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Abstract

Music information retrieval has emerged as a mainstream research area in the past two decades.
Experiments on music mood classification have been performed mainly on Western music based
on audio, lyrics and a combination of both. Unfortunately, due to the scarcity of digitalized
resources, Indian music fares poorly in music mood retrieval research. In this paper, we identified
the mood taxonomy and prepared multimodal mood annotated datasets for Hindi and Western
songs. We identified important audio and lyric features using correlation based feature selection
technique. Finally, we developed mood classification systems using Support Vector Machines
and Feed Forward Neural Networks based on the features collected from audio, lyrics, and a
combination of both. The best performing multimodal systems achieved F-measures of 75.1 and
83.5 for classifying the moods of the Hindi and Western songs respectively using Feed Forward
Neural Networks. A comparative analysis indicates that the selected features work well for
mood classification of the Western songs and produces better results as compared to the mood
classification systems for Hindi songs.

1 Introduction

Global digitization has led to music being available in the form of CDs, DVDs or other portable formats.
With the rapid growth in Internet connectivity over the last decade, the audio or video music files are
easily available and accessible over the World Wide Web. The number of music compositions created
worldwide already exceeds a few millions and continues to grow. Similarly, the popularity of download-
ing and purchasing of music from online music shops has also been increased at the same pace. Thus,
the organization and management of the music files are the important issues to be tackled carefully. Re-
cently, studies on music information retrieval (MIR) have shown that moods are desirable access keys to
music repositories and collections (Hu and Downie, 2010a).

In order to find out such access keys, most of the experiments on music mood classification of West-
ern music have been performed based on the audio (Lu et al., 2006; Hu et al., 2008), lyrics (Zaanen and
Kanters, 2010) and combination of both (Laurier et al., 2008; Hu and Downie, 2010b; Hu and Downie,
2010a). In case of the Indian music, few tasks have been performed on the Hindi music mood classi-
fication based on the audio (Ujlambkar and Attar, 2012; Patra et al., 2013a; Patra et al., 2013b; Patra
et al., 2016b), lyrics (Patra et al., 2015c) and combination of both (Patra et al., 2016a). The maximum
F-measure achieved for the multimodal system for Hindi songs was 68.6% in Patra et al. (2016a).

Indian music can be divided into two broad categories namely, “classical” and “popular” (Ujlambkar
and Attar, 2012). Further, classical music tradition of India has two main variants; namely Hindustani and
Carnatic. The prevalence of Hindustani classical music is found largely in north and central parts of India
whereas Carnatic classical music dominates largely in the southern parts of India. Hindi or Bollywood
music, also known as popular music, is mostly present in Hindi cinemas or Bollywood movies. Hindi is
one of the official languages of India and is fourth most widely spoken language in the World1. Hindi
songs make approximately 72% of the total music sales in India (Ujlambkar and Attar, 2012).

This work is licensed under a Creative Commons Attribution 4.0 International License. License details:
http://creativecommons.org/licenses/by/4.0/

1https://www.cia.gov/library/publications/the-world-factbook/fields/2098.html
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Figure 1: Russell’s circumplex model of 28 affect words (Russell, 1980)

In order to deal with the above mentioned issues, the contributions of the authors are given below.

1. We employed our earlier proposed mood taxonomy for music mood classification in Hindi and
Western songs (Patra et al., 2015c; Patra et al., 2016a; Patra et al., 2016b).

2. We annotated the audio and lyrics of the Hindi and Western songs using the above mood taxonomy.

3. We observed difference in mood while annotating the mood at the time of listening to the music and
reading its corresponding lyric in case of the Hindi songs.

4. We identified important features using correlation based feature selection technique.

5. The Feed Forward Neural Networks (FFNNs) is implemented for mood classification purpose.

6. We have developed a multimodal system based on the audio and lyrics of the songs.

This paper is organized as follows: Section 2 introduces the mood taxonomy and describes the process
of dataset preparation. Section 3 describes the audio and lyrics features. The FFNNs and the developed
systems with comparison are described in the section 4. Finally, the conclusion is drawn in Section 5.

2 Mood Taxonomy and Dataset

2.1 Mood Taxonomy

We chose the Russell’s circumplex model (Russell, 1980) to build our own mood taxonomy. The circum-
plex model and a subset of this dimensional model have been used earlier for several mood classification
studies (Ujlambkar and Attar, 2012; Patra et al., 2013a; Patra et al., 2013b; Patra et al., 2015c; Patra et
al., 2016a; Patra et al., 2016b). The circumplex model is based on valence and arousal, which is widely
accepted by the research community. Valence indicates the positivity and negativity of emotions whereas
arousal indicates the emotional intensity. The mood taxonomy is prepared by clustering the similar affect
words of the circumplex model into a single class and each class contains three affect words of the cir-
cumplex model as shown in Figure 1. Each of our mood classes has distinct positions in terms of arousal
and valence. We considered the five coarse mood classes, namely “Class An”, “Class Ca”, “Class Ex”,
“Class Ha”, and “Class Sa” for our experiments.
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2.2 Dataset

All audio files of Hindi and Western song were collected from CDs bought from registered stores. The
lyrics of the corresponding songs were collected from the web. The lyrics of the Hindi songs were written
in Romanized English characters while essential resources like Hindi sentiment lexicons and list of stop
words are available in utf-8 character encoding. Thus, we transliterated the Romanized Hindi lyrics
to utf-8 characters using the transliteration tool available in the English to Indian Language Machine
Translation (EILMT) project2. We observed several errors in the transliteration process. For example,
words like ‘oooohhhhooo’ ‘aaahhaa’ were not transliterated due to the presence of repeated characters.
Again, the words like ‘par’ and ‘paar’, ‘jan’ and ‘jaan’ were transliterated into different words ‘pr’ and
‘pAr’, ‘jn’ and ‘jAn’, but, the above pairs are the same words ‘pr’ and ‘jAn’. Hence, these mistakes
were corrected manually.

Related research suggests that the state-of-the-art experiments on music mood classification have been
performed on audio clips of 30 seconds (Hu et al., 2008; Ujlambkar and Attar, 2012; Patra et al., 2013b).
In case of the Hindi songs, it is difficult to annotate mood of 30 second song clips since the annotators
get confused in between adjacent mood classes while annotating short duration audio files. Thus, we
sliced each of the audio files into 60 second clips. Each of the audio clips and lyric files of the Hindi and
Western songs were annotated by three different annotators. The undergraduate students and research
scholars belonging to the age group of 18-35 served as annotators.

From the annotation, we observed that different mood classes were chosen by the annotators during
listening to the audio and reading the corresponding lyrics. The difference between listener’s and reader’s
perspectives for the same song motivated us to investigate the root cause of such discrepancy. The
authors believe that the subjective influence of music modulates the perception of lyric of a song in the
listeners. For example, a song “Bhaag D.K.Bose Aandhi Aayi”3 has mostly sad words like “dekha to
katora jaka to kuaa (the problem was much bigger than it seemed at first)” in the lyric. This song was
annotated as “Class Sa” while reading the lyric, whereas it was annotated as “Class An” while listening
to the corresponding audio as it contains mostly rock music and arousal is also high. Similarly a song
“Dil Duba”4 was annotated as “Class Sa” and “Class Ha” while reading the lyric and listening to the
corresponding audio, respectively. This song portrays negative emotions by using sad or negative words
like “tere liye hi mar jaunga (I would die for you)”, however, this song contains high valence. The above
observations emphasize that the combined effect of lyric and audio plays a pivotal role in indicating the
final mood inducing characteristics of a music piece. Moreover, the intensity of the emotion felt during
listening to a song is much more than the intensity of the emotion while reading a lyric. The main reason
behind this may be that the music with the voice induces the emotion.

We did not notice such differences in mood for the Western music. However, the intensity of the
emotion was less while reading a lyric as compared to listening to the corresponding music in case of
both Hindi and Western music. The confusion matrix of the Hindi song mood annotation is shown in
Table 1. Detailed statistics of the annotated Hindi and Western songs are given in Table 2. We considered
only those Hindi songs for our experiments, which were annotated with the same class both after listening
to it and reading the corresponding lyric.

We calculated pairwise inter-annotator agreements on the dataset by computing Cohen’s κ coeffi-
cient (Cohen, 1960). The inter-annotator agreements were calculated separately for audio clip annotation
and lyric annotation. The overall inter-annotator agreement scores with five mood classes were found to
be 0.94 and 0.84 for Hindi audio and lyrics, respectively. In case of the Western songs, the inter-annotator
agreement scores with five mood classes were 0.91 and 0.87 for audio and lyrics, respectively. These
correlation coefficients can be interpreted as almost perfect agreements.

2http://tdil-dc.in/index.php?option=com vexrtical&parentid=72
3http://www.lyricsmint.com/2011/05/bhaag-dk-bose-aandhi-aayi-delhi-belly.html
4http://www.hindilyrics.net/lyrics/of-Dil%20Duba%20Dil%20Duba.html
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Table 1: Confusion matrix of the annotated songs with respect to the five mood classes [after listening to
the audio (LAudio) and reading the lyrics (RLyrics)].

RLyrics
a b c d e Total

L
A

ud
io

Class An = a 48 0 15 2 10 75
Class Ca = b 2 65 3 17 13 100
Class Ex = c 13 3 62 16 6 100
Class Ha = d 4 11 15 66 4 100
Class Sa = e 8 17 7 9 78 125

Table 2: Statistics of the Hindi and Western songs
Hindi Songs Western Songs

Clips Total
Songs Clips Total

Songs
Class An 203 48 230 60
Class Ca 252 65 247 72
Class Ex 258 62 236 63
Class Ha 232 66 218 58
Class Sa 285 78 180 45

Total 1230 319 1111 298

3 Feature Extraction

This section describes the process of extracting features from both audio and lyrics. Feature extraction
and selection play an important role in machine-learning frameworks. The important features from audio
and lyrics were identified using correlation based feature selection technique. We considered different
audio and textual features for mood classification in Hindi and Western songs.

3.1 Audio Features
We considered the key audio features like intensity, rhythm and timbre for the mood classification task.
These features had been used by researchers for music mood classification in Indian languages (Ujlam-
bkar and Attar, 2012; Patra et al., 2015b). These features were extracted using the jAudio (McKay et
al., 2005) toolkit. In addition to these features, chroma and harmonics features were extracted from the
audio files using the openSMILE (Eyben et al., 2010) toolkit.

3.2 Lyric Features
We adopted a wide range of textual features such as sentiment words, stylistic features and N-gram based
features which are discussed in the following subsections.

Preprocessing: First we cleaned the lyrics dataset by removing the junk characters and HTML tags.
Subsequently we removed the duplicate lines as it was observed that the starting stanza is usually repeated
in the song at least a few times. Therefore, we removed these duplicate sentences to remove the biasness
in the lyric.

3.2.1 Sentiment Lexicons (SL)
The emotion or sentiment words are one of the most important features for mood classification from
lyrics. These words in the Hindi lyrics were identified using three lexicons - Hindi Subjective Lexicon
(HSL) (Bakliwal et al., 2012), Hindi SentiWordnet (HSW) (Joshi et al., 2010) and Hindi Wordnet Affect
(HWA) (Das et al., 2012). Similarly, we used two lexicons - SentiWordNet (Baccianellaet al., 2010)
(SWN) and WordNetAffect (Strapparava and Valitutti, 2004) (WA) for identifying the sentiment words
from the lyrics of the Western songs. It was observed that the number of sentiment words found in
the lyrics of Hindi songs was less than the number of sentiment words found in the lyrics of Western
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songs. The main reason was that the the performances of the POS tagger and stemmer/lemmatizer for
Hindi language were not up to the mark. The CRF based Shallow Parser5 is available for POS tagging
and lemmatization, but it also did not perform well on the lyrics data because of the free word order
nature of Hindi language. Most of the inflected sentiment words in Hindi lyrics were not matched with
the sentiment words available in the Hindi sentiment or emotion lexicons. Thus, the number of words
matched with sentiment or emotion lexicons are considerably less. In case of the Western songs, we used
the RitaWordNet 6 to get the stemmed words and the parts-of-speech (POS) tags for the lyric words. The
statistics of the sentiment or emotion words identified by these lexicons are given in Table 3.

Table 3: Statistics of unique sentiment and emotion words present in the lyrics of Hindi and Western
songs

Classes HWA WA Classes HSL HSW SWN
Angry 248 312

Positive 1185 872 7853Disgust 17 32
Fear 20 52

Happy 352 412
Negative 963 735 5271Sad 110 231

Surprise 39 81

3.2.2 Text Stylistic Features (TSF)
Text stylistic features are widely used in text stylometric analysis such as authorship identification, author
identification, etc. These features were also been used for mood classification from Hindi lyrics (Patra et
al., 2015c) and Western music lyrics (Hu and Downie, 2010b). It was observed that these features reduce
the performance of the system. The TSF such as the number of unique words, number of repeated words,
number of lines, etc. were considered for our experiments.

3.2.3 N-Grams (NG)
It was noted by researchers that N-gram based features work well for mood classification using lyrics as
compared to the stylistic or sentiment features (Zaanen and Kanters, 2010; Hu and Downie, 2010b; Patra
et al., 2015c). The term frequency and document frequency (TF-IDF) scores of unigram, bigram and
trigram were considered for the present study. The higher order N-grams tend to reduce the performance
of the system. The N-grams having document frequencies more than one were considered to reduce the
sparsity of the document vectors. We also removed the stopwords while considering the N-grams as it
was observed that the stopwords do not contain any information related to the classification.

3.3 Feature Selection
Feature level correlation (Hall, 1999) was used to identify the most important features as well as to
reduce the feature dimension in (Patra et al., 2015a). Thus, we used the correlation based supervised
feature selection technique implemented in Weka toolkit 7 to find out the important contributory feature
set for audio and lyrics.

A total of 445 audio features were extracted from Hindi and Western music audio files using jAudio
and openSMILE. We also collected 12 sentiment features, 12 textual stylistic features and 6832 N-gram
features from Hindi lyrics, whereas 8 sentiment features, 12 textual features and 8461 N-gram features
were collected from the Western music lyrics. The feature selection technique implemented using Weka
yields 154 important audio features for both Hindi and Western songs. 12 sentiment, 8 stylistic, and 1601
N-gram features from Hindi lyrics and 8 sentiment, 8 stylistic and 3175 N-gram features from Western
music lyrics were extracted using feature selection technique. We subsequently used these features for
the classification purpose.

5http://ltrc.iiit.ac.in/analyzer/hindi/
6http://www.rednoise.org/rita/
7http://www.cs.waikato.ac.nz/ml/weka/
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4 Classification Framework

We used the FFNNs for the mood classification purpose. It was observed that the FFNNs give better
accuracy as compared to other machine learning algorithms like Support Vector Machines (SVMs) and
Decision Trees (Patra et al., 2015b). Patra et al., (2015a) achieved low root mean square value for
arousal and valence calculation using FFNNs. Moreover, they (Patra et al., 2015b) also reported higher
F-measure for Hindi music mood classification based on audio.

4.1 Feed Forward Neural Networks (FFNNs)
Feed Forward Neural Networks refer to a special topology of neural networks in which each neuron
belonging to a layer is connected to all the other neurons in the next layer. Neural networks are widely
used for several classification and regression problems for its structural simplicity. The network is divided
into multiple layers namely input layer, hidden layer and output layer. The input layer consists of inputs
to the network. Then, the network follows a hidden layer which may consist of any number of neurons
placed in parallel. Each neuron performs a weighted summation of the inputs which is then passed on to
a nonlinear activation function (σ), also called the neuron function. Mathematically, the functionality of
a hidden neuron is described as: σ =

∑n
j=1(wjxj +bj), where the weights {wj , bj} are symbolized with

the arrows feeding into the neurons. The network output is formed by another weighted summation of
the outputs of the neurons in the hidden layer (Mathematica Neural Networks- Train and Analyze Neural
Networks to Fit Your Data, 2005). This summation on the output is called the output layer. The gradient
descent learning principle is used to update the weights as the errors are back-propagated through each
layer by the well-known back-propagation algorithm (Rumelhart et al., 1986). The updation rule can be
stated as θ = θ − ∂E/∂θ.

4.2 Results Analysis and Discussion
We used FFNNs and LibSVM, a variant of the support vector machines (SVMs) implemented in Weka
for the classification purpose. Several systems were developed using the audio features, lyric features
and a combination of both. All experiments were conducted on the features selected by the correlation
based feature selection technique. To obtain reliable accuracy, a 10-fold cross validation was performed
for each of the classifiers.

4.2.1 Mood classification based on Audio
Initially, we performed experiments using only the timbre features and then added the other features
incrementally. First we developed LibSVM based mood classification systems for Hindi and Western
music. For Hindi music, the audio features based system achieved F-measure of 59.0, whereas for the
Western music, the system achieved F-measure of 70.5 using all the audio features. The audio feature
based Western music mood classification system achieved better F-measure (11.5 points absolute, 19.5%
relative) than the Hindi-one. However, there were less number of instances present in the Western music
as compared to the Hindi music. Therefore, we developed another pair of mood classification systems
using the same number of instances for both the Hindi and Western music. In this case, the maximum
F-measure of 56.8 and 64.5 were achieved for Hindi and Western music mood classification respectively
using only audio features. The F-measure of the Western music mood classification system was 7.7
points absolute higher than the one for the Hindi music mood classification system developed on the
same number of instances.

In the next phase, we developed audio based mood classification systems using FFNNs on the same
set of 154 features. The maximum F-measure of 65.2 and 75.7 were achieved for the Hindi and Western
music mood classification systems. The performance of the audio based systems are given in Table 4.

4.2.2 Mood classification based on Lyrics
We performed experiments using sentiment features initially and sequentially added other features incre-
mentally. First, we used LibSVM for the classification purpose for feature ablation study. Subsequently,
then we used the FFNNs using all the features together. We observed that the text stylistic features re-
duced the performance of the system. Thus, we removed text stylistic features from all other systems.
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The lyric features based mood classification systems achieved the maximum F-measure of 55.3 and 68.2
for Hindi and Western song lyrics, respectively. The Western song mood classification achieves better
F-measure of around 13.0 points absolute than the Hindi song mood classification system based only on
lyric features. It was observed that the N-gram features yield good F-measure alone in case of the mood
classification systems for Hindi and Western songs. The relative improvement of F-measure in case of
Hindi song mood classification was much more than the mood classification system for Western songs.
The main reason may be that the Hindi is free word order language and the Hindi lyrics are also more
free in word order than the Hindi language itself.

We also developed lyric based systems for both song categories using the FFNNs. The corresponding
mood classification systems achieved the maximum F-measure of 57.1 and 69.2 for Hindi and Western
songs respectively. The performance of the lyric based systems are reported in Table 4.

4.2.3 Multimodal Music Mood classification
We developed multimodal music mood classification systems using LibSVM and FFNNs. The multi-
modal music mood classification system based on both audio and lyric features achieved F-measures of
68.9 and 80.4 for Hindi and Western songs using LibSVM. The multimodal music mood classification
system for Western songs performs 11.5 points absolute better than the one for Hindi songs in terms of
F-measure.

The FFNNs based multimodal music mood classification systems achieved the maximum F-measures
of 75.1 and 83.5 for Hindi and Western songs, respectively. The performance of the multimodal systems
are shown in Table 4 and the confusion matrices for these multimodal music mood classification systems
are given in Table 5.

From the confusion matrix, it is observed that multimodal mood classification system for Hindi songs
performs better in case of “Class Sa” and performs poorly in case of “Class Ha”. This is obvious
since the number of instances are more in case of “Class Sa”. The maximum number of instances
from “Class Ha” are classified as other classes because of the similar audio and lyric features. We
also observed that the systems for Hindi songs are quite biased towards the “Class Sa”. In case of the
Western songs, the “Class Ca” contains the maximum number of instances and thus maximum number
of instances are classified correctly for “Class Ca”. The system performs better in case of the “Class An”
and performs poorly in case of the “Class Ex”. It was also observed that some of the instances from each
of the classes have tendency to go towards its neighboring classes. The main reason may be the similar
features in between the neighbor classes.

4.2.4 Comparison with other systems
The proposed mood classification system for Hindi songs performs poorly as compared to the system
of (Ujlambkar and Attar, 2012) which achieved F-measures of 75 to 81 using only audio based features.
They used different mood taxonomy and they sliced the songs into 30 second clips. Unfortunately, their
dataset is not freely available for research purpose. The features used for the experiments in (Ujlambkar
and Attar, 2012) are a subset of our features. The audio based Hindi music mood classification system
performs poor as compared to the system developed in (Patra et al., 2015b). Patra et al., (2015b) used
more number of instances, but used a subset of our featureset. The audio based mood classification
system outperformed other audio based systems reported in (Patra et al., 2013a; Patra et al., 2013b), but
they developed their systems using smaller dataset and less number of features.

Our lyrics based mood classification system for Hindi songs outperformed the system reported in (Pa-
tra et al., 2015c) by 18.6 points absolute in terms of F-measure. We used similar features, but the number
of instances were more in case of the present system. The significant difference in experimental setup
is that their dataset was annotated with mood classes after listening to the corresponding audio files,
whereas our lyrics dataset was annotated after reading the lexical content of lyrics. To the best of our
knowledge, currently there is no other lyrics based mood classification system for Hindi music available
in the literature. Patra et al., (2016a) developed multimodal mood classification system for Hindi songs
using LibSVM and achieved F-measure of 68.6, which is 0.3 point absolute less than our multimodal
mood classification system for Hindi songs using the same LibSVM. The main reason may be that we
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Table 4: Performance of the mood classification systems with respect to different features using LibSVM
and FFNNs

Hindi Music Western Music
Systems Features P R F P R F

Audio Features
using LibSVM

Timbre 55.2 54.5 54.8 63.7 63.2 63.4
Timbre+Intensity 55.7 55.3 55.5 66.9 66.6 66.8
Timbre+Intensity+
Rhythm 58.8 57.8 58.2 70.3 70.0 70.2

All audio features 58.9 59.1 59.0 70.5 70.5 70.5
Audio Features
using FFNNs All audio features 65.3 65.1 65.2 75.8 75.7 75.7

Lyrics Features
using LibSVM

SL 41.3 39.4 40.4 60.0 59.6 59.8
SL+TSF 38.6 38.7 38.6 59.7 59.9 59.8
NG 46.3 46.7 46.5 60.2 60.3 60.2
SL+TSF+NG 55.3 52.8 54.1 68.2 68.3 68.2
SL+NG 55.9 54.7 55.3 68.2 68.3 68.2

Lyrics Features
using FFNNs SL+NG 57.2 57.0 57.1 69.3 69.1 69.2

Multimodal
using LibSVM

Audio+
Lyrics(Excluding TSF) 69.2 68.6 68.9 80.3 80.5 80.4

Multimodal
using FFNNs

Audio+
Lyrics(Excluding TSF) 76.8 73.5 75.1 84.8 82.2 83.5

used more number of instances for the present system. Till date, to the best of the author’s knowledge,
no other multimodal system has also been developed for Hindi songs based on audio and lyric features.

Table 5: Confusion matrix for multimodal systems using FFNNs
Hindi Songs Western Songs

Classified as –> a b c d e a b c d e
Class An = a 153 11 18 7 14 195 2 23 3 7
Class Ca = b 1 185 3 35 28 0 208 2 12 25
Class Ex = c 37 10 192 12 7 25 2 192 12 5
Class Ha = d 5 35 10 170 12 3 9 16 182 8
Class Sa = e 14 37 2 8 224 9 12 2 6 151

For Western music, it is very difficult to compare our mood classification system with other systems
available in the literature, as our mood taxonomy is totally different from the mood taxonomy pro-
posed by the existing multimodal mood classification systems (Hu and Downie, 2010a; Hu and Downie,
2010b). The number of mood classes present in their taxonomy is much higher (eighteen) than ours.
Taking this into consideration, our present Western music mood classification system performed better
than those systems. We used almost similar audio and lyric features as compared to the above mentioned
systems. They used sentiment lexicons like General Inquirer, ANEW and WordNet-Affect, whereas we
used SentiWordNet and WordNet-Affect for identifying the sentiment words.

4.2.5 Observations
Each mood classification system for Western songs outperforms the corresponding mood classification
system for Hindi songs developed with the same classifier. The reasons for such results are listed below.

1. The moods experienced during listening to audio and reading the corresponding lyric are different
in case of Hindi songs.
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2. The mood is not very clear in the first 60 seconds clip of a Hindi song. Starting 20-30 seconds of
the first clip of a song is mostly calm.

3. Western songs are usually much more rhythmic than Hindi songs.

4. The intensity of the mood felt in case of reading a lyric is less than the intensity of the mood felt at
the time of listening to the audio in both song types.

5. We need more sophisticated features for audio to identify the mood in case of the Hindi music.

5 Conclusions

We developed mood annotated multimodal (lyrics and audio) datasets for Hindi and Western songs.
Based on these multimodal datasets, we developed automatic multimodal music mood classification sys-
tems using LibSVM and FFNNs. The best performing systems developed using FFNNs achieved the
maximum F-measures of 75.1 and 83.5 for Hindi and Western songs, respectively. It was observed that
the different moods were perceived by the annotators while listening to audio and reading the corre-
sponding song lyric in case of the Hindi songs. The main reason for such difference may be that the
audio and lyrics were annotated by different annotators. Another reason may be that the mood is not
transparent in lyrics as compared to the mood present in the audio of the corresponding song. In future,
we intend to perform deeper analysis of the listener’s and reader’s perspectives of mood aroused from
songs. We would also like to collect more instances for mood annotated datasets. We are also planning
to use bagging and voting approach for the classification purpose.
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