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Abstract

We propose a novel word embedding-based hypernym generation model that jointly learns clus-
ters of hyponym-hypernym relations, i.e., hypernymy, and projections from hyponym to hyper-
nym embeddings. Most of the recent hypernym detection models focus on a hypernymy classifi-
cation problem that determines whether a pair of words is in hypernymy or not. These models do
not directly deal with a hypernym generation problem in that a model generates hypernyms for
a given word. Differently from previous studies, our model jointly learns the clusters and pro-
jections with adjusting the number of clusters so that the number of clusters can be determined
depending on the learned projections and vice versa. Our model also boosts the performance
by incorporating inner product-based similarity measures and negative examples, i.e., sampled
non-hypernyms, into our objectives in learning. We evaluated our joint learning models on the
task of Japanese and English hypernym generation and showed a significant improvement over
an existing pipeline model. Our model also compared favorably to existing distributed hypernym
detection models on the English hypernym classification task.

1 Introduction

Hypernym-hyponym relations, a.k.a. hypernymy, are important information for several NLP tasks such
as question answering and ontology construction. Some manually-constructed semantic resources like
WordNet contain hypernymy; however, they have limited coverage. Plenty of studies have been con-
ducted to automatically detect hypernymy, e.g., (Hearst, 1992; Roller et al., 2014; Fu et al., 2015).

Hypernymy detection was traditionally often tackled with unsupervised methods using Hearst-style
patterns (Hearst, 1992) or distributional inclusion hypothesis (Geffet and Dagan, 2005). These methods
treat hypernymy pairs individually. Recent progress in the word representation allows to represent words
in a shared low-dimensional vector space, and several models using the distributional word representation
or word embeddings have been proposed for hypernymy detection (Roller et al., 2014; Weeds et al., 2014;
Turney and Mohammad, 2015; Levy et al., 2015). Such models employ supervised learning. Most of the
models focus on a hypernymy classification problem, i.e., whether a given word pair is in hypernymy or
not, and they ignore a more practical hypernym generation problem to generate hypernyms for a given
word.

Few studies have examined hypernym generation using word embeddings (Fu et al., 2015; Tan et al.,
2015). Fu et al. (2015) proposed a two-step, pipeline model that partitions hypernymy pairs into several
clusters and learns a projection matrix between words in a pair for each cluster separately. The projection
matrix projects the embedding vector of a hyponym close to that of its hypernym. The incorporation of
clustering allows representing several types of hypernymy and shows a higher performance than other
traditional models in constructing semantic hierarchies. The clusters, however, may not be appropriate
for hypernym generation since clustering is independent of hypernym generation.

This paper presents a novel hypernym generation model that jointly learns clusters of hypernymy and
the projections from hyponyms to their hypernyms in the clusters . Unlike most previous supervised
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models using word embeddings, we target the hypernym generation problem, not hypernymy classifi-
cation. This paper has newly incorporated the following points into hypernym generation. First, our
model performs the clustering of the relations with learning projection matrices jointly, to obtain ap-
propriate clusters for hypernym generation. Second, motivated by DP-means (Kulis and Jordan, 2012),
our model adjusts the number of clusters during training so that the model can fit the number of clus-
ters to the training data. Third, the similarity measure in learning projection matrices is selected to be
consistent with one in training word embeddings. Finally, we use sampled non-hypernym instances in
learning projection matrices so that our model can distinguish hypernymy from non-hypernymy. We
evaluated our model on hypernym generation tasks in Japanese and English, as well as a well-studied
hypernymy classification task in English. Our joint learning model shows a significant improvement over
a pipeline learning model (Fu et al., 2015) on the hypernym generation tasks. As for the hypernymy clas-
sification, our model showed a comparable performance to the state-of-the-art hypernymy classification
model (Levy et al., 2015).

2 Related Work

In the task of detecting hypernym, traditional approaches focused on Hearst-style lexical patterns that
indicate hypernymy (Hearst, 1992; Snow et al., 2005; Kozareva and Hovy, 2010). For instance, from a
sentence ... works by such authors as Shakespeare ..., an “is-a” pair between Shakespeare and author can
be detected by using a pattern that a word A is a hypernym of another word B when A and B are linked
by such A as B. These methods typically show high precision but suffer from low recall because many
hypernymy pairs are not explicitly mentioned in texts as such patterns.

To overcome the problems of the lack of explicit hypernymy mentions, several other traditional unsu-
pervised methods are proposed based on distributional inclusion hypothesis. This hypothesis states that a
term can only be used in contexts where its hypernyms can be used and that a term might be used in any
contexts where its hyponyms are used (Geffet and Dagan, 2005; Kotlerman et al., 2010). These methods
have shown limited performance because the hypothesis is not always correct and it cannot distinguish
co-hyponymy and meronymy from hypernymy.

Recently, distributed word representation or word embeddings such as skip-gram (Mikolov et al.,
2013) and ivLBL (Mnih and Kavukcuoglu, 2013) has been often employed for the task of detecting
hypernymy, since such representation are shared among words. Most models using word embeddings
focus on a hypernymy classification task where a model needs to predict whether a given word pair is in
hypernymy or not. They take distributional vectors for a pair of a word x and its candidate hypernym y
as input, calculate features from these vectors, and predict whether the pair is in hypernymy or not using
a classifier like support vector machines (SVMs). For example, the concat model (Baroni et al., 2012)
uses the concatenation of hypernymy pair 〈x,y〉, while the diff model (Roller et al., 2014; Weeds et al.,
2014; Fu et al., 2015) uses 〈y − x〉. Here, x and y represent word embeddings of x and y, respectively.
These classification-based models, however, have not been evaluated on hypernym generation, where a
model generates hypernyms for a given word.

Less work has been done on hypernym generation using word embeddings (Fu et al., 2015; Tan et al.,
2015). Fu et al. (2015) proposed a model of using the projection matrices, each of which projects x to
y. They proposed a two-step, pipeline algorithm to detect hypernym. The first step is clustering. They
partitioned training pairs into clusters using k-means so that pairs in each cluster are close in the sense
of the differences (offsets) between x and y, i.e., 〈y − x〉. The second step is projection. They trained a
projection matrix Φc for each cluster c. Φc is obtained by using the least squares objective:

Φ∗c = arg min
Φc

1
Nc

∑
(x,y)∈Pc

‖Φcx− y‖2, (1)

where Pc is a set of word pairs in c-th cluster and Nc is the number of word pairs in Pc. This model
performs clustering and projection separately, so the performance of clustering depends on the offsets
and their underlying embeddings and the clustering results also may not be appropriate for learning
hypernymy. The similarity scores between instances in different clusters may not be comparable since
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Algorithm 1: Jointly Learning Clusters and Projections of Hypernymy
input : (x1, y1), . . . , (xn, yn): input data, λ: threshold
output: Φ1, . . . ,Φk, b1, . . . , bk: cluster parameters, k: number of clusters

1. Initialize k to 1, and set zi to 1 for i = 1, . . . , n;
2. Initialize Φ1 with a randomized matrix and b1 with 0;
3. Repeat until convergence or reaching the max number of epochs;
foreach (xi, yi) do

Compute simc(xi, yi) for c = 1, . . . , k;
if maxc simc(xi, yi) < λ then

k = k + 1, zi = k;
Initialize Φk with a randomized matrix and bk with 0;

else
zi = arg maxc simc(xi, yi);

end
Update Φzi and bzi according to Equation 3;

end
4. Return Φ1, . . . ,Φk, b1, . . . , bk, and k;

Figure 1: Overview of our proposed joint learning model

the projection matrices are trained independently. Further, this model does not consider non-hypernymy
pairs during training, so it is not clear how the model performs on non-hypernymy pairs.

3 Jointly Learning Clusters and Projections of Hypernymy

This paper proposes a novel model that learns projections from words to their hypernyms and clusters of
hypernymy jointly. Our model automatically estimates the number of clusters, motivated by DP-means
clustering (Kulis and Jordan, 2012) that automatically estimates the number of clusters during clustering
unlike k-means.

In learning the projections and clusters, our model receives d-dimensional word embeddings and train-
ing word pairs as its input, clusters the pairs with updating the cluster parameters (d×d projection ma-
trices and bias terms in a similarity measure), and produces cluster parameters as its output. After the
parameters are learned, our model generates hypernyms for a given word by projecting a word by using
the projection matrices and selecting words that have the highest similarities with the projected word.

We will detail the learning and hypernym generation processes in the rest of this section.

3.1 Joint learning

Our joint learning model starts learning with a single cluster that includes all the training pairs and learns
projection matrices with automatically increasing the number of clusters during learning. The entire
algorithm is shown in Algorithm 1.

Our model updates the parameters of the cluster each training pair belongs to. The training pair con-
sists of word xi and its hypernym yi. For each update, the model first finds (or generates) an appropriate
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cluster for the target pair and then updates the parameters of the cluster as in Figure 1.
To find an appropriate cluster for a training pair, our model first calculates the similarity between the

words in the pair for all the clusters and adds the pair to a cluster that achieves the highest similarity.
Our similarity measure is based on an inner product, which is used in learning word embeddings. The
similarity is defined as:

simc(xi, yi) = σ (Φcxi · yi + bc) . (2)

Here, Φc denotes a d×d projection matrix for c-th cluster, bc denotes bias of c-th cluster, σ denotes a
logistic sigmoid function, and xi and yi are normalized word embeddings of xi and yi. This similarity
measure calculates how close the matrix Φc projects xi to yi. Using the similarities, our model catego-
rizes the pair into a cluster with the highest similarity if the similarity is beyond a threshold λ. If all
the similarities are below the threshold and no matrix projects x close enough to y, our model instead
generates a new cluster and assign the cluster to the pair.

After a cluster is assigned to a pair, our model updates the cluster parameters (Φ and b) of the cluster
for projection matrix and similarity measure. During the update of the parameters, motivated by negative
sampling (Mikolov et al., 2013), our model generates pseudo negative non-hypernyms and penalizes the
parameters so that the model do not generate the non-hypernyms in prediction. Our model maximizes
the following objective function:

J =
k∑

c=1

∑
(x,y)∈Pc

(
log simc (x, y) +

m∑
i=1

log
(
1− simc

(
x, y′i

)))
. (3)

Here, k is the current number of clusters, y′i(6= y) denotes a negative sample, and m denotes the number
of negative samples. For the negative samples, our model selects the most confusing words that show the
highest similarities with x because this selection produced better results than uniform sampling in our
preliminary experiment.

Although our model employs clustering and projection matrices, it is substantially different from Fu
et al. (2015). Our model newly incorporates the following points into hypernym generation:

• our model jointly learns clusters of hypernymy and the cluster parameters, i.e., projection matrices
Φs and biases bs, so that the clusters and their parameters are well tuned to hypernymy generation
and the cluster parameters are tuned so that similarity measures are consistent among all the clusters.

• our model automatically determines the number of clusters based on the similarity threshold λ in
order to determine the appropriate number of clusters for the target data set.

• our model employs the same similarity measure as that used in training word embeddings, in order
to keep consistency of word similarity in our model and word embedding training.

• our model uses negative non-hypernymy instances during training, which allows the model not only
to keep the projection of hyponym far from wrong hypernyms but also to deal with non-hypernymy
instances in prediction.

3.2 Hypernym generation

Since we do not know which cluster a pair of x and w belongs to, we check all the clusters and select the
most appropriate cluster that produces the highest similarity for the pair. When generating hypernyms
for a word x, we calculate the similarity score for each word w in our vocabulary as follows:

scoregen(x,w) = max
c
simc(x,w). (4)

After obtaining the scores for all the words in our vocabulary, the words with the highest scores are
selected as the hypernyms of x.
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Japanese English
model ivLBL word2vec
data Yahoo Answers Google News
dimension 300 300
window size 5 5
#vocabulary 1 million 3 million
#words ∼10 billion ∼100 billion

Table 1: Data and parameters in learning word embeddings

Japanese (ALAGIN) English (Baroni)
#train 14,814 970 (2,011)
#validation 1,752 69 (223)
#test 4,598 346 (536)
#total 21,164 1,385 (2,770)
#hypernyms / #hyponym ≈ 1 ≈ 1.22

Table 2: The number of hypernymy relations and the average number of hypernyms per hyponym in the
hypernymy data sets. The numbers in parentheses show the total number of positive and negative pairs
in the English data set.

4 Evaluation Settings

We evaluate our model on Japanese and English hypernymy data sets. We will first explain resources for
these two language data sets, and then explain the task settings.

4.1 Data sets
Our model requires word embeddings and training data of hypernymy pairs.

We obtained word embeddings for Japanese by applying ivLBL (Mnih and Kavukcuoglu, 2013) to
texts crawled from Japanese Yahoo Answers (Yahoo Chiebukuro)1. As for English, we used a pre-
trained Google News word embeddings2 (Mikolov et al., 2013), which has shown high performance in
several word similarity tasks. Table 1 summarizes the settings in learning word embeddings. We use the
words in the word embedding as our vocabularies.

To obtain supervision for training hypernymy, we used ALAGIN typed hierarchies for Japanese3, and
the data by Baroni et al. (2012) for English. The statistics of the data are shown in Table 2. Word
pairs in ALAGIN were made by automatically extracting word hierarchy from Wikipedia (Sumida et al.,
2008), selecting the top-level pairs, and manually cleaning the selected pairs. Since this data deal with
not only words but phrases, we selected hypernymy pairs that include only words and split the pairs into
training, validation, and test pairs. Word pairs of Baroni’s data were extracted from WordNet. While
the data originally include 1,385 positives and 1,385 negatives that are from a random permutation of
positive pairs, we used only positive pairs for training because our model generates negative pairs during
training.

4.2 Task and evaluation settings
We optimized our model parameters with Adam (Kingma and Ba, 2015) with recommended parameters
in their paper. We set the number of negative samples m to 1, according to the preliminary experiment.
We tuned other hyperparameters, e.g., λ in our model and k in k-means, with the validation data. As a
result of several preliminary experiments, we decided other hyperparameters as well. We consider only
direct hypernymy in our experiment, differently from Fu et al. (2015). For instance, we consider only

1http://chiebukuro.yahoo.co.jp/
2https://code.google.com/archive/p/word2vec/
3https://alaginrc.nict.go.jp/resources/nict-resource/li-info/li-outline.html#A-4
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Japanese (ALAGIN) English (Baroni)
pipeline joint pipeline joint

#clusters 5 19 1 2
MRR 0.193 0.349 0.280 0.339

Table 3: MRR of our joint model and the pipeline model on the test parts of the Japanese ALAGIN data
set and English Baroni’s data set.

(apple, fruit) and (fruit, plant) pairs for the hypernymy hierarchy apple −→
H

fruit −→
H

plant, and do not

consider (apple, plant). Here, A −→
H

B means that B is a hypernym of A.

We evaluated our model on the task of hypernym generation using both the Japanese ALAGIN data
set and the Baroni’s data set. We generate hypernyms from our vocabulary in word embeddings.

To compare our model with the existing projection matrix-based pipeline model of Fu et al. (2015),
we implemented their pipeline model, i.e., k-means clustering and projection matrix learning with the
least square objective as explained in Section 2, but we did not include indirect hypernymy and employed
Adam instead of stochastic gradient descent to optimize the model parameters (projection matrices). In
generating hypernyms for a word x, we assigned a cluster c to the pair (x,w) by k-means for each word
w in our vocabulary. We then selected words that had the lowest least square distances as the hypernyms
of x. Here, the least square distances are defined as follows:

distancec(x,w) = ‖Φcx−w‖2, (5)

where w denotes the word embedding of w. We call this model as a pipeline model, in contrast to our
joint model.

We use Mean Reciprocal Rank (MRR) for the evaluation of hypernymy generation.

MRR =
1
N

N∑
i=1

1
ranki

, (6)

where N is the amount of test data, ranki is the rank which correct hypernym is generated. MRR ranges
from 0 to 1, and higher MRR indicates better performance of the model.

We also used the Baroni’s data set to evaluate the performance of our joint model on a well-studied
hypernymy classification task. We compared our model with the state-of-the-art supervised distributional
model by Levy et al. (2015). Since our model is not classification-based, we performed the following
simple threshold-based classification in order to judge whether a given word pair is in hypernymy or not:

scoregen(x,w)

{
≥ 0.5 ⇒ positive
otherwise ⇒ negative.

(7)

5 Evaluation

We present the results of hypernym generation evaluation in section 5.1 and those of hypernymy classi-
fication evaluation in section 5.2.

5.1 Hypernym generation
We compared MRRs of our joint model with those of the pipeline model on Japanese and English test
data sets. The results, along with the numbers of clusters, are summarized in Table 3. These numbers
of clusters are tuned using the validation data sets. In both Japanese and English test data sets, our joint
model outperformed the pipeline model. Further, in our model, the number of clusters tends to be larger
than that of the pipeline model. This may be partly because our joint model can capture more differences
in hypernymy relations than the pipeline model, which used offsets, i.e., 〈y − x〉, in the clustering. Note
that the small numbers of clusters in English data were considered to stem from the size of the data set;
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Japanese (ALAGIN) English (Baroni)
pipeline (least squares) joint (inner products) pipeline (least squares) joint (inner products)

0.215 0.279 0.321 0.343

Table 4: MRR of our model with inner product-based similarity measure and the pipeline model with
least squares-based similarity measure without clustering on the validation parts of the Japanese ALA-
GIN data set and English Baroni’s data set.

λ 0 0.1 0.15 0.2
#clusters 1 5 19 44
MRR 0.279 0.327 0.368 0.353

Table 5: MRR and the number of clusters on the validation part of the Japanese ALAGIN data set.

Figure 2: Learning curve of our joint model on
the Japanese ALAGIN validation data set.

Figure 3: MRR on the validation set and the
number of clusters of our joint model in the
early learning stage on Japanese ALAGIN data
set.

the English data set was about 6.5% of the Japanese data set in the number of positive instances as in
Table 2.

We compare our model and the pipeline model without clustering on the Japanese validation data set
in Table 4. Our model uses the inner product-based similarity in Equation 2 and negative sampling in
Equation 3, while the pipeline model used the least square distance as in Equation 5. The results show
that our model produces better results than the least square-based model.

The threshold of the clustering is a crucial parameter to decide the number of the clusters in our model.
Table 5 shows the number of clusters and MRR on the Japanese validation data set when we varied the
clustering threshold λ.

Figure 2 shows the learning curve of our joint model with the best hyperparameter on Japanese val-
idation data set. This learning curve is stable except for the initial stage of learning (#epochs ≤ 9). To
understand the behavior of the learning in the initial stage, we show MRR and the number of clusters in
the first 15 epochs of learning our models in Figure 3. The number of clusters of our model increases
in the initial learning stage (#epochs ≤ 9), and it stops to increase after several iterations. Due to this
increase of clusters, MRR is unstable in the initial stage of learning. MRR starts to improve constancy
after the number of clusters is fixed.

Our joint model and the pipeline model are different from other existing hypernymy classification
models in that the former models can generate hypernyms from a given word. We present two examples
of estimated hypernyms for given words in Tables 6 and 7.

5.2 Hypernym classification
We evaluated our model on the hypernym classification task using the Baroni’s English data set. Our
model produces 0.766 in F1 score, while the model of Levy et al. (2015) compared several similarities
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joint pipeline
rank estimated hypernym scoregen estimated hypernym ‖Φx− y‖2
1 �m “firm” 0.974 �m “firm” 0.617
2 �> “company” 0.752 	�m “famous firm” 0.696
3 °ëü× “group” 0.748 ¢#�> “associated company” 0.726
4 Õº “corporation body” 0.358 êÕÊáü«ü “auto manufacturer” 0.736
5 áü«ü “manufacturer” 0.283 �> “company” 0.737

Table 6: Examples of estimated hypernyms for a wordÈè¿êÕÊ “Toyota Motor Co.”.

joint pipeline
rank estimated hypernym scoregen estimated hypernym ‖Φx− y‖2
1 f “study” 0.987 fO “science” 0.645
2 �Ö “theory” 0.730 ¹ÕÖ “methodology” 0.710
3 ·¹Æà “system” 0.692 (� “technical term” 0.737
4 KÕ “method” 0.678 KÕ “method” 0.743
5 �S “technique” 0.504 ¢ë´êºà “algorithm” 0.768

Table 7: Examples of estimated hypernyms for a word_°fÒ “machine learning”.

measures and reported the state-of-the-art F1 score of 0.802. In this comparison, we did not tune our
hypernym generation model for the classification task. Instead, we directly applied our best hypernymy
generation model in Table 3 to the task by using the hypernymy generation scores as classification scores
(see. Equation 7). According to the results, our joint model compares favorably to the state-of-the-art
model.

6 Conclusions

This paper proposed a novel word embedding-based hypernym generation model that clusters hyponym-
hypernym relations and learns the parameters for the projection from hyponyms to their hypernyms
in each cluster. Unlike many existing hypernym classification models, our proposed model can generate
hypernyms from a given word. This generation will help to directly apply our model to several NLP tasks.
Furthermore, the number of clusters is automatically determined according to the word embeddings and
the training pairs.

We employ the inner product-based similarity measures so that word similarity can be consistent in
training word embeddings and in our model. We also employ negative sampling so that the generated
hypernyms can not be close to wrong hypernyms. We evaluate our model over Japanese and English
data sets. Our proposed model significantly outperformed the other hypernym generation model on both
Japanese and English data sets. We also evaluated our model on the hypernymy classification in English,
and, without task-specific tuning, the result showed the F1 score comparable to the state-of-the-art model.

In future work, we aim to extend our model for indirect hypernyms or hyponymy generation. This
extension can improve the model performance and also widen the application areas of our model.
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