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Abstract

We introduce a distribution based model to learn bilingual word embeddings from monolingual
data. It is simple, effective and does not require any parallel data or any seed lexicon. We
take advantage of the fact that word embeddings are usually in form of dense real-valued low-
dimensional vector and therefore the distribution of them can be accurately estimated. A novel
cross-lingual learning objective is proposed which directly matches the distributions of word
embeddings in one language with that in the other language. During the joint learning process,
we dynamically estimate the distributions of word embeddings in two languages respectively
and minimize the dissimilarity between them through standard back propagation algorithm. Our
learned bilingual word embeddings allow to group each word and its translations together in
the shared vector space. We demonstrate the utility of the learned embeddings on the task of
finding word-to-word translations from monolingual corpora. Our model achieved encouraging
performance on data in both related languages and substantially different languages.

1 Introduction

Learning word vector representations based on neural network is now a ubiquitous technique in natural
language processing tasks and applications. Tremendous advances have been brought by distributed rep-
resentations to the state-of-the-art methods (Bengio et al., 2003; Collobert and Weston, 2008; Mikolov
et al., 2013a; Pennington et al., 2014). In these models, words are represented by dense real-valued
low-dimensional vectors referred to as word embeddings learned from raw text. Distributed representa-
tions have the property that similar words are represented by similar vectors and thus can achieve better
generalization. Such representations are usually learned from monolingual data and therefore might not
be generalized well across different languages.

In order to learn useful syntactic and semantic features that are invariant to languages, several models
for learning cross-lingual representations have been proposed and achieved impressive effects by incor-
porating cross-lingual distributional information (Klementiev et al., 2012; Zou et al., 2013; Chandar et
al., 2014; Faruqui and Dyer, 2014; Hermann and Blunsom, 2014; Gouws et al., 2015; Luong et al., 2015;
Shi et al., 2015; Vulić and Moens, 2015; Upadhyay et al., 2016). In the cross-lingual settings, similar
representations are desired for words denoting similar concepts in different languages (e.g., the embed-
dings of the English word computer and the French word ordinateur should be similar). Cross-lingual
representations are especially useful for many natural language processing tasks such as machine trans-
lation (Zou et al., 2013; Zhang et al., 2014), computing cross-lingual word similarity (Zhang et al., 2016)
and transferring knowledge from high-resource languages to low-resource languages (Guo et al., 2015),
etc.

However, all these cross-lingual models require some form of cross-lingual supervision such as seed
lexicon,word-level alignments, sentence-level alignments and document-level alignments. Reliance on
supervision might limit the development and application of cross-lingual representations. In this paper,
we proposed a distribution based model to learn bilingual word embeddings from monolingual data. The
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Figure 1: The CBOW architecture predicts the current word based on the context. It is a monolingual
representations learning model.

proposed approach is complementary to the existing methods that rely on supervision. Our contributions
are the following:

• We introduce a novel cross-lingual objective which is employed to match the distributions of mono-
lingual embeddings as they are being trained in an online setting. Our model only requires mono-
lingual data and therefore could be applied to any languages or domains that we are interested in.

• Our model can capture the common regularity shared by natural languages. The resulting bilingual
embeddings allow to group a word and its translations together in vector space. We demonstrate
the utility of our model on the task of finding word-to-word translations solely from monolingual
corpora. Our model achieved encouraging performance on both related languages and substantially
different languages.

2 Monolingual Word Embeddings Learning

Our framework is general enough to be built based on any monolingual embedding learning model. We
adopt the popular continuous bag-of-Words (CBOW) model (Mikolov et al., 2013a) to demonstrate our
approach. The CBOW model uses continuous distributed representation of the context where each word
is mapped to a learned vector. The architecture is shown in the Figure 1. The training data D is a set of
pairs in the form of (x, y), in which y is a word and x = (x1, x2, ..., xC) is a set containing C context
words in which y appears. We have y, xi ∈ (1, 2, ..., V ), where V is the vocabulary size. The training
criterion is to seeking parameters minimizing the loss function which is the negative log probability of y
given x:

Ŵ , M̂ = argmin
W,M

∑
(x,y)∈D

L(W,M, x, y) = argmin
W,M

∑
(x,y)∈D

−log(P (y|x,W,M)) (1)

We use the one-hot V -dimension column vector ~xi to refer the context word xi in which only the xth
i

unit is 1, and all other units are 0. W is a K×V matrix representing the weights between the input layer
and the K-dimensional hidden layer. Each column of W is the K-dimensional vector representation
of the associated word of the input layer. W transforms each context word xi into a K-dimension real
value vector. Each context word xi is mapped into a real valueK-dimensional vector byW . The CBOW
model takes the average of these vectors as the value of hidden layer.

~h =
1
C

C∑
i=1

W~xi (2)

where the matrix W is shared by all context words.
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Figure 2: Monolingual embeddings have been shown to have similar geometric shape (a & b). It is
desired to have more explicit similarity (a & c). (Mikolov et al., 2013b) achieved this by leaning a linear
projection with a bilingual dictionary.

From the hidden layer to the output layer, there is a V × K weight matrix M by which the hidden
vector is mapped into a V -dimensional output vector:

~O = M~h (3)

which will be normalized by the soft-max function as a distribution over V candidate words. Finally, the
probability of the word y given its context x is:

P (y|x,W,M) =
exp(Oy)∑V
i=1 exp(Oi)

(4)

where Oi is the ith unit of vector ~O.
The parameters of W and M are tuned by the standard stochastic gradient descent (SGD) algorithm.

There are very interesting properties in the learned word vectors. For example, similar words are nearby
vectors in a vector space. And more importantly, if vectors learned for languages are manually rotated,
Mikolov et al. (2013b) observed that languages share similar geometric arrangements in vector spaces
(shown in Figure 2). The reason is that all common languages share universal structure of human lexical
semantics(Youn et al., 2016). To capture the similarities, they use a bilingual dictionary to learn a linear
projection between vectors learned independently from each language.

Our work is also motivated by the observation in (Mikolov et al., 2013b). Rather than relying on
geometric transformation, we focus on word embeddings learning itself and explore an joint bilingual
learning framework.

3 Learning Bilingual Word Embeddings by Distribution Matching

In the cross-lingual setup, we desire word embeddings to be generalized well across different languages.
For example, given embedding of English context words {the, cats, on, the, mat}, cross-lingual models
should not only be able to predict that the current word can be sits in English, but also be able to predict
it can be assis in French. Similarly, given embeddings of French context words {le, chat, est, sur, ma},
cross-lingual models should be able to predict both sits and assis. Such desire bears a strong resemblance
to the problem of domain adaptation which is well-studied in the field of natural language processing
(Blitzer et al., 2006; Daume III, 2007). We apply the theory on domain adaptation which can learn
cross-domain features to the task of learning cross-lingual features(word embeddings). Before we detail
the proposed framework for unsupervised cross-lingual representation learning, we briefly introduce
methods in domain adaptation.
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Figure 3: Bi-lingual representation learning is achieved by matching the distribution of the source and
target languages. The dynamic statistic of hidden states of the source and target languages are calcu-
lated on line, and the dissimilarities between them are minimized through standard back propagation
algorithm.

3.1 Domain Adaptation

This work is inspired by theory on domain adaptation (Ben-David et al., 2006; Ben-David et al., 2010)
which suggest that, for effective domain transfer, predictions must be made based on data representations
that cannot discriminate the source and target domains. Based on this theory, very simple and efficient
domain adaptation approaches have been developed (Ajakan et al., 2014; Ganin and Lempitsky, 2015)
for representation learning in neural networks. The main idea is matching feature space distributions of
source and target domain. To this end, Ganin and Lempitsky (2015) added a domain classifier connected
to the feature extractor. Feature distributions over the two domains are made similar (as indistinguishable
as possible for the domain classifier), thus resulting in the domain-invariant features.

A straightforward way to learn cross-lingual representations is extending the ideas of Ganin and Lem-
pitsky (2015) by replaceing their domain classifer with a language classifier. Alternatively, in this paper
we explore a much more direct approach.

3.2 Model Architecture

We observed that, unlike features in image processing which are high-dimensional, language represen-
tations are usually in form of dense real-valued low-dimensional vector and therefore the distribution
of them can be accurately estimated, given the freely available large scale raw text data. Based on this
observation, we propose a novel learning objective which directly matches the distributions of word em-
beddings in one language with that in the other language. An overview of the architecture of bilingual
word embeddings learning is given in Figure 3.

Same to that in the CBOW model, W and M are still K × V and V ×K matrixes. But, now we have
V = Vs + Vt where Vs and Vt is the vocabulary size of source and target data respectively. All what we
add to the CBOW model are the statistics of hidden states. We assume that the distribution of hidden
states of each language is subject to a multi-dimensional normal distribution. So we have two statistics
for each language, namely the mean ~ms and the variance ~vs on the source side, the mean ~mt and the
variance ~vt on the target side. Like the hidden states, each statistic is also a K-dimensional vector. We
use Ds and Dt to denote the nonparallel monolingual training data set from source language and target
language respectively. Mathematically, on the source data, the mean is defined as:
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~ms =
1
|Ds|

∑
(x,y)∈Ds

~h(x) (5)

where the hidden state h is defined in equation 2. And the variance is:

~vs =
1
|Ds|

∑
(x,y)∈Ds

(~h(x)− ~ms)2 (6)

where the square operation is performed on each element of the K-dimensional vector respectively. On
the target data, ~mt and ~vt are defined in the same way.

In order to encourage the source and the target data to have similar distributions in the shared space,
one can directly minimize the dissimilarity between statistics of the source and the target data. More
formally, the bilingual training criterion is to seeking parameters minimizing the standard monolingual
objective of all data and the distribution dissimilarity:

Ŵ , M̂ = argmin
W,M

(
∑

(x,y)∈Ds∪Dt

L(W,M, x, y) + λmLm(~ms, ~mt) + λvLv(~vs, ~vt)) (7)

where L is defined in equation 1. Lm and Lv are cross-lingual objectives which are defined as the
dissimilarities between statistics:

Lm(~ms, ~mt) =
1
2

K∑
i=1

((~ms)i − (~mt)i)2 (8)

Lv(~vs, ~vt) =
1
2

K∑
i=1

((~vs)i − (~vt)i)2 (9)

where i is index of each element in the vectors.

3.3 Dynamic Estimation

However, it is nontrivial to optimize the monolingual and cross-lingual objectives simultaneously in
equation 7. The statistics defined in equation 5 and 6 can only be calculated when all word embeddings
are given and fixed, while word embeddings have to be learned online by stochastic gradient descent
algorithm. So it is impractical to use these statistics to guide the online learning of word embeddings. To
deal with this chicken-egg problem, we propose to dynamically estimate the statistics. Initially, we have:

~ms = 0 (10)

~vs = 0 (11)

which will be iteratively updated by each incoming training instance (xi,yi):

~ms =
1

scount+ 1
(~ms ∗ scount+ ~h(xi)) (12)

~vs ≈ 1
scount+ 1

(~vs ∗ scount+ (~h(xi)− ~ms)2) (13)

where scount is the number of source training instances that have been used by the learning algorithm
so far. The value of scount is increased by one when a new training instance comes. To capture the latest
trends and decay the effect the outdate data during training, we do not increase scount anymore when it
reaches 100 thousands.

On the target data, ~mt and ~vt are approximated in the same way.
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3.4 Online Bilingual Training
Now we are ready to introduce the joint training procedure. In practice, we use multiple threads to train
our model with source data and target data in parallel. On the source data, when a training instance
(xi, yi) is accessed by the learning algorithm, we dynamically update the ~ms and ~vs with equation 12
and 13 as the output of the network. Then the golden references are the real time values of ~mt and ~vt

which are being estimated in parallel on the target data. Based on loss function defined in equation 8 and
9, the gradient of distribution dissimilarities with respect to the hidden state is:

∂(Lm + Lv)

∂~h(xi)
=

λm

scount+ 1
(~mt − ~ms) +

λv

scount+ 1
(~vt − ~vs) (14)

which will be added to the standard gradient of monolingual objective of the CBOW model:

∂(Lm + Lv)

∂~h(xi)
+
∂L(W,M, x, y)

∂~h(xi)
(15)

This gradient sum is utilized by the standard back propagation algorithm to make source data distribution
similar to that of target data on one hand, and optimize the monolingual objective on the other hand.

In parallel, on the target data, the similar training procedure is being performed. Thus, the jointly
learned source language word embeddings and target word embeddings will share similar distributions.

3.5 Bilingual Negative Sampling
The exact computation for probability shown in equation 4 for all words for every training instance is
very expensive. Following the CBOW model, we adopted the negative sampling algorithm for high
computational efficiency. As usual, for each source word ys and its context xs, we randomly sample a
few words other than ys from the source vocabulary. For example, given source word sits and its context
{the, cats, on, the, mat}, we will sample a few words other than sits. Each selected word yn

s is treated as
a negative sample and the probability of predicting yn

s given xs is minimized.
Different from the CBOW model, we also randomly sample a few words from the target vocabulary

and minimize the probability of predicting each selected target word yn
t given xs. Such bilingual negative

sampling(BNS) procedure may introduce noises if the sampled target word yn
t just happens to be the

translation of the source word ys. But, statistically such chance is quite small given the big vocabulary
size of large scale text.

To further reduce such chance, we apply word frequency based diagonal beam (Nuhn et al., 2012)
to constrain the BNS. Intuitively, the translation of a high frequency word should also be a frequent
word, and vice-versa. Nuhn et al. (2012) use diagonal beam to select translation candidates, in this paper
we apply it to filter out possible translations. We sort both source and target words by their frequency.
Let r(ys) and r(yt) be the frequency rank of a source/target word. To avoid selecting yn

t which is the
translation of ys, we require that the frequency rank of the sampled target word yn

t should satisfy:∣∣∣∣r(yn
t )− r(ys)

Vt

Vs

∣∣∣∣ > BS (16)

where BS is the beam size.
Similarly, we also apply the above BNS procedure when learning word embeddings for the target data

in parallel.

4 Experiments

In this section we present experiments which evaluate the utility of the induced bilingual word embed-
dings. We implemented our model in C by building on the word2vec. The implementation launches a
monolingual CBOW model by separate threads for each language. All threads access the shared em-
bedding parameters and distribution means/variances. We evaluated the induced bilingual embeddings
on the task of finding word-to-word translations from nonparallel corpora. This task is referred as de-
cipherment which has drawn significant amounts of interest in the past few years (Nuhn et al., 2012;
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French English
Training 29,608,749 27,355,418

Evaluation 60,474,279 54,478,614

Table 1: Size of data in tokens used in French to English decipherment experiment.

5k 10k
MonoGiza without word embeedings 13.74 7.8

MonoGiza with word embeedings 17.98 10.56
Optimizing L 7.62 4.74

Optimizing L and Lm 22.24 17.05
Optimizing L, Lm and Lv 23.54 17.82

Table 2: French to English decipherment top-5 accuracy (%) of 5k and 10k most frequent word types.

Ravi, 2013; Dou et al., 2015). Decipherment views a foreign language as a cipher for English and finds a
translation table that converts foreign texts into sensible English. It is a very challenging task since there
is not any supervision.

4.1 Settings

We use MonoGiza1 which implemented the state-of-the-art decipherment algorithms described in Dou
and Knight (2012) and Dou et al. (2015) as baseline. In the preprocessing step, MonoGiza converts all
words in data into integers and does not make any use of morphology similarity. For a fair comparison
and to be general, we neither utilize that at all. All experiments are performed on plain raw text, we leave
the use of syntactic relations for future work. The word embeddings used by MonoGiza are trained with
word2vec. For all word embeddings in both word2vec and our model, the dimensionality is 50.

4.2 French to English Decipherment

Data The datasets in our English to French experiments are publicly-available Europarl data2. From
the English-French Europarl parallel data, we select the first half of English sentences and the second
half French sentences respectively as non-parallel corpora for decipherment experiments. To evaluate
the decipherment, we use Giza++ (Och and Ney, 2003) to align the Europarl parallel data to build a
dictionary. All texts are tokenized by scripts from www.statmt.org. Table 1 lists the sizes of monolingual
and parallel data used in this experiment.
Decipherment In order to make all results comparable, results for all methods reported here were ob-
tained using the same nonparallel corpora. λm and λv were set to 0.2 and 0.1 respectively. The number
of negative samples from both source and target side for each word are 5. The beam size of BNS was
set to 1000. We use default values for all other hyper parameters in word2vec and MonoGiza. Table 2
shows the experimental results. Bilingual word embeddings are induced by optimizing the objectives
in equation 7. For each French word, we select its top-5 nearest neighbor words in English as transla-
tions based on the cosine similarity defined in the shared 50-dimensional space. We use the evaluation
script included in the package of MonoGiza. Though the absolute accuracy is not very high, we believe
it is encouraging given that there is not any supervised information. Only optimizing the monolingual
training objective L can capture some similarities between languages, but the accuracy is pretty low.
Simultaneously minimizing L and distribution mean dissimilarity Lm is effective. We achieved the best
performance when three objectives L, Lm and Lv are optimized together. In such case, the distributions
of source and target data share more similarities.

Table 3 shows a number of example translations from French to English. Though they are far from
perfect, some translations are meaningful and are semantically related to the correct translation.

1http://www.isi.edu/natural-language/software/monogiza release v1.0.tar.gz
2http://www.statmt.org/europarl/
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french word English Translations cosine similarity Dictionary Entry

Du

the
is
in

that
which

-0.128120
-0.131779
-0.136466
-0.137784
-0.139639

the

sincYrement

Liberalisation
Essentially
Throughout

vodka
Frankly

-0.007873
-0.009341
-0.016099
-0.023932
-0.031336

Frankly

principaux

important
good
able

much
come

-0.018043
-0.018260
-0.018508
-0.018643
-0.018987

important

Table 3: Examples of translations of words from French to English. The five most likely translations are
shown.

Chinese English
Training 315,800,768 403,215,310

Evaluation 41,888,921 49,822,055

Table 4: Size of data in tokens used in Chinese to English decipherment experiment.

4.3 Chinese to English Decipherment
We have demonstrated the effect of our model with experiments on French and English which are related
languages. To further evaluate the ability our model, we experiment on data in Chinese and English
which are substantially different.
Data We use large scale Chinese and English data released by LDC. The monolingual Chinese data is
the Xinhua part of Chinese Gigaword. The monolingual English data is the LDC English Gigaword.
Bilingual word embeddings are induced based the above non-parallel data. A golden dictionary is built
by Giza++ based on parallel corpus LDC2002E18, LDC2003E07, LDC2003E14, Hansards portion of
LDC2004T07, LDC2004T08 and LDC2005T06. All Chinese sentences are segmented by the Stanford
Word Segmenter3. Table 4 lists the sizes of monolingual and parallel data used in this experiment. The
settings are the same as the French-English case.
Decipherment For the calculation of accuracy, we discarded Chinese words if they are not covered
by the gold dictionary. Table 5 shows the experimental results of Chinese to English decipherment.
Though the two languages are substantially different, the results indicate that our model is still able
to learn translation equivalences from the monolingual data by using only the learned bilingual word
embeddings.

5k 10k
MonoGiza without word embeedings 15.56 9.04

MonoGiza with word embeedings 17.5 10.57
Optimizing L, Lm and Lv 24.76 18.45

Table 5: Chinese to English decipherment top-5 accuracy (%) of 5k and 10k most frequent word types.

5 Conclusions and Future Work

We have proposed a novel model to learn bilingual word embeddings directly from monolingual raw text,
without requiring any parallel data or dictionaries. A novel cross-lingual learning objective is proposed
which directly matches the distributions of word embeddings in one language with that in the other
language. We have demonstrated the utility of the learned word embeddings in the task of decipherment.
Our model achieved encouraging performance on data from both related languages and substantially

3http://nlp.stanford.edu/software/segmenter.shtml
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different languages. In the future, we would apply our method to more real applications such as cross-
lingual dependency parsing, cross-lingual document classification and machine translation. Our model is
complementary to the existing methods that rely on supervision, so we are also interested in combining
it with supervised models to achieve much better cross-lingual word representations.
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