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Abstract

In modern text annotation projects, crowdsourced annotations are often aggregated using item
response models or by majority vote. Recently, item response models enhanced with genera-
tive data models have been shown to yield substantial benefits over those with conditional or
no data models. However, suitable generative data models do not exist for many tasks, such as
semantic labeling tasks. When no generative data model exists, we demonstrate that similar ben-
efits may be derived by conditionally modeling documents that have been previously embedded
in a semantic space using recent work in vector space models. We use this approach to show
state-of-the-art results on a variety of semantic annotation aggregation tasks.

1 Introduction

Text annotation is a crucial part of natural language processing (NLP), enabling content analysis (Krip-
pendorff, 2012) and providing training data for supervised and semi-supervised machine learning algo-
rithms in NLP. Modern text annotation is often crowdsourced, meaning that the work is divided up and
assigned to internet workers on micro-task marketplaces such as Amazon’s Mechanical Turk1 or Crowd-
Flower.2 Although crowdsourced annotations tend to be error-prone, high quality labels may be obtained
by aggregating multiple redundant low-quality annotations (Surowiecki, 2005). For many tasks, aggre-
gated crowdsourced judgments have been shown to be more reliable than expert judgments (Snow et al.,
2008; Cao et al., 2010; Jurgens, 2013).

Traditionally annotations were aggregated via majority vote. More sophisticated approaches jointly
model annotator reliability and document labels. These models can down-weight the annotations of
workers who often disagree with others and up-weight the annotations of workers who often agree with
others. However, when annotation error is high or few annotations are available it can be difficult for
these models to know which annotators to trust. Jin and Ghahramani (2002), Raykar et al. (2010), Liu
et al. (2012), and Yan et al. (2014) show that crowdsourcing annotation models can be enhanced by
conditioning the model on the document data (e.g., word content), improving the model by identifying
annotators whose judgments tend to agree with word patterns found in the documents being annotated.

Recent work has shown that generative data models allow crowdsourcing models to converge to useful
estimates even when few annotations are available, whereas by the time a conditional model has enough
information (in the form of annotations) to be useful, the problem is often largely solved by majority
vote (Felt et al., 2015b). However, although generative data modeling has been shown to be effective in
categorizing text according to its topic, realistic generative data models are not always available. In this
paper, we use advances in text representation to demonstrate that data-conditional annotation models can
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(b) LOGRESP as a plate diagram.
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Figure 1: Round nodes are variables with distributions. Rectangular nodes are values without distribu-
tions. Shaded nodes are observed. D,J,C, and T are the number of documents, annotators, classes, and
topics, respectively. Nd is the number of words in document d.

achieve gains similar to those of data-generative annotation models, including for tasks where generative
data models are currently unavailable, such as paired text similarity and compatibility.

In Section 2 we briefly review annotation models with generative and conditional data components and
also discuss representing words and documents via embeddings in a semantic vector space. In Section 3
we show that data-conditional annotation models succeed on a variety of text datasets and classification
tasks. In Section 4 we conduct error analysis on an anomalous dataset, and in Sections 5 and 6 we list
additional related work and summarize our conclusions.

2 Background

Most crowdsourcing models extend the item-response model of Dawid and Skene (1979). The Bayesian
version of this model, referred to here as ITEMRESP, is illustrated by Figure 1a and defines the joint dis-
tribution p(y, a, θ, γ), where a is the annotation and y is an unobserved document label. In the generative
story for this model, a confusion matrix γj is drawn for each human annotator j. Each row γjc of the
confusion matrix γj is drawn from Dir(b(γ)jc ), and encodes a probability distribution over label classes
that annotator j is apt to choose when presented with a document whose true label is c. A general prior
over label classes θ is drawn from Dirichlet(b(θ)), then for each document d an unobserved document
label yd is drawn from categorical distribution Cat(θ). Finally, annotations are generated as annotator j
corrupts the true label yd according to the multinomial distribution Mult(γjyd

).

2.1 Data-aware annotation models
Notice that the ITEMRESP model entirely ignores document data x (e.g., words). ITEMRESP extensions
model the data x and related feature parameters φ either conditionally p(y, a, γ, φ|x) or else generatively
p(y, a, x, θ, γ, φ).
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Conditional crowdsourcing models make few assumptions about the data and can use the same general
log-linear structure as maximum entropy classifiers, which have enjoyed success in a large number of
classification problems. Figure 1b shows a Bayesian formulation of a conditional crowdsourcing model
p(y, a, γ, φ|x). For each class k, φk is drawn from a multivariate Gaussian distribution Gauss(0,Σ).
Then for each document, yd is drawn from a log-linear distribution p(yd|φ, x) ∝ eφ

T
yd
x. For this reason

we refer to this model as LOGRESP. LOGRESP is representative of a popular class of conditional crowd-
sourcing models (Jin and Ghahramani, 2002; Raykar et al., 2010; Liu et al., 2012; Yan et al., 2014). In
previous work we found that LOGRESP often provides only incremental gains over majority vote (Felt
et al., 2015b). This partly because its φ estimates, like other conditional models, tend to converge rela-
tively slowly with O(N) labeled examples (Ng and Jordan, 2001). By the time LOGRESP’s φ estimates
become useful, there are often enough annotations available that majority vote is sufficient.

Generative data-aware crowdsourcing models have complementary strengths. Although they make
strong assumptions about the data that they model, their parameters can converge quickly with only
O(logn) labeled examples (Ng and Jordan, 2001). This means that when data does not violate a gen-
erative model’s assumptions too badly, the generative model can offer dramatic improvements over ma-
jority vote, especially when few annotations are available. Figures 1c and 1d depict two such generative
models. In Figure 1c, each document d draws its data xd from a class-conditional multinomial word
distribution Mult(φyd

). We call this model MOMRESP because it models data as a mixture of multino-
mials. MOMRESP represents a common class of generative crowdsourcing models (Bragg et al., 2013;
Lam and Stork, 2005; Simpson and Roberts, 2015). Figure 1d shows CSLDA, a more sophisticated
generative crowdsourcing model based on supervised topic modeling (Felt et al., 2015a).

For inference in the ITEMRESP, LOGRESP and MOMRESP crowdsourcing models, we use existing
variational inference (Felt et al., 2015b). Note that variational inference for ITEMRESP is easily derived
as a special case of MOMRESP inference where terms involving the data are dropped. Inference for
CSLDA is stochastic expectation maximization.

2.2 Word and Document Representations

Documents have historically been represented in NLP algorithms by large, sparse word count vectors
xd =

∑|xd|
n=1 1(xdn) where 1(xdn) is a one-hot vector having length equal to the size of the vocabulary.

However, word-count document representations have a number of drawbacks. They define a space that
is often so high-dimensional and sparse that inter-document distances and other vector computations
have little meaning. In word-count representations, features that strongly relate to one another (e.g., the
words “horse” and “equine”) are represented as entirely orthogonal dimensions, exploding the number
of parameters needed by downstream learning algorithms.

Recently, methods have been developed to represent words as locations in low-dimensional vector
spaces where distance and direction encode semantic and syntactic meaning (Mikolov et al., 2013a; Pen-
nington et al., 2014). These embedding vectors have been shown to improve a variety of language tasks
including named entity recognition, phrase chunking (Turian et al., 2010), relation extraction (Nguyen
and Grishman, 2014), and part of speech induction (Lin et al., 2015). The hypothesis investigated by the
current work is that semantic, vector-based text representations can help conditional annotation aggrega-
tion models achieve some of the same early performance advantage seen in their generative counterparts,
as well as help them operate on datasets that make semantic distinctions. This hypothesis is plausible a
priori because using data embeddings is akin to using semi-supervision to enable faster learning. The
reason for this is that data embeddings are traditionally induced in an unsupervised manner on extremely
large corpora before being applied to a downstream supervised task. In addition, operating on dense,
low-dimensional vector data reduces the number of model parameters which can also reduce the number
of instances required to learn effectively.

Although it might be possible to extend the CSLDA model to generatively model the embedding as
described by Das et al. (2015), but it is unclear how the inference approach used there (Gibbs sampling
based on Cholesky decompositions) would be efficiently applied in the context of the CSLDA model,
thus we leave this possibility to future work and focus on using embeddings discriminatively. We use the
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Dataset Size Unique
Annotators

Annotations
per Instance

Classes Average
Doc size

Gold Labels Timestamps

Sentiment 1,000 83 5 2 12.8 1,000 No
Weather 1,000 102 20 5 13.6 724 Yes
Compatibility 17,977 411 10 2 2 × 1 15,157 No
Paraphrase 4,000 119 5 2 2 × 11.2 838 Yes

Table 1: Dataset statistics. Evaluation metrics are calculated only over the subset of each dataset for
which gold labels are available. The timestamps column indicates whether or not it is known exactly
when each annotation was generated. When available, timestamps determine the order of annotation in
reported learning curves.

word2vec algorithm introduced by Mikolov et al. (2013a) to convert words to vectors for the purposes of
this paper, understanding that other text embedding methods may be swapped in for additional improve-
ments as they are developed. Word2vec operates on individual words. When sentences or documents
must be vectorized, we do so by averaging the vectors of each word in the sentence or document without
any word filtering or selection. While we briefly experimented with gensim’s doc2vec implementation
of Le and Mikolov (2014), we noticed little benefit for the twitter data explored in this paper, possibly
because of the short, focused nature of tweets.

3 Experiments

In order to test the hypothesis that vector space document representations can improve conditional crowd-
sourcing model performance on semantic classification tasks, we plot and visually compare learning
curves charting the accuracy of the labels inferred by various crowdsourcing models. All of the algo-
rithms from Section 2 are trained on sparse one-hot vector representations of text; and an additional
variant of LOGRESP is reported which is trained on low dimensional semantic vector representations
(LOGRESP+w2v). Learning curves advance as annotations from multiple annotators are incrementally
added to the set of annotations available to each model. When annotation timestamps are available, an-
notations are added in the empirical order in which they were created. When unavailable, annotations are
added in randomized breadth-first order so that each document gets one annotation before any document
receives a second. Accuracy is computed over the subset of gold labels having at least one annota-
tion. This process illustrates model behavior both when few annotations per document are available (in
the early stages of learning curves) and when many annotations per document are available (in the late
stages of the learning curves).

For our word embedding model, we use the word2vec algorithm, implemented by the gensim docu-
ment processing library (Řehůřek and Sojka, 2010) to train word embeddings on a June 2015 snapshot
of the English Wikipedia pages and articles dump (approximately 2.1 billion words). The word2vec
algorithm requires a number of parameters, which we report here for replicability. We train embeddings
using a context window of 10 words, discarding words that occur fewer than 5 times. For training, we
use hierarchical sampling with a skip-gram model and no negative sampling. Embeddings of size 300
are learned. All of these settings are rather standard for a large corpus like Wikipedia.

3.1 Datasets

In order to calculate the accuracy of inferred labels, we require datasets that have both crowdsourced
annotations as well as gold standard labels for evaluation. We identify four suitable datasets, briefly
describing both their annotation task as well as the way their gold standard labels are constructed. For
all Twitter data, we use the Twitter text normalization dictionary of Han et al. (2012) to normalize tweets
before embedding them. Note that for two of the datasets described below, Compatibility and Weather,
the gold standard does not consist of the hand labels of an expert, but rather is constructed from the
consensus vote of a reasonable number of crowd workers. A fundamental tenet of crowdsourcing is that
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Figure 2: Inferred label accuracy (y axis) learning curves of various crowdsourcing models. The x axis
is the number of annotations × 1,000.

inexpert workers are, in aggregate, trustworthy. The purpose of automatic aggregation models such as
those decribed in Section 2 is to arrive at the same judgment with a few annotations that a simpler scheme
like majority vote would have arrived at given many annotations. Therefore, a crowd-constructed gold
standard is appropriate for evaluation of such models.
Paraphrase. During an exploratory annotation phase, Xu et al. (2014) paid Amazon Mechanical Turk
workers to annotate 4,000 tweet pairs with binary judgments indicating whether or not the tweet pair
communicates the same information.3 For example, the tweets “Star Wars Return of the Jedi is on”
and “My favorite Star Wars movie is on” communicate mostly the same information and are labeled as
paraphrases of one another, while the tweet “and of course because I drink and like Star Wars I know
nothing about football” communicates different information, and is labeled as not a paraphrase of the
other two tweets. Each tweet pair received 5 binary annotations. Gold standard labels were constructed
for a subset of 838 tweet pairs by experts who rated each pair on a scale from 0-5. Following the original
authors, expert ratings of 0-2 are labeled no paraphrase, and 4-5 are labeled paraphrase. Ratings of 3
are ignored for evaluation purposes.
Compatibility. Kruszewski and Baroni (2015) paid CrowdFlower workers to rate word pairs according
to their semantic compatibility, meaning that the two words can be used to refer to the same real-world
entity.3 For example, the words “artist” and “teacher” are compatible with one another, whereas “bread”
and “rattlesnake” are not. Each word pair was rated by 10 different annotators on a 7-point scale. Fol-
lowing the original authors, the gold standard is constructed by labeling items with a mean rating less
than 1.6 as incompatible, and those with a mean rating greater than 3.7 as compatible. Ratings between
1.7 and 3.7 are ignored for evaluation purposes.
Sentiment. Mozafari et al. (2014) paid Mechanical Turk workers to annotate tweets with binary sen-
timent labels: Positive and Negative, and manually created gold standard labels using trusted (non-
crowdsourced) labelers.4

Weather. CrowdFlower has made a number of annotated datasets freely available.5 In their “Weather
sentiment” dataset, 20 annotators were paid to annotate weather-related tweets with sentiment labels:
Negative, Neutral, Positive, Unrelated to weather, and I can’t tell. A gold standard was constructed by
running a separate evaluation task called “Weather sentiment evaluated” in which 10 additional annota-
tors were paid to annotate the majority vote label from the previous task as correct or incorrect. We form
a gold standard from those labels that are judged to be correct by at least 9/10 annotators.

Our focus in this paper is on challenging sentiment classification tasks which tend to have few classes.
In preliminary experiments we observed that even on topical classification datasets such as 20 News-
groups or the LDC-labeled Enron emails, LOGRESP is perceptibly improved by running on vector
space features, although CSLDA remains dominant. Note that in the experiments described below, the
Weather and Paraphrase annotations are applied in the order indicated in the dataset, however, the ac-

3 Not publicly available at the time of writing.
4http://web.eecs.umich.edu/˜mozafari/datasets/crowdsourcing/index.html
5http://www.crowdflower.com/data-for-everyone
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Figure 3: Inferred label accuracy (y axis) learning curves of vector space crowdsourcing models on tasks
with paired-comparison data for which generative crowsdsourcing models are unsuitable. The x axis is
the number of annotations × 1,000.

tual order of Sentiment and Compatibility annotations is not provided in the data set so they are applied
in random order.

3.2 Comparison with generative methods
Two datasets, Weather and Sentiment, are traditional text classification tasks with instances consist-
ing of one label per text document. We use these datasets to compare the performance of LOGRESP

trained on vector space text features (LOGRESP+w2v) to the performance of alternatives using sparse
word-count features, including LOGRESP as well as the generative models MOMRESP and CSLDA. The
majority vote and ITEMRESP algorithms serve as baselines. In Figure 2a we see that on the Weather
dataset, LOGRESP with embeddings (LOGRESP+w2v) performs far better than traditional LOGRESP,
and even outperforms the previous state-of-the-art for this dataset, CSLDA. Although all algorithms
eventually reach a high level of performance on the Weather dataset, we prefer algorithms like LOG-
RESP+w2v that reach high levels of accuracy using as few annotations as possible, potentially reducing
annotation cost. The accuracy of all of the models is unstable until a reasonable number of annotations is
obtained, 5,000 to 10,000 in this case. Models which make little or no use of the words themselves (espe-
cially Majority vote and ITEMRESP) are particularly susceptible to variability in the initial annotations.
Data-sensitive models like CSLDA and LOGRESP+w2v are far less susceptible to these swings.

In Figure 2b we see that no algorithm improves much over majority vote on the Sentiment dataset.
Also, the baseline accuracy levels at the end of the curves are extremely low for a binary classification
task with 5 annotations per instance, meaning that annotator accuracy is unusually low. We include this
dataset as a reminder that the “no free lunch” theorem applies to crowdsourcing models the same as to
any other class of models. In Section 4 we explore in more detail what makes the Sentiment dataset
particularly difficult for crowdsourcing models.

3.3 When generative methods are unavailable
The datasets Compatibility and Paraphrase both involve data pairs being compared for semantic con-
tent (see Section 3.1 for examples of these tasks). Compatibility compares the semantic compatibility of
word pairs while Paraphrase compares the semantic similarity of tweets pairs. Generative crowdsourc-
ing models such as MOMRESP and CSLDA do not natively accommodate such paired data since the data
does not comport with these models’ generative stories. To make them do so would require restructur-
ing the models and their inference procedures. On the other hand, it is straightforward to combine the
semantic vector representations of two documents v1 and v2. We do so by forming a new feature vector

vnew =〈cos(v1, v2),
L1(v1 − v2), L2(v1 − v2),
PC50(v1), PC50(v2),
PC50(v1)− PC50(v2)〉
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Alternative Gold Standard

Neg Pos None Hard
Gold
Standard

Neg 35 6 5 1
Pos 9 29 11 3

Table 2: Disagreement between the original gold standard (rows) and an alternative gold standard
(columns) on 100 arbitrarily selected tweets. The alternative gold standard employs a more flexible
label set. Neg=Negative, Pos=Positive, None=No sentiment, Hard=Can’t decide. Bold values reflect
various kinds of disagreement between the labelings.

where cos(·) is cosine distance, L1(·) and L2(·) are the first two p-norms, and PCn(v) is a vector
consisting of the top-n components of v, found via PCA on the set of embedded documents.

Figure 3a shows that LOGRESP with semantic embeddings outperforms majority vote and ITEM-
RESP baselines on the word Compatibility dataset when there are fewer than 3 annotations per instance.
Later in the learning curve, when annotations become sufficiently abundant (up to 20 per instance), the
data appears to no longer be helpful. Fortunately, incorporating data information using LOGRESP with
semantic embeddings appears to never actually hurt compared with using just ITEMRESP.

On the other hand, Figure 3b shows that on the Paraphrase dataset, LOGRESP with semantic em-
beddings dramatically outperforms the baselines along the entire learning curve. This is partly because,
unlike the Compatibility task, Paraphrase accuracy is low enough to permit the improved vector data
representation to benefit LOGRESP.

3.4 Summary of experiments

Overall, with the exception of the somewhat anomalous Sentiment dataset, which we examine in more
detail in Section 4, running LOGRESP on semantically embedded data is always an improvement over
LOGRESP running on traditional document representations. The gains in Figures 3a and 3b strongly con-
firm the hypothesis that semantic embeddings can allow crowdsourcing models to see some of the same
efficiency gains for challenging semantic labeling tasks as previously observed using generative data-
aware crowdsourcing models on more straight-forward topical labeling tasks. Not only that, but the fact
that semantic embeddings lend themselves to sensible vector-space operations allows data-aware crowd-
sourcing models to be applied to complex tasks like labeling paired text similarity and compatibility,
which was not previously possible.

4 Sentiment dataset error analysis

An analysis of the Sentiment dataset (results in Figure 2b) helps explain why algorithms behave so
differently on it than on the other datasets. Kilgarriff (1998) identifies three sources of annotation noise:
inherent data ambiguity, poor task definition, and annotator error. The crowdsourcing models used here
account only for annotator error. However, the Sentiment dataset task definition dictates that each tweet
be labeled with a binary sentiment label, forcing annotators to make arbitrary decisions when tweets
encode little or ambiguous sentiment. For example, the tweet “EBTM.com is BACK?!” is genuinely
ambiguous, and the tweet “@comeagainjen if you dont, neither do i” contains little explicit sentiment.
Kilgarriff (1998) suggests that an important step towards addressing data ambiguity is ensuring that tasks
are defined so that annotators have the ability to explicitly identify ambiguous instances.

To assess the impact of inherent data ambiguity and task definition on the Sentiment dataset, we
arbitrarily chose 100 instances with gold labels and compared them with an alternative gold standard
labeled according to a more flexible annotation scheme. The latter labels were generated by a pair of
graduate students working in tandem. We added a No sentiment label to address problems with task
definition and a Can’t decide label to capture inherent data ambiguity. Table 2 shows the confusion
matrix between the two gold standard sets. A large percentage (16%) of tweets were assigned to No
sentiment in the alternative gold standard. This indicates that task definition affects this dataset strongly.
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Although this analysis does not make this dataset any less interesting (indeed, the problems associated
with modeling and correcting the effects of task misspecification are highly interesting), it does warn
us that it is less representative than the others of annotation projects where effort is made up-front to
iteratively refine an annotation specification before paying for large number of annotations.

5 Additional Related Work

A sizable body of research is currently underway to improve vector word representations. Although
most commonly word embeddings are trained in an unsupervised manner, they may be tuned to maximize
performance on a particular target task (Le and Mikolov, 2014). They may also be supervised by multiple
tasks simultaneously (Collobert et al., 2011). Others fit one embedding per word sense rather than per
lexical type, improving model fit (Neelakantan et al., 2014). Srikumar and Manning (2014) embed not
only word types, but also label types, modeling the fact that some labels are more similar than others.

Another line of work explores ways of embedding larger spans of text. Although words tend to com-
pose surprisingly well simply via linear combination, many phrases are more than the sum of their parts
(e.g., collocations like “White House”). These can be dealt with by using heuristics to identify and
combine token phrases (Mikolov et al., 2013b). Other approaches incorporate composition functions as
first-class constituents of the objective function itself. Mitchell and Lapata (2010) motivate a general
composition framework and compare a number of simple instantiations, including additive, multiplica-
tive, and tensor product combination. Socher et al. (2012) assign vectors representing semantic content
and matrices representing semantic transformations to every node in a parse tree. Fyshe et al. (2015)
focus on learning phrasal representations whose dimensions are easily interpretable by humans, similar
to successful models whose topics are easy for humans to recognize and name because they align with a
topic distinction known a priori to the human.

In this work we focus on using instance data to improve probabilistic crowdsourcing models. Passon-
neau and Carpenter (2014) argue that probabilistic crowdsourcing models are generally more effective
and reliable than traditional chance-adjusted agreement heuristics such as Krippendorff’s alpha for as-
sessing corpus quality (Krippendorff, 2012). Other previous work in crowdsourcing ignores the data
being annotated, focusing instead on modeling other aspects of the annotation process, such as item
difficulty and noise (Whitehill et al., 2009; Welinder et al., 2010). Hovy et al. (2013) model the non-
linear nature of human reliability by adding binary variables to each annotator indicating whether they
are a spammer or not. These extensions are orthogonal to the issue explored by this paper and could be
incorporated into any of the models used here.

6 Conclusions and Future Work

Previous work indicates that generative crowdsourcing models enjoy significant learning advantages
when aggregating topic-based document labels. Unfortunately, some text classification tasks make dis-
tinctions for which no good generative text models currently exist, such as labeling the similarity or
compatibility of paired words and sentences. We have demonstrated that vector space text embeddings
can be used to gain similar advantages using conditional models and for an even broader class of data.
Using this approach, we have shown state-of-the-art annotation aggregation for several semantic anno-
tation aggregation tasks. Future work includes experimenting with deep learning methods of jointly
learning embeddings and hidden labels, rather than pipelining the two tasks.
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