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Abstract

Natural language generation (NLG) is an important component of question answering(QA) sys-
tems which has a significant impact on system quality. Most tranditional QA systems based on
templates or rules tend to generate rigid and stylised responses without the natural variation of hu-
man language. Furthermore, such methods need an amount of work to generate the templates or
rules. To address this problem, we propose a Context-Aware LSTM model for NLG. The model
is completely driven by data without manual designed templates or rules. In addition, the con-
text information, including the question to be answered, semantic values to be addressed in the
response, and the dialogue act type during interaction, are well approached in the neural network
model, which enables the model to produce variant and informative responses. The quantitative
evaluation and human evaluation show that CA-LSTM obtains state-of-the-art performance.

1 Introduction

Natural language generation (NLG), the task of generating natural language from a knowledge base or
a logical form representation, is an important component of dialogue or question answering system.
NLG can be treated as a single-turn dialogue generation. Traditional approaches to NLG problem are
mostly rule-based or template-based (Bateman and Henschel, 1999; Busemann and Horacek, 2002).
However, these methods tend to generate rigid and stylised language without the natural variation of
human language. In addition, they need a heavy workload to design the templates or rules.

Recently due to the growth of artificial neural networks and the increase of labeled data available on
the Internet, data-driven approaches are developed to attack the NLG problem (Ritter et al., 2011; Shang
et al., 2015). Shang et al. (2015) and Serban et al. (2015) apply the RNN-based general encoder-decoder
framework to the open-domain dialogue response generation task. Although their model can generate the
relevant and variant responses according to the input text in a statistical manner, the quality and content
of responses depend on the quality and quantum of the training corpus. Wen et al. (2015) propose a task-
oriented NLG model that can generate the responses providing the correct answers given the dialogue
act (for instance, confirm or request some information), including the answer information. However the
context information, such as the input question and dialogue act, is ignored. Yin et al. (2016) propose a
neural network model that can generate answers to simple factoid questions based on a knowledge base.
But a large error rate is observed due to the complex architecture introduced.

In this paper, we deal with the NLG problem in this setting: given a question, the corresponding
dialogue act, and the semantic slots to be addressed in the response, how to generate a natural language
response in a dialogue. We present a statistical task-oriented NLG model based on a Context-Aware
Long Short-term Memory network (CA-LSTM), which adopts the general encoder-decoder framework
to incorporate the question information, semantic slot values, and dialogue act type to generate correct
answers. The major departures from prior work lie in:

• We design a context-aware generation framework for NLG. The framework incorporates the em-
bedding of question and dialogue act type, and semantic values to be satisfied in the generated
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response.

• We propose an attention mechanism that attends the key information in question conditioned on the
current decoding state of the decoder. Thus the question embedding is dynamically changed over
the decoding states.

• We propose to encode dialogue act type embedding to enable the model to generate variant answers
in response to different act types. In this way, the response quality is substantially improved for
particular act types.

2 Related Work

Traditional NLG methods divide the task into three phases: text planning, sentence planning, and sur-
face realization (Walker et al., 2002), which can be solved by rules or templates in traditional approach
(Mirkovic and Cavedon, 2011). The quality of language generated by rule-based or template-based
methods mostly depends on the handcrafted rules or templates. Even if they can ensure the adequacy,
fluency and readability of the language, the need of writing and maintaining the rules or templates is a
large burden to these methods. Furthermore, the rule-based or template-based methods tend to generate
rigid and nonvariant responses. To address the problem, Oh and Rudnicky(2000) propose a statistical
approach which can learn from data to generate variant language using a class-based n-gram language
model. However, due to the limits of the model and the lack of semantically-annotated corpora, the statis-
tical approach cannot ensure the adequacy and readability of the generated language. Thus the statistical
approach has not yet been employed widely compared to the rule-based or template-based methods.

Recently due to the maturity of artificial neural networks and the rich annotated data available on the
Internet, data-driven statistical approaches are developed to address the NLG problem. These methods
can be divided into two categories according to the corpus type, one is open-domain chat-based NLG,
the other is task-oriented NLG for solving specific tasks.

2.1 Open-domain Chat-based NLG

Chat-based NLG aims to generate relevant and coherent responses in either single-turn or multi-turn
dialogues. Shang et al.(2015) propose a Neural Responding Machine (NRM), a neural network-based
chatbot NLG for Short-Text Conversation, which is trained on a large amount of one-round conversa-
tion data collected from a microblogging service. NRM takes the general encoder-decoder framework:
NRM encodes the input text to the latent representation and then decodes the encoded information to
generate responses. Rather than the traditional NLG task which includes text planning, sentence plan-
ning, and surface realization phases, NRM formalizes the NLG task as a general decoding process based
on the encoded latent representation of the input text. Serban et al. (2015) propose a hierarchical re-
current encoder-decoder neural network to the open domain dialogue. In addition to the input text, the
hierarchical model encodes the context information to generate the response.

Data-driven statistical approaches have also been studied for the text planning phase. In the text
planning phase, NLG chooses the proper information of every sentence to be presented to users. The
generation models mentioned above are trained by predicting the system response in a given conversa-
tional context using the maximum-likelihood estimation (MLE) objective so that they tend to generate
nonsense responses such as “I dont know”. To address this problem, Li et al. (2016) applies deep rein-
forcement learning to model long-term reward in chatbot dialogue which can plan the information in the
response and avoid generating the nonsense responses in the dialogue.

2.2 Task-oriented NLG for Specific Domain

The statistical methods mentioned above are designed for open-domain chatbots, which emphasize on
generating relevant and fluent responses according to the input text. While these methods are not suitable
for task-solving scenarios (for instance, dialogue systems for restaurant and hotel reservation), which
aims at providing correct answers to the input questions, because the responses of these methods are
generated from the training data, which can not contain correct answers to any questions. Wen et al.
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(2015) propose a statistical NLG based on a semantically controlled Long Short-term Memory (SC-
LSTM) recurrent network which partially solves this problem. In the sentence planning phase, SC-
LSTM generates the answers containing the slot tokens according to the dialogue act and slot-value
pairs; in the surface realization phase, SC-LSTM replaces the slot tokens with the correct answers to the
input questions. However, SC-LSTM generates responses with given answers information (the dialogue
act and slot-value pairs) regardless of the input questions and generated answers. A Neural Generative
Question Answering (GENQA), which can generate answers to simple factoid questions based on a
knowledge base, addresses the task-oriented NLG problem further (Yin et al., 2016). However after
unifying understanding of question, generation of answer, and retrieval of relevant facts in a knowledge-
base into an end-to-end framework, GENQA introduces more errors in answers.

3 The Context-Aware LSTM Model (CA-LSTM)

3.1 Overview
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Figure 1: The general framework and dataflow of CA-LSTM. ~h is the hidden representation of the input
question (x1, ..., xT ), ~q is the question vector generated by attention on ~h and the state of decoder ~s,
(y1, ..., yT ) is the output answer decoded with the question vector ~q, the slot-value vector ~d and the
dialogue act type (AT) embedding ~v.

The Context-Aware LSTM (CA-LSTM) is built on the general encoder-decoder framework for
sequence-to-sequence learning (Sutskever et al., 2014), as shown in Figure 1. Let X = (x1, ..., xT )
and Y = (y1, ..., yT ) denote the input question and output response respectively. The encoder converts
the question sequence X to the hidden representation of the question sequence h = (h1, ..., hT ). Then
the hidden vector h is converted to the high dimensional question vector q after being attended with the
current state of decoder. Finally, with the input of the question vector q, the slot-value vector d and the
embedding vector v of dialogue act type, the decoder generates the answer sequence Y . Specifically, the
slot-value vector d1 is a one-hot representation of the slot-value pairs which can regularize the generation
process and ensure the information adequacy of answers as suggested by (Wen et al., 2015). By provid-
ing to the decoder the context information, including question vector and the act type embedding vector,
CA-LSTM can generate context-aware responses which are related to the input question and dialogue
acts.

The encoder and decoder are both based on Long Short-term Memory for its ability of modeling
sequences of arbitrary lengths (Hochreiter and Schmidhuber, 1997). The procedure of generating variant
responses has two components: the forward generator and the backward reranker, which share the same
CA-LSTM network structure but with different parameters. To make use of the context information, the
generator handles sequences in the forward direction and the reranker in the backward direction. The
CA-LSTM network is introduced in Section 3.1 3.5 and the reranker is discussed in Section 3.6.

1The slot values are a set of values that must be satisfied in the response to be a correct answer, such as the price and type
of requested restaurants.
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3.2 Context-aware Decoding
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Figure 2: The graphical model of the decoder. wt is the word embedding of the input token, qt and dt

is the question vector and slot-value vector respectively, h1
t and h2

t are the hidden layer representations,
and yt is the probability distribution of the next token.

The decoder is based on the RNN language model (RNNLM), which takes the word embedding wt of
a token as the input at every time step t and outputs the probability distribution yt of the next token wt+1

conditioned on the hidden layer representations h1
t and h2

t . In addition to using the traditional LSTM
cell in the RNNLM, we add the question vector q and the slot-value vector d in the network, as shown
in Figure 2.

Deep neural networks can improve the network performance by learning multiple levels of feature
abstraction. In order to learn more rich features, we adopt a two-layer Stacked-LSTM in the model,
which has been proved effective in speech recognition (Graves et al., 2013) and other tasks. We apply
the dropout operation on the dashed connections to prevent co-adaptation and overfitting, as shown in
Figure 2. The Stacked-LSTM network is defined as follows,
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cnt = fn
t � cnt−1 + int � ĉnt + tanh(Wn
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hn
t = on

t � tanh(cnt ) (6)

where n and t denote the nth layer in space and the t step in time respectively, σ is the sigmoid function,
int , fn

t , on
t ∈ [0, 1]n are respectively the input gate, forget gate and output gate , ĉnt is the candidate cell

value and cnt is the true cell value, and hn
t is the hidden layer vector at time step t and layer n, all of

which have the same dimension as the hidden layer vector. qt is the question embedding vector and dt is
the slot-value vectors which will be described soon later.

Recalling that the task-oriented NLG aims at providing correct answers in responses, we thus use
the slot-value vector d as the sentence planning cell to regularize the generation process and ensure the
information adequacy of responses. The d vector stores a set of slot values that must be satisfied for
the generated response to be qualified as a correct answer. The sentence planning cell is defined by the
following equations,

rt = σ(Wwrwt +
∑
n

αnW
n
hrh

n
t−1) (7)
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dt = rt � dt−1 (8)

where rt ∈ [0, 1]d is the reading gate, d0 is the initial one-hot slot-value vector by setting the correspond-
ing bit to 1 and dt is the slot-value vector at time step t which updates at every time step with the reading
gate rt. dt influences the cell value ct of the traditional LSTM cell by adding a nonlinear transformation
tanh(Wdcdt) as shown in Equation 5.

Finally, the output probability distribution yt of the next token wt+1 is computed as follows, and the
next token wt+1 is generated by sampling from the distribution yt.

wt+1 ∼ yt = P (wt+1 | wt, wt−1, , w0, qt, dt) = softmax(
∑
n

Wn
hoh

n
t ) (9)

3.3 Attention-based Encoding
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Figure 3: The graphical model of the encoder. ht is the hidden layer representation of the input question
at time step t for encoder, sk−1 is the state of the decoder at time step k−1 for decoder, qk is the question
vector at time step k for decoder generated by attention of h and the state of decoder sk−1.

The encoder is built on Long Short-term Memory network. To model the question sequence with
both of the preceeding and following contexts, we apply a Bidirectional-LSTM architecture (Graves
et al., 2005) to the encoder as shown in Figure 3. The

−→
h t and

←−
h t are the two directional hidden

representations which are computed by iterating the forward layer from t = 1 to T and the backward
layer from t = T to 1 respectively. By concatenating the

−→
h t and

←−
h t, we obtain the hidden representation

of the question sequence ht = [−→h t ;
←−
h t].

Although we can feed the hidden layer representation hT at time step T to the decoder as the ques-
tion vector qk, this method has its shortcomings: the question is processed at one time instead of being
dynamically attended as the decoder proceeds. To address this problem, the attention mechanism (Bah-
danau et al., 2014) is applied to generate question vector according to the hidden layer representation h
and the state of the decoder sk−1, which is computed as follows,

qk =
T∑

t=1

αktht (10)

αkt =
exp(ekt)∑T

j=1 exp(ekj)
(11)

ekt = vT
a tanh(Wask−1 + Uaht) (12)

sk−1 = [h1
k−1;h

2
k−1] (13)

where αkt is the weight of every hidden layer representation ht of the question sequence, and sk−1 is the
state of the decoder by concatenating h1

k−1 and h2
k−1 of the decoder. By weighted average of the hidden
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layer representation h, the decoder can obtain the critical information of the question sequence when
generating the next token.

3.4 Act Type Embedding
Dialogue act consists of two parts: the act type that denotes the goal of the response to be generated,
such as confirm and recommend, and the slot values which should be satisfied in the response, such as
the price range or area of a requested restaurant. The act type information can be very useful to generate
the response, however, it has not been fully exploited by SC-LSTM. In order to make the best use of the
act type information, we embed the act type to an n-dimentional vector vd which is randomly initialized
and subsequently learned through the iterative training. By concatenating the act type embedding vector
vd and the word vector wt and feeding them to the network, the act type information is able to influence
the generation process at a global level. The computation of input gate, forget gate, output gate, candidate
cell and reading gate of the network are updated by the following equations,

int = σ(Wn
wi[wt; vd] +Wn

hih
n
t−1 +Wn

hhih
n−1
t +Wn

qiqt + bni ) (14)

fn
t = σ(Wn

wf [wt; vd] +Wn
hfh

n
t−1 +Wn

hhfh
n−1
t +Wn

qfqt + bnf ) (15)

on
t = σ(Wn

wo[wt; vd] +Wn
hoh

n
t−1 +Wn

hhoh
n−1
t +Wn

qoqt + bno ) (16)

ĉnt = tanh(Wn
wc[wt; vd] +Wn

hch
n
t−1 +Wn

hhch
n−1
t +Wn

qcqt + bnc ) (17)

rt = σ(Wwr[wt; vd] +
∑
n

αnW
n
hrh

n
t−1). (18)

3.5 Training
The objective function is based on the cross entropy error between the predicted token distribution yt

and the gold distribution pt in the training corpus. And to regularize the slot-value vector dt, the cost
function is modified to the following equation as suggested by (Wen et al., 2015),

F (θ) =
∑

t

p>t log(yt)+ ‖ dT ‖ +
T−1∑
t=0

ηξ‖dt+1−dt‖ (19)

where dT is the slot-value vector at the last time step T , and η and ξ are constants set to 104 and
100, respectively. To minimize ‖ dT ‖ is used to encourage the responses to provide adequate required
slots. And the last term

∑T−1
t=0 ηξ‖dt+1−dt‖ discourages the reading gate from turning off more than

one bit of slot-value vector in a single time step. The parameters of CA-LSTM network are randomly
initialized except for the word embeddings which are initialized by pre-trained 300-dimension word
vectors (Pennington et al., 2014). The trade-off weights α are set to 0.5 as mentioned in Section 3.2
and 3.4. The dimension of hidden layer and act type embedding are set to 80 and 20 respectively. The
decoder takes the two hidden layer Stacked-LSTM network with a 50% dropout rate. The network is
trained with back propagation through time (Werbos, 1990) by treating each user question and system
response turn as a mini-batch. AdaDelta (Zeiler, 2012) is applied to optimise the parameters, and the
word embeddings are fine tuned through the iterative training. The forward generator and backward
reranker are based on the same CA-LSTM network while the parameters are independent.

3.6 Reranking
In the decoding phase, the decoder generates a candidate set of response sequences by randomly sampling
the probability distribution of next token. In the reranking phase, the candidate set is reranked by the
sentence score. As a result, the top-n responses of the candidate set are chosen as the output responses.
By combining the cost Ff (θ) of the forward generator as defined in Eq. (19), the cost Fb(θ) of the
backward reranker (also in Eq. (19)) and the penalty of the error slot, the score is defined as follows,

score = −(Ff (θ) + Fb(θ) + λ
p+ q

N
) (20)

where p, q are the number of missing and redundant slots respectively, N is the number of slots required,
and λ is set to 100000 to penalize the response with wrong answers.
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act types
inform, inform only match

inform no match, confirm, hello
select, request, reqmore, goodbye

slot names
name, type, *pricerange, postcode
price, phone, address, *area, *near

*food, *goodformeal, *kids-allowed

Table 1: The details about the dialogue act.
bold=binary slots, *=slots can take the value of dont
care.

Method BLEU-4
hdc 0.451

kNN 0.602
classlm 0.627

SC-LSTM 0.731
CA-LSTM 0.775

CA-LSTM+att 0.783
CA-LSTM+att+emb 0.790

Table 2: BLEU-4 score of the top 5 responses.

4 Experiments

4.1 Dataset Description
To evaluate the performance of CA-LSTM, we adopt the SF Restaurant dataset as used in (Wen et al.,
2015), which is a corpus of a spoken dialogue system providing information about restaurants in San
Francisco. It has around 5000 user question and system response turns sampled from about 1000 dia-
logues. The act types and slot-value pairs are labeled in the dataset. The details about the dialogue act
are provided in Table 1. The training, validation and testing set are partitioned in the ratio of 3:1:1. And
upsampling w.r.t act type is applied to make the corpus more uniform similar to (Wen et al., 2015).

4.2 Implementation Details
We use Theano (Bergstra et al., 2010) to implement the proposed model. For each dialogue act and
input question, we generate 20 responses and select the top 5 responses as the output after reranking.
The BLEU-4 metric (Papineni et al., 2002) implemented by NLTK (Bird, 2006) is used for quantitative
evaluation. And the references set of the BLEU-4 metric are built by grouping the references of the
same dialogue acts after delexicalising the responses and lexicalizing them by the correct values. Since
the performance of CA-LSTM depends on initialisation, the results shown below are averaged over 5
randomly initialised CA-LSTM and the corpus are partitioned after random shuffle as well.

4.3 Quantitative Evaluation
We compare our proposed model with several baselines including: the handcrafted generator (hdc),
k-nearest neighbour (kNN), class-based LMs (classlm) as proposed by Oh and Rudnicky (2000), the
2-hidder-layer semantically conditioned LSTM network (SC-LSTM) proposed by Wen et al. (2015).
For our own method, we experiment with several settings: the basic setting (denoted by CA-LSTM),
the Context-Aware LSTM with attention (CA-LSTM+att) which encodes the question vector with an
attention mechanism, and the Context-Aware LSTM with attention and act type embeddings (CA-
LSTM+att+emb). The result is shown in Table 2. As we can see, the performances of our methods
have been greatly improved compared to the baselines shown in the first block (hdc,kNN,classlm and
SC-LSTM). By combining more context information (attention and act type embeddings), the perfor-
mance of CA-LSTM is further improved correspondingly. And the Context-Aware LSTM with attention
and act type embeddings (CA-LSTM+att+emb) obtains the best overall performance.

4.4 Human Evaluation

Method Informativeness Naturalness
classlm 2.28 2.32

SC-LSTM 2.62 2.63
CA-LSTM 2.78 2.74

Table 3: Human evaluation for the quality of top 5
responses on two metrics (rating out of 3).

Pref.% classlm SC-LSTM CA-LSTM
classlm - 16.9 15.7

SC-LSTM 83.1 - 25.3
CA-LSTM 84.3 74.7 -

Table 4: Pairwise preference among the three sys-
tems.
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We recruit 10 judges for human evaluation experiments. For each task, the three systems(classlm,
SC-LSTM and CA-LSTM with attention and act type embeddings which is denoted by CA-LSTM for
simplicity) are used to generate 5 responses. Judges are asked to score each of them in terms of infor-
mativeness and naturalness (rating scale is 1,2,3), and also asked to state a preference between any two
of them. The informativeness is defined as whether the response provides all the information contained
in the DA and the naturalness is defined as whether the response could plausibly have been produced
by a human as proposed by Wen et al.(2015). We test 200 DAs and 1000 responses per system in to-
tal. The result of human evaluation for the quality of response is shown in Table 3. As can be seen,
CA-LSTM outperforms the baseline methods in both metrics of informativeness and naturalness signifi-
cantly (p <0.05, Student’s t-test). Besides, CA-LSTM is preferred by judges as shown in Table 4 where
CA-LSTM is much more perferred than SC-LSTM.

4.5 Case Study
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Figure 4: Attention matrix visualization
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Figure 5: AT embedding visualization

Figure 4 visualizes the attention matrix for a pair of input question and output response. As can be
seen, the weights of keywords in the question are strengthened when the decoder generates the relevant
tokens, for example the weights of “restaurant”, “lunch”, “looking”, “for” are augmented when the
decoder generates the slot token “<name>”.

Figure 5 visualizes the learned AT embeddings. The x-axis indicates the dimension index of AT
embeddings and the color indicates the value of the corresponding dimension. The similar act types
have similar AT embeddings such as “inform” and “inform only match”, “request” and “reqmore”, while
dissimilar act types have different AT embeddings such as “hello” and “goodbye”.

CA-LSTM can generate more coherent responses than SC-LSTM for particular act types such as “in-
form no match”. Quantitative evaluation shows that CA-LSTM achieves 0.858 BLEU-4 score compared
to 0.772 of SC-LSTM for the act type of “inform no match”. For this act type, CA-LSTM can generate
negation responses, such as “ there is no basque restaurant that allows child -s. ”, while SC-LSTM tends
to ignore the negation information and generates responses like “ there are basque restaurant -s that allow
kid -s .”.

5 Conclusion and Future Work

In this paper, we have proposed a statistical task-oriented NLG model based on a Context-Aware Long
Short-term Memory (CA-LSTM) recurrent network. The network can learn from unaligned data without
any heuristics, and it can generate variant responses and provide correct answers in response to the input
information. Both quantitative evaluation and human evaluation show that CA-LSTM obtains the state-
of-the-art performance. We also reveal the influence of the attention mechanism and act type embeddings
with case studies. As future work, we would explore the NLG task in different domains and scenarios
which need to consider more context information in the generation process.
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