional postmodification (e.g., “Ideal of a Ring”, “Point on the
Plane” and “Set of Matrices”).

Conceptually, a type is any technical term that is (a) perceived by mathematicians to refer to mathe-
matical objects, algebraic structures and mathematical notions and (b) can be instantiated in the discourse
in the form of a variable. Here, we take mathematical objects to be anything that can be formally defined
and manipulated in the discourse as part of formal deductive reasoning and/or proofs. This being said, it
is important to highlight that some objects such as ‘Number”, “Matrix” and “Set” are considered basic
and are never explicitly defined by mathematicians (Ganesalingam, 2008).

Like mathematical objects, algebraic structures also take part in mathematical manipulation but are
defined as collections (or tuples) of other objects. Types can also refer to mathematical notions that can
be instantiated as variables or can take the form of other objects. For example, an “envelope of elliptic
trajectories” can be an “ellipse”. Named axioms, theorems and conjectures are also considered to be types
since they refer to universally accepted, formally defined constructs for the purpose of argumentation
(e.g., to complete a proof).

Any technical term that does not fit the above description is not a type. Examples of non-types include
properties of operators (e.g., “Associativity”), mathematical procedures (e.g., “Proof by contradiction”),
processes (e.g., “Differentiation”) and theories (such as “Chaos”). Note that mentions of mathematical
theories are ambiguous: it is often unclear whether they refer to a branch of mathematics or to a formally
defined construct. These examples are not types because either (a) they are not explicitly referring to
mathematical constructions (i.e., they cannot assign meaning to variables), (b) their role in the discourse
is indirect (e.g., properties capture relationships between concepts) and (c) they are used as discourse
labels for anaphoric purposes.

Types can be organised hierarchically, with some types being specialised instances of other, more
abstract constructions. This relationship is often mirrored linguistically: a type expressed by a longer
string is often a subtype of the type corresponding to a sub-sequence string. For example, a “smooth
curve” is a subtype of “curve”. We consider sub-types to be distinct atomic units with discrete meaning
despite the fact that they are constructed linguistically in a compositional manner with regards to their
super-type. However, not all type/sub-type relationships are expressed on the surface. For example, it is
not obvious that “Klein Bottle” is a sub-type of “Surface”.

Types are relevant to both textual and mathematical contexts of queries and documents. As a result,
types have potentially more impact than generic technical terms. Given that types communicate ideas
shared between mathematicians, we anticipate that modelling the distributional profile of types (e.g.,
using an embedding space) will be beneficial to MIR.

3.1 Automatic Type Detection and Extraction

We address the problem of automatic detection and extraction of types so that we can perform large-
scale experimentation. Our method proceeds as follows. First, we use the C-Value algorithm (Frantzi et
al., 1998) on our corpus to extract technical terms (candidate types).

2346



Given a collection of documents as input, the C-Value method identifies multi-word technical terms
using both a linguistic and a statistical component. The linguistic component is employed primarily
for eliminating multi-word strings that are unlikely to be technical terms. This is done by enforcing
a stop-word list (high-frequency corpus terms) and through the application of linguistic filters (regular
expressions) on sequences of part-of-speech tags. The statistical component assigns a “termhood” score
to a candidate sequence based on its corpus-wide statistical characteristics and those of the sequences
that contain it.

Each entry in the output of the C-Value algorithm corresponds to one technical term – an equivalence
class of all variations of the term in the corpus. In the next step, our process selects technical terms that
are likely to be types. We assume that technical terms that are types have an entry in the Encyclopedia
of Mathematics1 (8730 articles in total at the time of download) and/or an entry in Wikipedia (we used
a 2014 Wikipedia dump) under the key categories “mathematical objects”, “mathematical concepts” and
“mathematical structures” and their sub-categories.

A dictionary of types is constructed by including technical terms that entirely match the title of one
or more of these encyclopedia articles. We have opted to use this intersection of technical terms and
article titles, as opposed to the titles alone, because not all titles are useful. For example, although
the Wikipedia article2 “The geometry and topology of three-manifolds” is filed under the categories
of interest “Hyperbolic geometry”, “3-manifolds” and “Kleinian groups”, the title as a whole does not
represent a single concept. In contrast, the technical term “Riemannian manifold” would completely
match the title of the Wikipedia3 (or Encyclopedia of Math) article for the concept and would thus be
identified as a type by our method. The application of our method to the Mathematical REtrieval Corpus
(MREC) (Lı́ška et al., 2011)4 has produced a dictionary of 10601 types.

3.2 Gold Standard Evaluation

Our definition of types is intricate and requires mathematical expertise. We also expect it to be subjec-
tive. We therefore evaluated the quality of accumulated types using 5 judges (third-year undergraduate
and graduate mathematicians). Participants were shown a mixed list of types (as determined by our sys-
tem) and non-types (technical terms that had been filtered out by our method as non-types). Without
knowing what the source of each type was, they were asked to identify types using a 2-page definition
of types (16 rules). The technical term list they were asked to judge consisted of 200 phrases and was
constructed as follows: (1) two-thirds of the sample are sourced from the type list (10601 phrases). This
set of 134 phrases is produced by sampling by observed distribution over phrase length. (2) The remain-
der of the sample (66 phrases) is sourced from the original list of C-Value technical terms not identified
as types by our method. The termhood scores of these technical terms can range from very high to very
low. As a result, we split the original technical term list (2.8 million phrases) into three equally-sized
segments based on their C-Value score: (a) high score, (b) medium and (c) low score. From each seg-
ment, we removed any term already identified as a type and drew 22 phrases from the remainder. As
before, segment samples are sampled by observed distribution based on phrase length. Sampling neg-
atives from the three segments, as described above, enables us to compare the spread of positives and
negatives across C-Value scores. (3) The two parts of the sample are concatenated and shuffled randomly.
An HTML questionnaire is automatically produced and presented to annotators.

Precision and recall of our type identification method was P = 73.9% and R = 81.8% respectively,
resulting in an F-score of 77.7%, with respect to the majority opinion. As expected, this is a subjective
task, and without any specific training, annotator agreement, measured using Fleiss’s Kappa (Fleiss,
1971), is in an intermediate range (K = 0.65;N = 200, k = 2, n = 5). We observed that judges often
judged the following technical terms as types, although this contradicts our definition: author names,
mathematical properties and non-sensical phrases.

1https://www.encyclopediaofmath.org
2https://en.wikipedia.org/wiki/The_geometry_and_topology_of_three-manifolds
3https://en.wikipedia.org/wiki/Riemannian_manifold
4The MREC is a subset of ArXiv and is composed of over 439,000 scientific papers which have had all LATEX formulae

converted into MathML (Lı́ška et al., 2011). It is the document collection underlying the test collection we use (section 4).
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4 IR Experiments

Traditional retrieval models operate under the assumption that each constituent term in a multi-word
type is an independent source of information. Our intuition is that the words in multi-word types carry
more information as a group and should therefore be treated as atomic lexical units by these models. We
propose two type-aware models, based on the traditional Vector-space model (VSM). In our evaluation
we compare our type-aware models to established traditional, term-based5 retrieval models. The motiva-
tion behind this approach is to clearly identify the effects of type information. We keep the comparison at
the lexical level so that the effects of types to retrieval performance can be isolated – models employing
formulae indexing and matching are not considered.

4.1 Computing a Type Embedding Space

We use our dictionary of types (section 3.1) to construct a type embedding space – a word embedding
space that includes embeddings for types as atomic lexical units. The type embedding space is used to
assign meaning (or denotation) to types in the form of vector embeddings and to expand queries with
new types (section 4.3.1).

The type embedding space is constructed as follows. First, we apply sentence tokenisation over the
MREC using the Stanford CoreNLP toolkit (Manning et al., 2014). Subsequently, we apply longest
sequence matching on the words of each sentence and identify all instances of types in the the corpus.
Once detected, word sequences belonging to types are replaced by a single token (a concatenation of the
constituent words of the type). As we are interested in modelling the relatedness of meaningful linguistic
tokens, rather than mathematical artefacts, we replace MathML blocks representing formulae in the
sentence by a single token (“@@@”). Finally, the re-written sentences are passed on to word2vec
in skipgram mode (Mikolov et al., 2013a; Mikolov et al., 2013b) with negative sampling and window
size=10 to produce the type embedding space.

4.2 Test Collection

Evaluation is carried out using the Cambridge University MathIR Test Collection (CUMTC)
(Stathopoulos and Teufel, 2015), which is composed of 120 real-life MIR topics procured from the
MathOverflow (MO) on-line community. As illustrated in Table 1, each MO thread in the CUMTC is
sentence-tokenized, with sentences either being part of the “prelude” (introduction to the mathematical
subject of interest) or part of a concrete sub-question. We produced 160 queries from the CUMTC by
emitting one query per sub-question in the collection. The body of each query is obtained by concate-
nating the text of the sub-question to the text of the associated prelude.

Prelude Let P be a parabolic subgroup of GL(n) with Levi decomposition P = MN , where N is the unipotent
radical. It would be sufficient for me to know the result in the simplest case, where P is a Borel subgroup.

SQ-1 Let p be an irreducible representation of M(Zp) inflated to P (Zp), how does IndGLn(Zp)

P (Zp) π decompose?
(at least until g = 3).

Table 1: Topic 175 (MO post 90038), prelude and sub-question

We chose this test collection because its topics represent real-life, research-level information needs,
expressed in the natural language of mathematics, and are rich in mathematical types. This is in con-
trast to the NTCIR (Aizawa et al., 2013; Aizawa et al., 2014) test collections which emphasise formulae
search (Guidi and Coen, 2015) with queries primarily taking the form of bags of keywords and formulae.
Although the NTCIR Open Information Retrieval (OIR) is composed of free-text queries like those in
the CUMTC, these are not accompanied by pre-determined relevance judgements6. Furthermore, textual
descriptions in the OIR evaluation set are not as linguistically rich as the text in mathematics papers. Doc-
uments and queries are processed using a single pipeline that performs case normalisation and employs
the Tika framework to flatten MathML consistently.

5A bigram model has also been considered but excluded from the comparison due to extremely poor performance.
6Relevance is judged using interactive sessions with humans.
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4.3 Experimental Design

Performance is measured using mean average precision (MAP). Queries derived from the CUMTC
are fairly long (averaging 88 words) and describe highly specialised information needs. As a result, they
have relatively few relevant documents (only 19.17% have more than 1 relevant documents). Thus, our
experimental setup is closer to that of the TREC HARD and TREC Robust tasks (Voorhees and Harman,
2005), than to more general-purpose retrieval (such as NTCIR and TREC ad-hoc) and low MAP values
are to be expected. In the case of the CUMTC, the sparsity of relevant documents is attributable to the
difficulty of the queries, rather than to the inherent uniqueness of the answer (as is the case in homepage
search). One of the effects of the nature of the CUMTC is that the MAP scores of IR models will be
numerically low. However, note that the small number of relevant documents per query does not make
the evaluation per se unstable: we use a large number of queries and adopt the paired permutation test
for significance testing. The permutation test is a non-parametric test for mean difference and is known
to be reliable with MAP and its derivatives (Smucker et al., 2007).

In order to investigate the usefulness of mathematical types for retrieving research-level mathematics
we adopt a two-level comparison of retrieval models. On one level, we compare traditional, term-based
retrieval models to type-aware derivatives (see Figure 2 for the derivational relationship between models).
On the second level, we compare the effectiveness of term-based query expansion to that based on types.

Figure 2: Relationships between basic models and their more sophisticated derivatives (grey boxes rep-
resent type-based models, white boxes represent term-based models).

The first level of comparison is performed across IR paradigms and includes term-based models that
employ heuristic methods (e.g., VSM and BM25) as well as language modelling (e.g., classical multino-
mial language model (Zhai and Lafferty, 2001)). At this level, we wish to (a) determine the performance
of traditional IR models on the CUMTC and (b) investigate if types are more useful than simple terms
when retrieving research-level mathematics. A break-down of considered models based on this two-level
comparison is presented in Table 2.

No Expansion Query Expansion
Terms VSM TFIDF-Exp

BM25 -
MLMjm MLMjm+RM3
MLMdir MLMdir+RM3, MLMdir+PRM2
LMLMdir LMLMdir+RM3

SPUD SPUD+RM3, SPUD+PRM2
Types Types2X TypesExp

Table 2: Overview of models.
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4.3.1 Retrieval Models
We propose and evaluate two type-based heuristic models, based on VSM, that assign elevated signif-

icance to types through 2X boosting. One of our models makes use of inter-type similarity, encoded in a
type embedding space, to expand queries.

Lucene VSM with 2X type boosting (Types2X). We apply the boosting pipeline described by
Stathopoulos and Teufel (2015) to our type dictionary (section 3.1); i.e, we apply longest matching
to a Lucene positional index and emit a type-aware “delta index”. This type discovery and normalisation
pre-processing step is also applied to queries. Our assumption is that types are a valuable source of infor-
mation for an MIR system. Types2X assumes the role of a type-aware model that performs the simplest
manipulation of those types that are physically present in the query (simple 2X boosting). Therefore,
in our comparison, Types2X is used to measure the simplest possible way of incorporating types dur-
ing retrieval (as opposed to just using terms). We expect Types2X to perform better than Lucene VSM
(the term-based model it is based on) but no better than models incorporating type information in more
sophisticated ways (such as TypesExp).

Lucene VSM with 2X type boosting and type-based query expansion (TypesExp). Unlike math-
ematical papers, queries are not always rich in types: on average each query contains around 13 type
instances while documents in the MREC contain on average close to 548 type instances. TypesExp over-
comes this problem by enriching queries with types. Queries are expanded using the types (as opposed to
the terms) they contain. For each type in a query, the type-embedding space (using word2vec similarity
as discussed in section 4.1) is used to discover n fresh related types. Semantic relatedness between types
is modelled by the cosine similarity of their vector representations. The set of fresh types is appended to
the original query and the new query is executed on a 2X type up-weighted VSM. The value for n is the
only parameter of the model, which has been experimentally set to n = 5.

4.3.2 Baseline Models
Traditional, term-based retrieval and query expansion models 7 are used as baselines so that the effects of
a-priori knowledge of types to retrieval performance can be isolated and quantified against uninformed
approaches. Two query expansion (QE) methods based on pseudo-relevance feedback (PRF) are con-
sidered. The first method, known as RM3 (Abdul-jaleel et al., 2004; Lv and Zhai, 2009), assumes that
documents and queries are generated by the same relevance model. The second, referred to as PRM2
(Lv and Zhai, 2011), makes use of proximity information in the feedback documents to expand queries.

Simple Baselines We use Lucene’s default VSM (based on cosine similarity) and BM25 (Harter, 1975;
Robertson et al., 1981; Robertson and Walker, 1994; Robertson et al., 1994) implementations. These
models are considered not because of their strength per se, but because of their usefulness in identifying
the effects of types in the performance of heuristic models: they are lingustically uninformed models.
Furthermore, they are useful in quantifying the effects of boosting query types alone (Types2X).

Language Models (LM) Smoothed instances of the classical multinomial language model (Zhai and
Lafferty, 2001) are also considered. The MLMjm multinomial model employs Jelinek-Mercer (JM)
smoothing. We rely on Lucene’s implementation of the model and, in the absence of training data for
the parameter λ, we use λ = 0.7 since there is strong evidence that this value is optimal for long queries
(Zhai and Lafferty, 2001; Zhai and Lafferty, 2004). Two implementations of the multinomial model
with Dirichlet smoothing are used in our comparison: the Lucene implementation (LMLMdir) and the
implementation by Cummins et al. (2015) (MLMdir)8. The smoothing parameter, µ, is set to µ = 2000,
which Zhai and Lafferty (2001, 2004) found to be near-optimal for large queries, such as those in our
setup. These language models are included as more sophisticated, type-agnostic alternatives to the basic
heuristic models.

7Technical issues have prevented us from incorporating the formula-aware Tangent and MiAS models in our evaluation.
8In correspondence with one of the authors of Cummins et al. (2015), it has come to our attention that there is suspicion in

the community that the Lucene implementation of the classical multinomial language model may be incorrect for large queries,
so we report two implementations for safety.
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SPUD SPUD is a state-of-the-art unigram LM that models documents as draws from a multivariate
Polya distribution (Cummins et al., 2015). Smoothing of the document model is performed using a
linear combination of the unsmoothed document and background models and is controlled through a
smoothing parameter ω. The SPUD ranking method estimates the probability that a query is generated
from the expected multinomial drawn from each document model. We use the SPUD implementation
by Cummins et al. (2015) with default parameters (ω = 0.8), which have been shown to produce good
results with long queries (Cummins et al., 2015). SPUD is included in our comparison as a state-of-
the-art type-agnostic LM baseline against which we can benchmark the performance of our type-based
models.

We also consider versions of the stated language models augmented with query expansion methods
(RM3 and PRM2) implemented as part of the code accompanying (Cummins et al., 2015)9. Parameter
values for these query expansion models are also taken from Cummins et al. (2015). LMs with QE are
used to determine how type-based QE performs in comparison to state-of-the-art term-based QE.

Automatic QE using top TF-IDF terms (TFIDF-Exp). In this model, the query is expanded using
the top s terms in the query as determined by document collection-wide TF-IDF scores. Stopwords and
words with term frequency lower than 50 are excluded. Like before, each selected term is expanded
using its n-nearest neighbours in a word embedding space (skip-gram, window size =10). The model
has two parameters: pool size (n) and seed size (s). We found experimentally that the model performs
best for n = 1 and s = 1. This baseline is used to determine whether any performance improvements
obtained by type-based QE using an embedding space are due to types, rather than the use of embedding
spaces in general.

5 Results and Discussion

Table 3 shows the results of all retrieval models considered10. The last two columns indicate the
significance in MAP difference between each model and our proposed type-based models. As expected,
absolute MAPs are low across the board, a phenomenon that can be attributed to the complexity of the
underlying information needs and the resulting small number of relevant documents per query. But as
long as the evaluation is stable, it is only the comparative performance of each model that we should be
interested in.

VSM BM25 MLMjm LMLMdir MLMdir SPUD TF-IDFExp MLMjm

+RM3
MAP .076 .079 .084 .072 .066 .090 .060 .063

TypesExp � � � � � � � �
Types2X ≈ ≈ ≈ ≈ ≈ ≈ ≈ ≈

LMLMdir MLMdir MLMdir SPUD SPUD Types2X TypesExp
+RM3 +RM3 +PRM2 +RM3 +PRM2

MAP .051 .082 .061 .050 .072 .094 .150
TypesExp � � � � � > -
Types2X > ≈ ≈ > ≈ - <

Table 3: Model MAP performance and comparison to TypesExp and Types2X models.

The model utilising type-based expansion (TypesExp) is our best model; it outperforms every other
model. In some cases the differences are dramatic; TypesExp’s MAP score is twice that of the Lucene
VSM and, to the best of our knowledge, 0.15 MAP represents the state-of-the-art on the CUMTC. We
now discuss which of TypesExp’s components contributed most to this improvement over existing IR
models. Although the up-weighting of types on its own (Types2X) improves MAP over the VSM, the
difference in performance is not statistically significant. This is also the case when comparing type
up-weighting to the majority of alternative models. The best performing model not employing query
expansion is SPUD, followed closely by MLM with JM smoothing. The traditional BM25, VSM and

9https://github.com/ronancummins/spud
10In Tables 3, 4 and 5,� indicates that ”column” is significantly better than “row” α = 0.01; < at α = 0.05. ≈ indicates

that difference is not significant.
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Lucene MLMdir models performed comparably, with no significant differences in MAP between them
(as observed in Table 4).

VSM -
BM25 ≈ -

MLMjm ≈ ≈ -
LMLMdir ≈ ≈ ≈ -
MLMdir ≈ ≈ ≈ ≈ -

TFIDF-Exp ≈ ≈ ≈ ≈ ≈ -
SPUD ≈ ≈ ≈ ≈ > ≈ -

VSM BM25 MLMjm LMLMdir MLMdir TFIDF-Exp SPUD

Table 4: Comparison of models not employing query expansion.

MLMjm LMLMdir MLMdir MLMdir SPUD SPUD
+RM3 +RM3 +RM3 +PRM2 +RM3 +PRM2

MLMjm > .021 > .033 .002 .023 .034 .013
MLMdir .003 .015 .016 .005 .016 .006
LMLMdir .009 � .021 .01 .011 .022 .001

SPUD > .028 > .04 .009 > .029 � .04 .019

Table 5: Absolute difference in MAP of unexpanded and query-expanded models.

General-purpose query expansion methods appear to be ineffective in retrieving research-level math-
ematics. From the results in Table 5 we observe that versions of the models augmented with state-
of-the-art query expansion are either significantly outperformed or not significantly better than their
corresponding basic versions. In other cases, the vanilla models significantly outperform their query
expanding counterparts (e.g.,MLMdir and MLMdir +RM3, SPUD and SPUD +RM3). This is in
contrast to type-based query expansion, where the TypesExp model (2X type up-weighting+expansion
using a type-aware embedding space) significantly outperforms both the VSM and Types2X models it
is based on. The observations described above seem to point to the fact that, in the context of MIR,
mathematical types encode more information than the sum of their individual, constituent terms.

On one hand, the performance of Types2X suggests that information coming from the types occurring
in the queries alone may not be enough to produce significant improvements in retrieval efficiency. On
the other hand, our experiments have shown that it is only the combination of query expansion with type
information (rather than with simple terms) that yields significant performance gains on these difficult
queries. Our intuition is that type-based expansion introduces semantically related concepts that elevate
the score of topically relevant documents. Insight into why this method performs well can be obtained
by looking into how types are expanded. The query in Table 6 is topic 175 (MO post 9003811). From an
initial set of 6 types in the dictionary, our method expanded the query with 14 more types.

Query Let P be a parabolic subgroup of GL(n) with Levi decomposition P = MN , where N is the
unipotent radical. Let p be an irreducible representation of M(Zp) inflated to P (Zp), how does
Ind

GLn(Zp)

P (Zp) π decompose? It would be sufficient for me to know the result in the simplest case, where
P is a Borel subgroup.

Query types ‘levi decomposition’, ‘parabolic subgroup’, ‘unipotent’, ‘irreducible representation’,‘borel subgroup’
Added Types ‘reducible representation’, ‘regular element’, ‘conjugacy class’, ‘iwasawa decomposition’,

‘unipotent element’, ‘cartan decomposition’, ‘finite-dimensional representation’,
‘unitary representation’,‘cartan subgroup’, ‘centralizer’, ‘subgroup’, ‘triangular decomposition’,
‘jordan decomposition’,‘parabolic subalgebra’

TFIDF-Exp terms ‘nilpotent’, ‘shredded’, ‘semi-simple’, ‘inflates’, ‘centralizer’, ‘pro-’, ‘puffed’,‘engulfed’, ‘inflate’,
‘semisimple’

Table 6: Topic 175 (MO post 90038): Text and types in query, types in query and dictionary, expansion
types and sample TFIDF-Exp expansion terms (n=5, s = 2).

Broadly speaking, all of the types expanded by our system are topically related to the types in the
query. The types “iwasawa decomposition” and “cartan decomposition” in the expanded set strongly

11http://mathoverflow.net/questions/90038
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relate to the types in the query (both are related to Levi decomposition of Lie algebras). However,
there are also some instances of weak association between query and expanded types. For example, the
type “subgroup” is almost certainly too general to do any good. On the other hand, the TFIDF-Exp
expansion set for this query (bottom row of table 6) appears to be less likely to contain terms related to
the topic subject. The “bag-of-types” model (Types2X) is inhibited by the fact that queries have a much
smaller vocabulary of types compared to mathematical documents. Furthermore, we hypothesise that the
model’s limited performance and the effectiveness of topical relationships discovered through types and
type embeddings are attributable to three characteristics of the mathematical discourse.

First, types can share algebraic structure, which permits mathematicians to perform mathematical
reasoning by manipulating the shared components and properties. For example, both “monoid” and
“semi group” have an underlying “set” and an associative binary operator. Thus, mathematics text may
coerce either structure to its carrier set in formal argumentation and make statements that are true for
both structures (Ganesalingam, 2008). Second, phenomena like polysemy and synonymy are frequent in
mathematics. Lexically distinct terms can end up referring to the same concept: one name of the concept
might come from its inventor, whereas another name is lexically descriptive (e.g., “Karoubi envelope”
is synonymous to the type “category of idempotent arrows”). Third, concepts in mathematics can be
abstracted using constructs from various mathematical frameworks. Often, a correspondence between
concepts can be formed across different theories, each with its own palette of types. For example, a
“magma” in group theory is a generalisation of a “groupoid”, which can be defined as a special kind
of “category” in category theory. Mathematicians have the flexibility to map mathematical concepts
between theories, perform reasoning in one theory and then project back to another theory.

Methods that exploit semantic type relatedness, such as TypesExp, can be advantageous in cases where
(a) lexical sparsity requires the use of some form of generalisation or similarity across concepts, of which
QE is a simple variant, and (b) information about the similarity between types is more informative than
similarity between raw words.

6 Conclusions

We have shown experimentally that types are a valuable, but currently underutilised aspect of the
mathematical linguistic discourse. Our model improves MIR of research-level queries by automatically
identifying types in text and building a similarity (embedding) space with which related types can be
detected in documents more effectively than with existing methods. We find that type-based query ex-
pansion using this method of semantic proximity outperforms state-of-the-art IR/expansion models on a
realistic, large-scale test collection. This strongly suggests that it is the identification of semantic rela-
tionships between types that can improve the quality of research-level MIR in the future even further. As
an additional advantage, prior knowledge of types may also help improve parts of an NLP pipeline for
mathematics texts, particularly in the absence of domain-specific training material.
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Martin Lı́ška, Petr Sojka, Michal Růžička, and Petr Mravec. 2011. Web interface and collection for mathematical
retrieval: Webmias and mrec. In Petr Sojka and Thierry Bouche, editors, Towards a Digital Mathematics
Library., pages 77–84, Bertinoro, Italy, Jul. Masaryk University.

Yuanhua Lv and ChengXiang Zhai. 2009. A comparative study of methods for estimating query language models
with pseudo feedback. In Proceedings of the 18th ACM Conference on Information and Knowledge Manage-
ment, CIKM ’09, pages 1895–1898, New York, NY, USA. ACM.

Yuanhua Lv and ChengXiang Zhai. 2011. Lower-bounding term frequency normalization. In Proceedings of the
20th ACM International Conference on Information and Knowledge Management, CIKM ’11, pages 7–16, New
York, NY, USA. ACM.

Christopher D. Manning, Mihai Surdeanu, John Bauer, Jenny Finkel, Steven J. Bethard, and David McClosky.
2014. The Stanford CoreNLP natural language processing toolkit. In Association for Computational Linguistics
(ACL) System Demonstrations, pages 55–60.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. 2013a. Efficient estimation of word representations
in vector space. CoRR, abs/1301.3781.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Corrado, and Jeffrey Dean. 2013b. Distributed representations of
words and phrases and their compositionality. CoRR, abs/1310.4546.

Nidhin Pattaniyil and Richard Zanibbi. 2014. Combining TF-IDF text retrieval with an inverted index over symbol
pairs in math expressions: The tangent math search engine at NTCIR 2014. In Proceedings of the 11th NTCIR
Conference on Evaluation of Information Access Technologies, NTCIR-11, National Center of Sciences, Tokyo,
Japan, December 9-12, 2014.

Minh Nghiem Quoc, Keisuke Yokoi, Yuichiroh Matsubayashi, and Akiko Aizawa. 2010. Mining coreference
relations between formulas and text using wikipedia.

2354



S. E. Robertson and S. Walker. 1994. Some simple effective approximations to the 2-poisson model for probabilis-
tic weighted retrieval. In Proceedings of the 17th Annual International ACM SIGIR Conference on Research
and Development in Information Retrieval, SIGIR ’94, pages 232–241, New York, NY, USA. Springer-Verlag
New York, Inc.

S. E. Robertson, C. J. van Rijsbergen, and M. F. Porter. 1981. Probabilistic models of indexing and searching. In
Proceedings of the 3rd Annual ACM Conference on Research and Development in Information Retrieval, SIGIR
’80, pages 35–56, Kent, UK. Butterworth & Co. #38.

Stephen E. Robertson, Steve Walker, Susan Jones, Micheline Hancock-Beaulieu, and Mike Gatford. 1994. Okapi
at trec-3. In Donna K. Harman, editor, TREC, volume Special Publication 500-225, pages 109–126. National
Institute of Standards and Technology (NIST).

Mark D. Smucker, James Allan, and Ben Carterette. 2007. A comparison of statistical significance tests for in-
formation retrieval evaluation. In Proceedings of the Sixteenth ACM Conference on Conference on Information
and Knowledge Management, CIKM ’07, pages 623–632, New York, NY, USA. ACM.
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