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Abstract

Deep learning techniques are increasingly popular in the textual entailment task, overcoming
the fragility of traditional discrete models with hard alignments and logics. In particular, the
recently proposed attention models (Rocktäschel et al., 2015; Wang and Jiang, 2015) achieves
state-of-the-art accuracy by computing soft word alignments between the premise and hypothesis
sentences. However, there remains a major limitation: this line of work completely ignores
syntax and recursion, which is helpful in many traditional efforts. We show that it is beneficial
to extend the attention model to tree nodes between premise and hypothesis. More importantly,
this subtree-level attention reveals information about entailment relation. We study the recursive
composition of this subtree-level entailment relation, which can be viewed as a soft version
of the Natural Logic framework (MacCartney and Manning, 2009). Experiments show that our
structured attention and entailment composition model can correctly identify and infer entailment
relations from the bottom up, and bring significant improvements in accuracy.

1 Introduction

Automatically recognizing sentence entailment relations between a pair of sentences has long been be-
lieved to be an ideal testbed for discrete approaches using alignments and rigid logic inferences (Zanzotto
et al., 2009; MacCartney and Manning, 2009; Wang and Manning, 2010; Watanabe et al., 2012; Tian et
al., 2014; Filice et al., 2015). All of these methods are based on sparse features, making them brittle for
unseen phrases and sentences.

Recent advances in deep learning reveal another promising direction to solve this problem. Instead of
discrete features and logics, continuous representation of the sentence is more robust to unseen features
without sacrificing performance (Bowman et al., 2015). In particular, the attention model based on
LSTM can successfully identify the word-by-word correspondences between the two sentences that lead
to entailment or contradiction, which makes the entailment relation inference more focused on local
information and less vulnerable to misleading information from other parts of the sentence (Rocktäschel
et al., 2015; Wang and Jiang, 2015).

However, conventional neural attention models for entailment recognition problem treat sentences as
sequences, ignoring the fact that sentences are formed from the bottom up with syntactic tree structures,
which inherently associate with the semantic meanings. Thus, using the tree structure of the sentences
will be beneficial in inducing the entailment relations between parts of the two sentences, and then further
improving the sentence-level entailment relation classification (Watanabe et al., 2012).

Furthermore, as MacCartney and Manning (2009) point out, the entailment relation between sentences
is modular, and can be modeled as the composition of subtree-level entailment relations. These subtree-
level entailment relations are induced by comparing subtrees between the two sentences, which are by
nature a perfect match to be modeled by the attention model over trees.

In this paper we propose a recursive neural network model that calculates the attentions following the
tree structures, which helps determine entailment relations between parts of the sentences. We model
the entailment relation with a continuous representation.The relation representations of non-leaf nodes
are recursively computed by composing their children’s relations. This approach can be viewed as a
soft version of Natural Logic (MacCartney and Manning, 2009) for neural models, and can make the
recognized entailment relation easier to interpret.
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Figure 1: Exemplary trees for the premise sentence “two women are hugging one another” and the
hypothesis sentence “the women are sleeping”. The syntactic labels (NP, VP, CD, etc.) are not used in
the model. The dashed and dotted lines show the lowest level of alignments from the hypothesis tree
nodes to the premise tree nodes. The blue dashed lines mark the entailment relations, and the red dotted
line marks the contradiction relation. In the hypothesis tree, tree nodes in blue squares are identified to
be entailment from the premise, and nodes in red squared are identified to contradicts the premise. By
composing these relations from the bottom up, we reach a conclusion that the sentence-level entailment
relation is contradiction. Please also refer to Figure 5 for real examples taken from our experiments.

We make the following contributions:

1. We adapt the sequence attention model to the tree structure. This attention model directly works on
meaning representations of nodes in the syntactic trees, and provides a more precise guidance for
subtree-level entailment relation inference. (Section 2.2)

2. We propose a continuous representation for entailment relation that is specially designed for en-
tailment composition over trees. This entailment relation representation is recursively composed to
induce the overall entailment relation, and is easy to interpreted. (Section 2.3)

3. Inspired by the forward and reverse alignment technique in machine translation, we propose dual-
attention that considers both the premise-to-hypothesis and hypothesis-to-premise directions, which
makes the attention more robust to confusing alignments. (Section 2.4)

4. Experiments show that our model brings significant performance boost based on a Tree-LSTM
model. Our dual-attention can provide superior guidance for the entailment relation inference (Fig-
ure 4). The entailment composition follows the intuition of Nature Logic and can provide a vivid
illustration of how the final entailment conclusion is formed from bottom up (Figure 5). (Section 4)

2 Structured Attentions & Entailment Composition

Here we first give an overview and formalization of our model, and then describe its components.

2.1 Formalization
We assume both the premise tree and the hypothesis tree are binarized.

We use the premise tree and hypothesis tree in Figure 1 to demonstrate the process of our approach.
The premise sentence is “two women are hugging one another”, and the hypothesis sentence is “the
women are sleeping”.

Following the traditional approaches (MacCartney and Manning, 2009; Watanabe et al., 2012), we first
find the alignments from hypothesis tree nodes to premise tree nodes (i.e., the dashed or dotted curves
in Figure 1). Then we explore inducing the sentence-level entailment relations by 1) first computing the
entailment relation at each node of the hypothesis tree based on the alignments, and then 2) composing
the entailment relations at the internal hypothesis nodes from bottom up to the root in a recursive way.
Our model resembles the work of Natural Logic (MacCartney and Manning, 2009) in the spirit that the
entailment relation is inferred modularly, and composed recursively.
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(b) Architecture of our neural network. Layers with the same
color share the same parameters. The alignment module cal-
culates the expected alignment Ã. The Entailment Composi-
tion module infers the final entailment y.

Figure 2: Expected alignments calculation (a) and overview of the network architecture (b).

We formalize this entailment task as a structured prediction problem similar to Mnih et al. (2014), Ba
et al. (2015), and Xu et al. (2015). The inputs are two trees: premise tree P , and hypothesis tree Q. The
goal is to predict a label y ∈ {contradiction, neutral, entailment}. Note that although the output label y
is not structured, we can still consider the problem as a structured prediction problem, because: 1) the
input is a pair of trees; and 2) the internal alignments are structured.

More formally, we aim to minimize the negative log likelihood of the gold label given the two trees.
The objective can be written in the online fashion as:

ℓ =− log Pr(y|P, Q) = − log
∑
A

Pr(y,A|P, Q)

=− log
∑
A

Pr(A|P, Q) · Pr(y|A, P,Q) = − log EPr(A|P,Q)[Pr(y|A, P, Q)],

where the structured latent variable A ∈ {0, 1}|Q|×|P | represents an alignment. |·| is the number of nodes
in the tree. Aij = 1 if and only if node i in Q is aligned to node j in P , otherwise Aij = 0.

However, enumerating over all possible alignments A takes exponential time, we need to efficiently
approximate the above log expectation.

Fortunately, as Xu et al. (2015) point out, as long as the calculation Pr(y|A, P,Q) only consists of
linear calculation, simple nonlinearities like tanh, and softmax, we can have following simplification via
first-order Taylor approximation:

ℓ = − log EPr(A|P,Q)[Pr(y|A, P, Q)] ≈ − log Pr(y|EPr(A|P,Q)[A], P, Q)],
which means instead of enumerating over all alignments and calculating the label probability for each
alignment, we can use the label probability for the expected alignment as an approximation:1

Ã ∆= EPr(A|P,Q)[A] ∈ R|Q|×|P | (1)
Figure 2a shows an example of expected alignment calculation. The objective is simplified to

ℓ ≈ − log Pr(y|Ã, P, Q). (2)

With this observation, we split our calculation into two steps as the top two modules in Figure 2b. First
in the Alignment module, we calculate the expected alignments Ã using Equation 1 (Section 2.2). Then
we calculate the node-wise entailment relation, propagate and compose the relation from bottom up to
find out the final entailment relation (Equation 2) in the Entailment Composition module (Section 2.3).
Both of these two modules rely on the composition of tree node meaning representations (Section 3).

2.2 Attention over Tree Nodes
First we calculate the expected alignments Ã between the hypothesis Q and the premise P (Equation 1):

Ã = EPr(A|P,Q)[A].

1We use bold letter, A, for binary alignments, and tilde version, Ã, for the expected alignments in the real number space.
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To simplify the calculation, we further approximate the global (binary) alignment A to be consisted
of the alignment Ai ∈ {0, 1}1×|P | of each tree node i ∈ Q independently. Ai is the ith row of A:

A = [AT
1 ;AT

2 ; . . . ;AT
|Q|]

T ,

Pr(A|P, Q) =
|Q|∏
i

Pr(Ai|P,Q).

Pr(Ai,j = 1|P,Q) is the probability of the node i ∈ Q being aligned to node j ∈ P , which is defined
as:

Pr(Ai,j = 1|P, Q) ∆=
exp(T2k,1([hi;hj ]))∑
k exp(T2k,1([hi;hk]))

. (3)

hi,hj ∈ Rk are vectors representing the semantic meanings of node i, j, respectively, whose calcula-
tion will be described in Section 3. T2k,1 is an affine transformation from R2k to R. This formulation
essentially is equivalent to the widely used attention calculation in neural networks (Bahdanau et al.,
2014), i.e., for each node i ∈ Q, we find the relevant nodes j ∈ P and use the softmax of the rele-
vances as a probability distribution. In the rest of the paper, we use “expected alignment” and “attention”
interchangeably.

The expected alignment of node i being aligned to node j, by definition, is:

Ãi,j = Pr(Ai,j = 1|P, Q) · 1 = Pr(Ai,j = 1|P, Q).

2.3 Entailment Composition
Now we can calculate the entailment relation at each tree node and propagate the entailment relation
following the hypothesis tree from bottom up, assuming the expected alignment is given (Equation 2):

ℓ ≈ − log Pr(y|Ã, P, Q).

Let vector ei ∈ Rr denote the entailment relation in a latent relation space at hypothesis tree node
i ∈ Q. At the root of the hypothesis tree. We can induce the final entailment relation from entailment
relation vector eroot. We use a simple tanh layer to project the entailment relation to the 3 relations
defined in the task, and use a softmax layer to calculate the probability for each relation:

Pr(y|Ã, P,Q) = softmax(tanh(Tr,3(eroot))).

At each hypothesis node i, ei is calculated recursively given the meaning representation at this tree
node hi, the meaning representation of every node in the premise tree hj , j ∈ P , and the entailment
from i’s children, ei,1, ei,2:

ei = frel([hi;
∑
j∈P

Ãi,jhj ], ei,1, ei,2) (4)

Figure 3a illustrates the calculation of the entailment composition. We will discuss frel in Section 3.

2.4 Dual-attention Over Tree Nodes
We can further improve our alignment approximation in Section 2.2, which does not consider any struc-
tural information of current tree, nor any alignment information from the premise tree.

We can take a closer look at our conceptual example in Figure 1. Note that the alignments have, to
some extent, a symmetric property: if a premise node j is most relevant to a hypothesis node i, then
the hypothesis node i should also be most relevant to premise node j. For example, in Figure 1, the
premise phrase “hugging one another” contradicts the hypothesis word “sleeping”. In the perspective of
the premise tree, the hypothesis word “sleeping” contradicts by the known claim “hugging one another”.
This suggests us to calculate the alignments from both side, and eliminate the unlikely alignment if it
only exists in one side. This technique is similar to the widely used forward and reversed alignment
technique in the machine translation area.
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(b) An example of dual-attention eliminating uncertainty in the
alignment. In the left attention matrix, word “4” can be aligned
to either “B” or “C”. In the middle attention matrix, word “C”
can be aligned to either “2” or “4”. The element-wise product
eliminates these uncertainty and results in the right attention
matrix.

Figure 3: Entailment composition (a) and dual-attention calculation (b).

In detail, we calculate the expected alignments Ã from hypothesis to premise, and also the expected
alignments ÃR from premise to hypothesis, and use their element-wise product

Ã∗ = Ã · ÃR

as the attention to feed into the Entailment Composition module.2 This element-wise product is a mimic
of the intersection of two alignments in machine translation. Figure 3b shows an example.

In addition to our dual-attention, Cohn et al. (2016) also explore to use the structural information to
improve the alignment. However, their approach requires introducing some extra terms in the objec-
tive function, and is not straightforward to integrate into our model. We leave adding more structural
constraints to further improve the attention as an open problem to explore in the future.

3 Review: Recursive Tree Meaning Representations

Here we describe the final building block of our neural model.
In Section 2.2, we did not mention the calculation of the meaning representation hi for node i in

Equation 3, which represents the semantic meaning of the subtree rooted at node i. In general, hi should
be calculated recursively from the meaning representations hi,1, hi,2 of its two children if node i is an
internal node, otherwise hi should be calculated based on the word x ∈ Rd in the leaf.

hi = fMR(xi,hi,1,hi,2). (5)

Similar is Equation 4, where the relation ei is recursively calculated from the relation of its two
children, as well as the meaning hi comparing with the meaning of the premise tree:

ei = frel([hi;
∑
j∈P

Ãi,jhj ], ei,1, ei,2). (6)

Note the resemblance between these two equations, which indicates that we can handle them similarly
with the same form of composition function f(·).

We have various choices for composition function f . For example, we can use simple RNN functions
as in Socher et al. (2013). Alternatively, we can use a convolutional layer to extract features from
xi,hi,1,hi,2 and use pooling as aggregation to form hi. In this paper we choose Tree-LSTM model (Tai
et al., 2015). Our model is independent to this composition function and any high-quality composition
function is sufficient for us to infer the meaning representations and entailments.

Here we use Equation 5 as an example. Equation 6 can be handled similarly. Similar to the classical
LSTM model (Hochreiter and Schmidhuber, 1997), in the binary Tree-LSTM model of Tai et al. (2015),
each tree node has a state represented by a pair of vectors: the output vector h ∈ R1×k, and the memory
cell c ∈ R1×k, where k is the length of the Tree-LSTM output representation. We use h as the meaning

2We need to normalize Ã∗ at each row to make each row a probability distribution.
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Method k |θ|M Train Test
LSTM sent. embedding (Bowman et al., 2015) 100 221k 84.8 77.6

Sparse Features + Classifier (Bowman et al., 2015) - - 99.7 78.2
LSTM + word-by-word attention (Rocktäschel et al., 2015) 100 252k 85.3 83.5

mLSTM (Wang and Jiang, 2015) 300 1.9m 92.0 86.1
LSTM-network (Cheng et al., 2016) 450 3.4m 88.5 86.3

LSTM sent. embedding (our implement. of Bowman et al. (2015)) 100 241k 79.0 78.4
Binary Tree-LSTM (our implementation of Tai et al. (2015)) 100 211k 82.4 79.9

Binary Tree-LSTM + simple RNN w/ attention 150 220k 82.4 81.8
Binary Tree-LSTM + Structured Attention & Composition 150 0.9m 87.0 86.4

+ dual-attention 150 0.9m 87.7 87.2

Table 1: Comparison between our structured model with other existing methods. Column k specifies the
length of the meaning representations. |θ|M is the number of parameters without the word embeddings.

representation of the tree node in the attention model. The LSTM transition calculates the state (hi, ci)
of node i with leaf word xi ∈ Rd, and two children with states (hi,1, ci,1) and (hi,2, ci,2) respectively.

We can abuse the mathematics a little bit, and write the transition at an LSTM unit as a function:

[hi; ci] = LSTM(xi, [hi,1; ci,1], [hi,2; ci,2])

In practice, we use the above LSTM(·, ·, ·) function as fMR(·, ·, ·), and frel(·, ·, ·). But we only expose
the output hi to the above layers, and keep the memory ci visible only to the LSTM(·, ·, ·) function.

Following Zaremba et al. (2014), function LSTM(·, ·, ·) is summarized by Equations 7-9:
ii
fi,1
fi,2
oi

ui

 =


σ
σ
σ
σ

tanh

Td+2k,k

 xi

hi,1

hi,2

 (7)

ci = ii ⊙ ui + fi,1 ⊙ ci,1 + fi,2 ⊙ ci,2, (8)

hi = oi ⊙ tanh(ci), (9)

where ii, fi,1, fi,2, oi represent the input gate, two forget gates for two children nodes, and the output
gate respectively. Td+2k,k is an affine transformation from Rd+2k to Rk.

4 Empirical Evaluations

We evaluate the performances of our structured attention model and structured entailment model on the
Stanford Natural Language Inference (SNLI) dataset (Bowman et al., 2015). The SNLI dataset contains
∼ 570k sentence pairs. We use the binarized trees in SNLI dataset in our experiments.

4.1 Experiment Settings
Network Architecture

The general structure of our model is illustrated in Figure 2b. We omitted a dropout layer between
the word embedding layers and the tree LSTM layers in Figure 2b. We use cross-entropy as the training
objective.3

Parameter Initialization & Hyper-parameters
We use GloVe (Pennington et al., 2014) to initialize the word embedding layer. In the training we do

not change the embeddings, except for the OOV words in the training set. For the parameters of the rest
layers, we use a uniform distribution between −0.05 and 0.05 as initialization.

Our model is trained in an end-to-end manner with adam (Kingma and Ba, 2014) as the optimizer. We
set the learning rate to 0.001, β1 to 0.9, and β2 to 0.999. We use minibatch of size 32 in the training. The
dropout rate is 0.2. The length for the Tree-LSTM meaning representation k = 150. The length of the
entailment relation vector r = 150.

3Our code is released at https://github.com/kaayy/structured-attention.
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(a) attention (b) dual-attention

(c) attention (d) dual-attention

Figure 4: Attention matrices for exemplary sentence pairs. Note that, for brevity we only show the
attentions between each word pair, and skip the attentions of tree nodes. Some important tree node
alignments calculated by our model are highlighted using the colored boxes, where the colors of the
boxes represent the entailment relations (see Figure 5). (a) (b) Premise: several younger people sitting
in front of a statue. Hypothesis: several young people sitting in an auditorium. Dual-attention fixes
the misaligned word “auditorium”. (c) (d) Premise: A person taking pictures of a young brunette girl.
Hypothesis: A young model has her first photoshoot. Dual-attention fixes the uncertain alignments for
“photoshoot” and “model”.

4.2 Quantitative Evaluation

We present a comparison of structured model with existing methods of LSTM-based sentence embedding
(Bowman et al., 2015), LSTM with attention (Rocktäschel et al., 2015), Binary Tree-LSTM sentence
embedding (our implementation of Tai et al. (2015)), mLSTM (Wang and Jiang, 2015), and LSTM-
network (Cheng et al., 2016) in Table 1.

We first try Binary-Tree LSTM with a composition function frel of a recurrent network with attention
as in Rocktäschel et al. (2015), which achieves an accuracy of 81.8. We find the training of this RNN is
difficult due to the vanishing gradient problem.

Using Binary-Tree LSTM for entailment relation composition instead of the simple RNN brings ∼4.6
improvement. We observe that the vanishing gradient problem is greatly alleviated. Dual-attention
further improves the tree node alignment, achieving another 0.8 improvement.

Our structured entailment composition model outperforms the similar mLSTM model, which essen-
tially also uses an LSTM layer to propagate the “matching” information, but sequentially. With the help
of dual-attention, our model outperforms mLSTM with a 1.1 point margin.

4.3 Qualitative Evaluation

Due to space constraints, here we highlight two examples in Figure 4 for both standard attention and
dual-attention, and Figure 5 for entailment composition. To pick the most representative examples from
the dataset needs careful consideration. Ideally random selection is most convincing. However, due to

2254



(a)

several younger people sitting in front of a statue people areyoung in ansitting auditoriumseveral

(b)

A person taking pictures of a young brunette girl A young model has her first photoshoot

Figure 5: Examples illustrating entailment relation composition. (a) for Figure 4 (b); (b) for Figure 4
(d). For each hypothesis tree node, the dashed line shows to its most confident alignment. The three
color stripes in each node indicate the confidences of the corresponding entailment relation estimation:
red for contradiction, green for neutral, and blue for entailment. The colors of the node borders show the
dominant estimation. Note: there is no strong alignment for hypothesis word “are” in (a).

the fact that most correctly classified examples in the datasets are trivial sentence pairs with only word
insertion, deletion, or replacement, and many incorrectly classified examples in the datasets involves
common knowledge, (e.g., “waiting in front of a red light” entails “waiting for green light”, or “splashing
through the ocean” contradicts “is in Kansas”,) it is time-consuming to find meaningful insights from
randomly selected examples. Here we manually choose two examples from the test set of the SNLI
corpus, with consideration of both generality and non-triviality. They both involve complex syntactic
structures and compositions of several relations. In addition, some examples that need more subtle
linguistic insights are discussed in Section 4.4.

Our first example is shown in Figure 4 (a) and (b), with premise “several younger people sitting in
front of a statue”, and hypothesis “several young people sitting in an auditorium”. Figure 4 (a) and (b)
only show the word-level attention for brevity. In this example, note the hypothesis word “auditorium”,
which has no explicit correspondence in the premise sentence, but indeed has an implicit correspondence
“statue” that indicates the conflict relation. The standard attention model aligns “auditorium” to “sitting”
since they more frequently co-occur, leading to an incorrect relation of “entailment” (not shown in Fig-
ure 5). The dual-attention model correctly finds the alignment between “auditorium” and “statue” since
“sitting” is more likely to be aligned to the same word in the premise. The colored boxes in Figure 4 (b)
show some important tree node alignment calculated by our model. The colors represent the entailment
relation based on the alignment, as shown in Figure 5 (a).

In Figure 5 (a), each tree node is filled with three color stripes, whose darknesses show the confidences
of the corresponding entailment relations. For this example, the contradiction relation from “statue” and
“auditorium” flips every tree node from bottom up and finally make the final result contradiction, similar
to our concept example in Figure 1.

Another example with premise “a person taking pictures of a young brunette girl”, and hypothesis “a
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young model has her first photoshoot”. The word-level attentions are shown in Figure 4 (c) (d). The
standard attention is uncertain about two words: 1) word “model” has several meanings, making it hard
to find the right alignment, but in the perspective of from premise to hypothesis, it is easier since a girl is
more likely to be a model. 2) Similar is for hypothesis word “photoshoot”, which can either be aligned to
“a” or “pictures” but since “a” is aligned to other words, dual-attention aligns “photoshoot” to “pictures”.

In Figure 5 (b), we can see that there are two parts in the hypothesis indicates that the relation should
be neutral: 1) “a young brunette girl” is not necessarily a “a young model”; and 2) the “pictures” taken
are not necessarily “her first photoshoot”.

4.4 Discussion
Although many attention-based models, including our model, achieve superior results in the Stanford
Natural Language Inference dataset, we still need to circumvent some problems to apply these neural
models to more general textual entailment problems.

Despite those sentence pairs that require more common knowledge to find the entailment relations as
we mentioned in Section 4.3, we are more interested in sentences that are difficult because they involve
non-trivial linguistic properties.

Consider the following two pairs of sentences that are difficult for current attention and composition
based models:

1. • Premise: The boy loves the girl.
• Hypothesis: The girl loves the boy.

Here the only difference between the two sentences is the order/structure of the words. To handle
this problem the attention-based models should take the reordering into consideration when com-
posing entailment relations.

2. • Premise: A stuffed animal on the couch.
• Hypothesis: An animal on the couch.

In this example, almost every hypothesis word occurs in the premise sentence, but it is difficult to
infer that “a stuffed animal” is not “an animal”. While in most cases the monotonicity of entailment
suggests that a word deletion in the premise sentence either leads to entailment, e.g., “a cute animal”
entails “an animal”, or a reverse entailment, e.g., “some animal” reverse entails “animal” (See
MacCartney and Manning (2009) for more details), but for words like “stuffed” it is quite different:
their monotonicity directions depend on the nouns being modified, e.g., “a stuffed animal” does not
entails “an animal”, but “a stuffed toy” entails “a toy”. This observation suggests that we might need
to consider phrases like “stuffed animal” as a whole instead of treating the two words separately and
then composing the entailment relations.

In addition, training of the neural models rely on large training corpora, which makes it difficult to
directly apply neural models on traditional RTE datasets, e.g., the Pascal RTE dataset (Dagan et al.,
2006) and the FraCaS dataset (Cooper et al., 1996), which are usually small and contain many named
entities that are hard for neural models to identify.

5 Conclusion

We have presented an approach to model the composition of the entailment relation following the tree
structure for the sentence entailment task. We adapted the attention model for tree structures. Experi-
ments show that our model bring significant improvements in accuracy, and is easy to interpret.
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