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Abstract

Information status plays an important role in discourse processing. According to the hearer’s
common sense knowledge and his comprehension of the preceding text, a discourse entity could
be old, mediated or new. In this paper, we propose an attention-based LSTM model to
address the problem of fine-grained information status classification in an incremental manner.
Our approach resembles how human beings process the task, i.e., decide the information status of
the current discourse entity based on its preceding context. Experimental results on the ISNotes
corpus (Markert et al., 2012) reveal that (1) despite its moderate result, our model with only word
embedding features captures the necessary semantic knowledge needed for the task by a large
extent; and (2) when incorporating with additional several simple features, our model achieves
the competitive results compared to the state-of-the-art approach (Hou et al., 2013) which heavily
depends on lots of hand-crafted semantic features.

1 Introduction

Information status (IS) (Halliday, 1967; Prince, 1981; Nissim et al., 2004) accounts for the familiarity
of a discourse entity according to its accessibility to the hearer at a given point in the text, e.g., old
mentions1 are known to the hearer and have been referred to previously; mediated mentions have not
been mentioned before but are accessible to the hearer by reference to another old mention or to prior
world knowledge; new mentions are “not being recoverable from the preceding discourse” (Halliday,
1967).

Information status has attracted a large amount of interests in theoretical linguistics under the frame-
work of information structure (Halliday, 1967; Prince, 1981; Prince, 1992; Gundel et al., 1993; Lam-
brecht, 1994; Birner and Ward, 1998; Kruijff-Korbayová and Steedman, 2003). Many NLP tasks can
benefit from knowing information status of discourse entities. Cahill and Riester (2009) improve the
performance of generation ranking in German by incorporating features modeling IS. Rahman and Ng
(2011) show that a coreference system can profit from IS classification. Baumann and Riester (2013)
conduct an empirical study of information status in spoken German and demonstrate that IS can influ-
ence prosody in read speech. Hou et al. (2013) model bridging anaphora recognition as a subtask of
learning fine-grained information status.

In this paper, we focus on classifying IS on written text because many applications which can benefit
from IS concentrate on written texts. We follow the IS scheme for written text proposed by Markert et
al. (2012). It adopts the three major IS categories (old, new and mediated) from Nissim et al. (2004)
and distinguishes six subcategories for mediated. Section 2 provides a brief description of the scheme.

We address the task of fine-grained IS classification via an attention-based LSTM model in an incre-
mental manner. The model resembles human beings’ cognitive process of determining IS for discourse
entities, i.e., during the process of reading a text from left to right, assign IS for each discourse entity
according to its own property and its preceding context.

This work is licensed under a Creative Commons Attribution 4.0 International Licence. Licence details:
http://creativecommons.org/licenses/by/4.0/

1A mention is a noun phrase which refers to a discourse entity and carries information status.
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Previous approaches on fine-grained IS classification (Markert et al., 2012; Hou et al., 2013) explore
world knowledge by integrating hand-crafted semantic features extracted from manually and automati-
cally constructed knowledge bases. One goal of this paper is to investigate in which extent word embed-
dings learned from large corpora can replace such hand-crafted semantic features. Experimental results
on the ISNotes corpus (Markert et al., 2012) show that our model with only word embedding features
achieves reasonable results for several IS categories. We further demonstrate that when incorporating
with several additional simple features, our model achieves competitive results compared to the state-of-
the-art approach (Hou et al., 2013) which heavily depends on lots of hand-crafted semantic features.

2 An Overview of Information Status in ISNotes

ISNotes (Markert et al., 2012) contains 10,980 mentions annotated for information status in 50 texts
taken from the Wall Street Journal portion of the OntoNotes corpus (Weischedel et al., 2011). Below we
briefly illustrate the definitions of eight IS categories with examples.

A mention is old if it is either coreferent with an already introduced entity, or if it is a generic or
deictic pronoun.
Mediated mentions have not been mentioned before but are not autonomous, i.e., they can only be

correctly interpreted by reference to another mention or to prior world knowledge. ISNotes distinguishes
six subcategories of mediated mentions:

• mediated/worldKnowledge mentions are generally known to the hearer. This category in-
cludes many proper names, such as Germany.

• mediated/syntactic mentions are syntactically linked via a possessive relation, a proper
name premodification or a PP (prepositional phrase) postmodification to other old or mediated
mentions, such as:

[[their]old liquor store]mediated/syntactic,

[the [Federal Reserve]mediated boss]mediated/syntactic, and

[the main artery into [San Francisco]mediated]mediated/syntactic.

• mediated/bridging mentions are inferable because a related entity or event (antecedent) has
been previously introduced in the discourse, such as the streets in Example 1.

• mediated/comparative mentions usually include a premodifier that makes clear that this en-
tity is compared to a previous one (antecedent), such as others in Example 2.

• mediated/aggregate mentions are coordinated mentions where at least one element in the
conjunction is old or mediated, such as [Not only [George Bush]mediated but also [Barack
Obama]mediated]mediated/aggregate.

• mediated/function mentions refer to a value of a previously explicitly mentioned function
(e.g., 3 points in Example 3). The function needs to be able to rise and fall.

(1) Oranjemund, the mine headquarters, is a lonely corporate oasis of 9,000 residents. Jackals roam the
streets at night . . .

(2) As the death toll from last week’s temblor climbed to 61, the condition of freeway survivor Buch
Helm, who spent four days trapped under rubble, improved, hospital officials said. Rescue crews, how-
ever, gave up hope that others would be found.

(3) IBM shares were downfunction 3 points.

New mentions are entities that have not yet been introduced in the discourse and that the hearer cannot
infer from either previously mentioned entities/events or general world knowledge.

Table 1 shows the IS distribution in ISNotes which contain 1,726 sentences in total.
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Mentions 10,980
old 3237 29.5%
mediated 3,708 33.8%

syntactic 1,592 14.5%
world knowledge 924 8.4%

bridging 663 6.0%
comparative 253 2.3%

aggregate 211 1.9%
func 65 0.6%

new 4,035 36.7%

Table 1: IS distribution in ISNotes. The last column indicates the percentage of each IS category relative
to the total number of mentions.

3 The Attention-based LSTM Model

In this section we first briefly describe LSTMs in Section 3.1. We then detail our attention-based LSTM
model for fine-grained IS classification in Section 3.2.

3.1 LSTMs
Recently, recurrent neural networks (RNNs) with long short-term memory (LSTM) units (Hochreiter
and Schmidhuber, 1997) have been empirically shown to perform well in a range of NLP tasks, such
as machine translation (Sutskever et al., 2014), parsing (Vinyals et al., 2015), and sentence compression
(Filippova et al., 2015). LSTMs contain special units called memory blocks in the recurrent hidden layer.
These memory blocks are designed to avoid vanishing gradients and to remember some long-distance
dependencies from the input sequence. The vanilla LSTM model with hidden size k is defined as follows:
given a sequence of input (x1, ..., xT ), LSTMs compute the h-sequence and the m-sequence using the
following equations iteratively from t=1 to T:

it = sigm(W1xt +W2ht−1) (1) ft = sigm(W2xt +W3ht−1) (2)

ot = sigm(W5xt +W6ht−1) (3) it′ = tanh(W7xt +W8ht−1) (4)

mt = mt−1 � ft + it � it′ (5) ht = ot � tanh(mt) (6)

The operator� denotes element-wise multiplication, and sigm and tanh are computed element-wise.
The matrices W1, . . . ,W8 and the vector h0 are the parameters of the model.

3.2 Incremental IS Classification with Attention-based LSTMs
Model. In practice LSTMs still have difficulties to handle long-range dependencies because the model
tries to encode the full input sequence into a fixed-length vector. To alleviate this problem, attention-
based LSTMs allow the decoder to “attend” the different part of the input sequence when making the
prediction. In an IS classification scenario, for each document, the attention-based LSTM model reads
the mentions from left to right, and predicts each mention’s IS output according to (1) the current men-
tion’s state cell and (2) weighted representation of the preceding mentions.

Figure 1 shows the high-level structure of our model. More precisely, for a mention mi and its preced-
ing tmentions, let two LSTMs read the mentions from left to right. The first LSTM uses the sum of word
embeddings as mention representations, whereas the second LSTM uses one-hot vectors as mention rep-
resentations2. Let k1 and k2 be the hyper-parameters denoting the size of mention representations and

2Another choice is to concatenate the sum of word embeddings with one-hot vectors and use only one LSTM. In practice,
we find that encoding them with two LSTMs works better.
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Figure 1: Fine-grained IS classification using attention-based LSTMs.

hidden layers in the two LSTMs respectively3, and H1 ∈ Rk1×(t+1) and H2 ∈ Rk2×(t+1) to denote the
output vectors from the first LSTM and the second LSTM. We then stack the first t output vectors from
the two LSTMs:

H =
[
H1

H2

]
, H ∈ R(k1+k2)×t (7)

Let k = k1 + k2, we define an attention vector α over the preceding t mentions and their weighted
representation r as follows:

M = tanh(WHH + [(Wmihmi)×t]),M ∈ Rk×t (8)

α = softmax(W TM), α ∈ Rt (9)

r = HαT , r ∈ Rk (10)

where hmi is the stacked output vector of mention mi from the two LSTMs, the matrices WH ,Wmi ∈
Rk×k and the vector W ∈ Rk (W T denotes its transpose) are learned parameters of the model. Note that
we repeat the linear transformation of the state cell of mention mi (i.e., Wmihmi) t times. As a result,
each column in M is the attention representation for each preceding mention mj(i − t ≤ j < i) by
combining the output vector hmi of mention mi and the output vector of mention mj (j’s column vector
in H).

3The size of the hidden layer in each LSTM is equal to its mention representation size.
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We obtain the final representation of mi using:

ĥmi = tanh(W1r +W2hmi), ĥmi ∈ Rk (11)

where the matrices W1,W2 ∈ Rk×k are the model’s parameters. Finally, we use a softmax layer to
project ĥmi into the target space of eight IS classes.

Training instances. For all mentions in a document, we first add a dummy mention with the span
of [−1,−1] in the beginning of the document. We then order all mentions according to their end po-
sitions in ascending order; if two mentions have the same end position, we order them according to
their start positions in descending order. This rule ensures that for embedded mentions, the inside men-
tion is ordered before its parent. Such arrangement of embedded mentions is important because for
mediated/syntactic and mediated/aggregate, a mention’s IS label is dependent on the IS
labels of its (syntactic) children. Table 2 shows several examples of how embedded mentions are ordered
under this rule.

embedded mentions result of ordering
(1) [[their] liquor store] [their] – [their liquor store]
(2) [the [Federal Reserve] boss] [Federal Reserve] – [the Federal Reserve boss]
(3) [the main artery into [San Francisco]] [San Francisco] – [the main artery into San Francisco]
(4) [[he] and [[his] skilled team]] [he] – [his] – [his skilled team]–[he and his skilled team]

Table 2: Results of ordering for embedded mentions.

After ordering, we create a training instance for each mention using its preceding mentions as the
context. The training instances are created in an incremental manner. For instance, given a document
containing the sentence shown in Example 1 (Section 2), the training instances will be (m0 is the dummy
mention):

• m0 ‖ [the mine headquarters]

• m0–[the mine headquarters] ‖ [Oranjemund, the mine headquarters]

• m0–[the mine headquarters]–[Oranjemund, the mine headquarters] ‖ [9,000 residents]

• m0–[the mine headquarters]–[Oranjemund, the mine headquarters]–[9,000 residents] ‖ [a lonely corporate oasis of
9,000 residents]

• m0–[the mine headquarters]–[Oranjemund, the mine headquarters]–[9,000 residents]–[a lonely corporate oasis of
9,000 residents] ‖ [Jackals]

• m0–[the mine headquarters]–[Oranjemund, the mine headquarters]–[9,000 residents]–[a lonely corporate oasis of
9,000 residents]–[Jackals] ‖ [the streets]

• m0–[the mine headquarters]–[Oranjemund, the mine headquarters]–[9,000 residents]–[a lonely corporate oasis of
9,000 residents]–[Jackals]–[the streets] ‖ [night]

Decoding. In the testing stage, given a document and its ordered mentions based on the rule described
above, we predict IS classes for these mentions incrementally from left to right. Because a mention’s IS
could depends on the IS labels of its context mentions, we also encode the IS class as one-hot represen-
tation. The gold standard labels and the predicted IS labels of the context mentions are used for training
and decoding respectively4.

4The IS class one-hot representation for the target mention is a zero vector during training and decoding.
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Network parameters. We use Adam (Kingma and Ba, 2015) for optimization with the learning rate
of 0.01. We train all models with 10 epochs using cross-entropy loss. To avoid over-fitting, we apply
dropout before and after the LSTM layer with the probability of 0.1. For each mention, we set the
maximum number of its context mentions as 505. Therefore we unfold the network 51 times and apply
masking for the instances which have less than 50 context mentions.

We use GloVe vectors (Pennington et al., 2014) with 100 dimensions trained on Wikipedia and Giga-
word as word embeddings, which we do not optimize during training. Out-of-vocabulary words in the
training set and the testing set are set to fixed random vectors. We approximate mention representations
fed into the first LSTM by summing embeddings of all words from a mention as Yu and Dredze (2015)
show that sum of word embeddings achieves reasonable result to induce phrase embeddings. In ISNotes,
around 30% of mentions contain only one word and around 70% of mentions contain less than four
words. Mention representations fed into the second LSTM are one-hot vectors of the mentions’ features
and their IS classes.

4 Experiments

4.1 Experimental Setup

We perform experiments on the ISNotes corpus (Markert et al., 2012). Following Hou et al. (2013), all
experiments are performed via 10-fold cross-validation on documents. We use gold standard mentions
and the OntoNotes syntactic annotation layer for feature extraction. We report overall accuracy as well
as precision, recall and F-measure per IS category. In the following, we describe the baseline and our
model with different feature settings.

Baseline. Hou et al. (2013) report the state-of-the-art performance for fine-grained IS classification on
ISNotes using collective classification. They explore a wide range of features (34 in total), including a
large number of lexico-semantic features as well as a couple of surface features and syntactic features.
Hou et al. (2013) observe that bridging anaphors are rarely marked by surface features. Therefore they
carefully design discourse structure, lexico-semantic and genericity detection features to capture the phe-
nomenon. The semantic features are extracted from manually or automatically constructed knowledge
bases, such as WordNet (Fellbaum, 1998) and the General Inquirer lexicon (Stone et al., 1966).

LSTM. To test how well we can predict IS for mentions without using any hand-crafted features,
we only use word embeddings and IS labels in our attention-based LSTM model described in Section
3.2. Specifically, we use mention embeddings (100 dimensions) as the input of the first LSTM. Men-
tion embeddings are obtained by summing word embeddings of all words from a mention, where word
embeddings are from GloVe vectors trained on Wikipedia and Gigaword. We use one-hot vectors (8
dimensions) to encode IS labels and use them as the input of the second LSTM.

LSTM+PAR. Hou et al. (2013) show that coordination parent-child relations and other syntac-
tic parent-child relations among mentions are highly effective for mediated/coordination and
mediated/syntactic classes. We use one-hot vectors (2 dimensions) to integrate such parent-child
information into the LSTM model described above. Table 3 demonstrates two examples of one-hot
representation for parent-child relations.

[[their] liquor store] [their][1,0] ‖ [their liquor store][1,0]

[[he] and [[his] skilled team]] [he][0,1] – [his][0,0] – [his skilled team][0,1] ‖ [he and his skilled team][0,1]

Table 3: one-hot representations for parent-child relations.

LSTM+PAR+FEAT. We hypothesize that knowledge about a mention’s surface and syntactic proper-
ties can be useful to decide its information status. Therefore, we add a small feature set (see Table 4) from

5In practice, we find that in our model, the results are similar with the maximum number of context mentions as 10, 20, or
50.
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Hou et al. (2013) into our attention-based LSTM model (LSTM+PAR) using one-hot representations.
f1-f5 are surface and syntactic features, and f6-f8 are three simple lexical-semantic features. f6-f8
provide additional semantic knowledge for three mediated classes (i.e., mediated/comparative,
mediated/worldKnowledge and mediated/function) that our current mention embedding
representations do not capture well.

Feature Value
f1 FullPrevMention {yes, no, NA}
f2 PartialPreMention {yes, no, NA}
f3 Determiner {bare, def, dem, indef, poss, NA}
f4 NPtype {pronoun, common, proper, other}
f5 GrammaticalRole {subject, subjectPassive, pp, other}
f6 PreModByCompMarker {yes, no}
f7 IsFrequentProperName {yes, no}
f8 DependOnChangeVerb {yes, no}

Table 4: A small feature set from Hou et al. (2013).

4.2 Results and Discussion
Results. Table 5 shows the results of our models compared to the baseline. Our model with word
embeddings and only a couple of simple features (LSTM+PAR+FEAT) performs as good as the state-
of-the-art approach (Hou et al., 2013) which explores a wide range of semantic features based on various
knowledge resources. It is worth noting that the model with only word embeddings (LSTM) achieves an
accuracy of 66.8. Also LSTM performs similar as the baseline for bridging anaphora recognition under
the multi-class classification setting. This indicates that word embeddings in our model do capture certain
semantics needed for the task. The improvement in LSTM+PAR over LSTM confirms the effectiveness of
the two parent-child relations for mediated/syntactic and mediated/aggregate categories.

Comparing the results of LSTM+PAR+FEAT to LSTM+PAR and LSTM+PAR+FEAT−wordEmb, it
seems that word embeddings and the small set of simple features (most of them are capturing the surface
and syntactic properties of mentions) are complementary. Specifically, mediated/function and
mediated/bridging benefit most from word embeddings which provide useful semantic knowledge
to capture these two categories. On the contrary, the feature set (FEAT) provides better generalization
capability for old, mediated/worldKnowledge and mediated/comparative.

baseline LSTM LSTM+PAR LSTM+PAR LSTM+PAR
Hou et al.(2013) +FEAT +FEAT−wordEmb

R P F R P F R P F R P F R P F

old 84.4 86.0 85.2 75.7 75.6 75.6 77.9 71.2 74.4 85.4 84.9 85.2 83.3 85.7 84.5
m/worldKnow. 67.4 77.3 72.0 45.6 52.6 48.8 39.8 53.1 45.5 67.1 74.5 70.6 60.4 65.1 62.7
m/syntactic 82.2 81.9 82.0 63.6 63.8 63.7 80.4 73.4 76.7 80.8 81.9 81.4 76.4 79.8 78.1
m/aggregate 64.5 79.5 71.2 11.8 35.2 17.7 50.7 65.2 57.1 67.8 84.6 75.3 65.9 86.9 74.9
m/function 67.7 72.1 69.8 46.2 57.7 51.3 26.2 53.1 35.1 64.6 76.4 70.0 12.3 88.9 21.6
m/comparative 81.8 82.1 82.0 15.0 34.9 21.0 14.2 38.7 20.8 77.9 83.1 80.4 78.3 80.8 79.5
m/bridging 19.3 39.0 25.8 16.3 36.9 22.6 18.7 34.0 24.1 15.7 32.3 21.1 0.0 0.0 NaN
new 86.5 76.1 81.0 80.5 67.3 73.3 76.2 70.8 73.4 87.2 74.8 80.5 85.0 68.2 75.7
acc 78.9 66.8 68.6 78.6 75.1

Table 5: Experimental results of the attention-based LSTM models compared to the baseline. Bolded
scores indicate the best performance for each IS class. There is no significant difference between
LSTM+PAR+FEAT and the baseline at the level of p < 0.01 (Statistical significance is measured using
McNemar’s χ2 test (McNemar, 1947)).

The incremental prediction mechanism in our model utilizes the (predicted) IS class information of
previous mentions when predicting the IS class for the current mention. To gain a better understand-
ing of such mechanism, we conduct an experiment by removing IS label information from our best
model (thus LSTM+PAR+FEAT - ISLabels). This leads to a mild decrease in the overall accuracy (from

1886



78.6 to 77.7). When looking at the results, we found that the decrease is centered on the categories
of mediated/syntactic, mediated/aggregate and new. This confirms that our incremental
decoding strategy helps the model to capture the IS label dependencies among mentions better.

Analysis of attention mechanism. We further analyze the attention mechanism in our model
LSTM+PAR by manually checking some testing examples from one fold. We choose this setting be-
cause we want to investigate whether the model can capture long distance relations between mentions
without being informed by the features which indicate whether a mention is fully or partially mentioned
before.

Figure 2 shows heat maps of several examples that our model predicts correctly6. Note that we must
take into account that the model only partially relies on representations obtained from attention, i.e., in
Equation 11, the final prediction depends on the combination of attention representation as well as the
long range contextual representation obtained from LSTM encoders.

It is interesting to see that in the first example, the model attends to several reasonable antecedents
for the pronoun “[it]” when predicting its information status. In the second example, when predicting
information status for “[the kingdom]”, the model focuses on its antecedent “[Saudi Arabia]”. In the
third and the fourth examples, the model focuses on the syntactic children when predicting information
status for “[its percentage share of OPEC production]” and “[Motorola and other companies]”.

We also notice that for old mentions, when their antecedents do not appear in the preceding context
mentions, the weights of attention are more uniformly distributed. Furthermore, for correctly predicted
mediated/comparative and mediated/bridging mentions, we do not observe clear patterns
in their attention weights. We assume this is because we have less training data for these two categories.
In addition, only a few of them have antecedents occurring in the preceding ten mentions. Therefore, the
model seems mainly uses the last output vector (hmi in Equation 11) for prediction.

5 Related Work

Automatic IS classification. Markert et al. (2012) applied joint inference for IS classification on the
ISNotes corpus. Built on this work, Hou et al. (2013) proposed a cascading collective classification
algorithm for bridging anaphora recognition with various semantic features. They report the state-of-
the-art result for fine-grained IS classification using collective classification.

Rahman and Ng (2012) studied the fine-grained IS classification problem on the Switchboard dialogue
corpus (Nissim et al., 2004). They first designed a rule-based system to assign IS classes to mentions.
The rule-based system heavily depends on knowledge resources such as FrameNet (Baker et al., 1998),
WordNet (Fellbaum, 1998), and ReVerb (Fader et al., 2011). They then applied an SVMmulticlass algo-
rithm for this task by combining the prediction from the rule-based system, the ordering of the rules as
well as two lexical features.

Another work on IS classification was carried out by Cahill and Riester (2012). They assumed that
the distribution of IS classes within sentences tends to have certain linear patterns, e.g., old > mediated
> new. Under this assumption, they trained a CRF model with syntactic and surface features for fine-
grained IS classification on the German DIRNDL radio news corpus (Riester et al., 2010).

Our work differs from the above mentioned work in that we explore a new model which resembles
human beings’ cognitive process for the task and we replace hand-crafted semantic features with word
embeddings which were learned from large corpora in an unsupervised manner.

Attention-based RNNs in NLP. Recently, RNNs with attention mechanisms have demonstrated suc-
cess in various NLP tasks, such as machine translation (Bahdanau et al., 2015), parsing (Vinyals et al.,
2015), image captioning (Xu et al., 2015), and textual entailment (Rocktäschel et al., 2016). Attention-
based RNNs allow the model to access its internal memory when making predictions. This property is
intuitive for our task because in order to decide a discourse entity’s information status, we need to access
its context and choose one (or none) discourse entity to attend.

6Due to the space limitation, we only show plots for maximum number of context mentions at ten. The patterns we observe
here are similar for maximum number of context mentions at 20 or 50.
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Figure 2: Attention heat maps.

6 Conclusions

We develop an attention-based LSTM model which draws on the recent advances in research on RNNs
for fine-grained IS classification. The system imitates how human beings reason information status of a
discourse entity based on its preceding context. The results indicate that our model with only pre-trained
word embeddings captures semantic knowledge needed for the task by a large extent. Extending the
model with several simple features improves the ability of the system, resulting in competitive results on
the ISNotes corpus compared to the state-of-the-art approach which explores a broad variety of semantic
features.

The model presented here is intuitive for understanding discourse entities. In the future, it would be
worthwhile exploring how to extend the system to model other related discourse processing tasks, such
as coreference resolution and bridging resolution.
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soning about entailment with neural attention. In Proceedings of the 4th International Conference on Learning
representations (ICLR 2016), Caribe Hilton, San Juan, Puerto Rico, 2–4 May 2016.

Philip J. Stone, Dexter C. Dunphy, Marshall S. Smith, Daniel M. Ogilvie, and Cambridge Computer Associates.
1966. General Inquirer: A Computer Approach to Content Analysis. MIT Press, Cambridge, Mass.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014. Sequence to sequence learning with neural networks. In
Advances in Neural Information Processing Systems 27 (NIPS 2014), pages 3104–3112. Curran Associates, Inc.

Oriol Vinyals, Lukasz Kaiser, Terry Koo, Slav Petrov, Ilya Sutskever, and Geoffrey Hinton. 2015. Grammar as a
foreign language. In Advances in Neural Information Processing Systems 28 (NIPS 2015), pages 2773–2781.
Curran Associates, Inc.

Ralph Weischedel, Martha Palmer, Mitchell Marcus, Eduard Hovy, Sameer Pradhan, Lance Ramshaw, Nianwen
Xue, Ann Taylor, Jeff Kaufman, Michelle Franchini, Mohammed El-Bachouti, Robert Belvin, and Ann Houston.
2011. OntoNotes release 4.0. LDC2011T03, Philadelphia, Penn.: Linguistic Data Consortium.

Kelvin Xu, Jimmy Ba, Ryan Kiros, Kyunghyun Cho, Aaron C. Courville, Ruslan Salakhutdinov, Richard S. Zemel,
and Yoshua Bengio. 2015. Show, attend and tell: Neural image caption generation with visual attention. In
Proceedings of the 32th International Conference on Machine Learning, Lille, France, 6–11 July 2015, pages
2048–2057.

Mo Yu and Mark Dredze. 2015. Learning composition models for phrase embeddings. TACL, 3:227–242.

1890


