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Abstract

Knowledge graph (KG) completion adds new facts to a KG by making inferences from existing
facts. Most existing methods ignore the time information and only learn from time-unknown
fact triples. In dynamic environments that evolve over time, it is important and challenging
for knowledge graph completion models to take into account the temporal aspects of facts. In
this paper, we present a novel time-aware knowledge graph completion model that is able to
predict links in a KG using both the existing facts and the temporal information of the facts. To
incorporate the happening time of facts, we propose a time-aware KG embedding model using
temporal order information among facts. To incorporate the valid time of facts, we propose
a joint time-aware inference model based on Integer Linear Programming (ILP) using temporal
consistency information as constraints. We further integrate two models to make full use of global
temporal information. We empirically evaluate our models on time-aware KG completion task.
Experimental results show that our time-aware models achieve the state-of-the-art on temporal
facts consistently.

1 Introduction

Knowledge graphs (KGs) such as Freebase (Bollacker et al., 2008) and YAGO (Fabian et al., 2007) are
extremely useful resources for many NLP related applications such as relation extraction and question
answering, etc. Although KGs are large in size, they are far from complete (West et al., 2014). Knowl-
edge graph completion, i.e., automatically inferring missing facts between entities in a knowledge graph,
has thus become an increasingly important task. Recently a promising approach called KG embedding
aims to embed the components (entities and relations) of a KG into a continuous vector space while
preserving the inherent structure of a knowledge graph (Nickel et al., 2011; Bordes et al., 2011). This
kind of approach has shown good effectiveness and scalability for KG completion.

However, most existing KG embedding models ignore the temporal information of facts. In the real
world, many facts are not static but highly ephemeral. For example, (Steve Jobs, diedIn, California)
happened on 2011-10-05; (Ronaldo, playsFor, A.C.Milan) is true only during 2007-2008. Intuitively,
temporal aspects of facts should play an important role when we perform KG completion. In this paper,
we focus on time-aware KG completion. Specially, we incorporate two kinds of temporal information for
KG completion: (a) temporal order information and (b) temporal consistency information. By temporal
order information, we mean that many facts have temporal dependencies on others according to the time
that they happened. For example, the facts involving a person P may follow the following timeline: (P,
wasBornIn, )→ (P, graduateFrom, )→ (P, workAt, )→ (P, diedIn, ). Given the time after
P died , it’s not proper to predict relations like workAt. By temporal consistency information, we mean
that many facts are only valid during a short time period. For example, a person’s marriage may be valid
for a short period. Besides, the periods of a person’s different marriages should not overlap. Without
considering the temporal aspects of facts, the existing KG embedding methods may make mistakes. It is
also non-trivial for existing KG embedding methods to incorporate such temporal information.
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To deal with the issues of the existing KG embedding methods, we propose two time-aware KG com-
pletion models to incorporate the above two kinds of temporal information, respectively. The extensive
experimental results show the effectiveness of the two proposed models. We further propose a joint
model that achieves better results. Our contributions include the following:

• To the best of our knowledge, this is the first work for time-aware KG completion. To incorporate
the temporal order information, we propose a novel time-aware embedding (TAE) model that en-
codes the temporal order information as a regularizer on the geometric structure of the embedding
space. To incorporate more temporal consistency information, we propose using Integer Linear
Programming (ILP) to encode the temporal consistency information as constraints.

• We further propose a joint framework to unify the two complementary time-aware models seamless-
ly. ILP model considers more temporal constraints than TAE model, while TAE model generates
more accurate embeddings for the objective function of ILP model. Our framework can be general-
ized to many KG embedding models such as TransE (Bordes et al., 2013) model and its extensions.

• We create real-world temporal data sets based on YAGO2 and Freebase for time-aware KG com-
pletion. The evaluation results show that our models outperform the start-of-the-art approaches and
it confirms the effectiveness of incorporating temporal information.

The rest of the paper is organized as follows. Section 2 and Section 3 describe two time-aware KG
completion models, respectively. Experiments, related work and conclusion are shown in Section 4-6.

2 Time-Aware KG Embedding Model

Time-aware KG embedding aims to automatically learn entity and relation embeddings by exploiting
both observed triple facts and temporal order information among facts.

2.1 Time-Aware KG Completion Task
We represent facts with temporal annotations by quadruples, quads for short. We use (ei, r, ej , t) to
denote the fact that ei and ej has relation r during the time interval t = [tb, te] with tb < te. Although
our reasoning framework supports arbitrary continuous intervals over real number, for simplicity, we
assume time intervals range over years. For example, the interval [1980, 1999] starts in 1980 and ends
in 1999. For some facts that happened at a certain time and did not last, we have tb = te. For some facts
that does not end yet, we represent t as t = [tb,+∞].

KG completion is the task of predicting whether a given edge (ei, r, ej) exists in the graph or not.
However, most facts are time-dependent and hold only for a given time period. For example, the fact of
George W. Bush’s presidency is only meaningful from 2001 to 2009. To incorporate temporal informa-
tion for a more accurate representation, we extend this task to include the time dimension of the facts
and call it time-aware KG completion, i.e., to complete the quad (ei, r, ej , t) when ei, r or ej is missing
given a specific time interval t. For example, we can answer the question “Who is the president of USA
in 2010?” by predicting head entity in (?, presidentOf , USA, [2010,2010]).

2.2 Traditional KG Embedding Methods
Traditional KG embedding methods use only the observed time-unknown facts (triples) to learn entity
and relation representations. TransE (Bordes et al., 2013) is an efficient and simple model among them.
The basic idea behind TransE is that the relation between two entities ei, ej ∈ Rn corresponds to a
translation vector r ∈ Rn between them, i.e., ei + r ≈ ej when (ei, r, ej) holds. The scoring function is
defined as measuring its plausibility in the vector space:

f(ei, r, ej) = ‖ei + r− ej‖`1/`2
, (1)

where ‖ · ‖`1/`2
denotes the `1-norm or `2-norm. A margin-based ranking loss is optimized to derive the

entity and relation representations:

min
∑

x+∈∆

∑
x−∈∆′

[γ + f(x+)− f(x−)]+. (2)
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Figure 1: Simple illustration of Temporal Evolving Matrix T in the time-aware embedding (TAE) s-
pace. For example, r1=wasBornIn happened before r2=diedIn. After projection by T, we get prior
relation’s projection r1T near subsequent relation r2 in the space, i.e.,r1T ≈ r2, but r2T 6= r1.

Here, x+ ∈ ∆ is the observed (i.e., positive) triple, and x− ∈ ∆′ is the negative triple constructed by
replacing entities in x+. γ is the margin separating positive and negative triples and [z]+ = max(0, z).
Please refer to (Wang et al., 2014a; Lin et al., 2015b) for TransH, TransR and other models.

After we obtain the embeddings, the plausibility of a missing triple can be predicted by using the
scoring function. In general, triples with higher plausibility are more likely to be true.

2.3 Time-Aware KG Embedding Model

TransE assumes that each relation is time independent and entity/relation representation is only affect-
ed by structural patterns in KGs. To better model knowledge evolution, we assume temporal ordered
relations are related to each other and evolve in a time dimension. For example, for the same person,
there exists a temporal order among relations wasBornIn→ graduatedFrom→ diedIn. In time
dimension, wasBornIn can evolve into graduateFrom and diedIn, but diedIn cannot evolve
into wasBornIn.

To compare temporal orders, we define a pair of temporal ordering relations sharing the same head
entity 1 as temporal ordering relation pair, e.g., 〈wasBornIn, diedIn〉. We define the relation
happening earlier, e.g., wasBornIn, as prior relation and the other as subsequent relation. We define
〈prior relation, subsequent relation〉 as positive temporal ordering pairs and 〈subsequent relation, prior
relation〉 as negative ones.

To capture the temporal order of relations, we further define a temporal evolving matrix T ∈ Rn×n

to model relation evolution, where n is the dimension of relation embedding. T is a parameter to be
learned by the model from the data. We assume that prior relation can evolve into subsequent relation
through the temporal evolving matrix. The more frequent they have temporal orders, the more they can
evolve. Specially, as in Figure 1, prior relation r1 projected by T should be near subsequent relation r2,
i.e., r1T ≈ r2, while r2T should be far from r1. In this way, we are able to separate prior relation and
subsequent relation automatically during training.

We formulate time-aware KG completion as an optimization problem based on a regularization ter-
m. Given any positive training quad (ei, rk, ej , trk

) ∈ ∆t, we can find a temporally related quad
(ei, rl, em, trl

) ∈ ∆t sharing the same head entity and a temporal ordering relation pair 〈rk, rl〉. If
trk
<trl

, we have a positive temporal ordering relation pair y+ = 〈rk, rl〉 and the corresponding negative
relation pair y− = 〈rk, rl〉−1 = 〈rl, rk〉 by inverse. Our optimization requires that positive temporal
ordering relation pairs should have lower scores (energies) than negative pairs. Therefore, we define a
temporal scoring function as

g(〈rk, rl〉) = ‖rkT− rl‖`1/`2
, (3)

which is expected to give a low score when the temporal ordering relation pair is in chronological order,
and a high score otherwise. Note that T is asymmetric and the loss function is also asymmetric so as to
capture temporal order information.

1We only consider relations sharing the same head entity because most temporal facts and temporal relations are partially
ordered around a common protagonist (usually the head entity), e.g., “wasBornIn”, “workAt”, and “diedIn” are temporally
ordered with a common person. Temporal relations that are ordered with a common tail entity could be transformed by replacing
the relation with its inverse relation and exchanging the head and tail entity.
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To make the embedding space compatible with the observed triples, we make use of the fact triples set
∆ and follow the same strategy adopted in previous methods. Specially, we apply the same fact scoring
function f(ei, rk, ej) in Equation (1) to each candidate triple. The optimization is to minimize the joint
scoring function,

L =
∑

x+∈∆

[ ∑
x−∈∆′

[γ1 + f(x+)− f(x−)]+ + λ
∑

y+∈Ωei,trk
,y−∈Ω′ei,trk

[γ2 + g(y+)− g(y−)]+
]
,

(4)

where x+ = (ei, rk, ej)∈∆ is a positive triple, x−=(e′i, rk, e
′
j)∈∆′ is the corresponding negative triple

by replacing entities. The positive temporal ordering relation pair set with respect to (ei, rk, ej , trk
) is

defined as
Ωei,trk

= {〈rk, rl〉|(ei, rk, ej , trk ) ∈ ∆t, (ei, rl, em, trl) ∈ ∆t, trk < trl}
∪{〈rl, rk〉|(ei, rk, ej , trk ) ∈ ∆t, (ei, rl, em, trl) ∈ ∆t, trk > trl}

(5)

where rk and rl share the same head entity ei. Ω′ei,trk
are the corresponding negative relation pairs

by inverse the relation pairs. In experiments, our constrains are ‖ei‖2 ≤ 1, ‖rk‖2 ≤ 1, ‖rl‖2 ≤ 1,
‖ej‖2 ≤ 1, ‖rkT‖2 ≤ 1, and ‖rlT‖2 ≤ 1 to avoid overfitting similarly to previous work.

The first term in Equation (1) enforces the generated embedding space compatible with all the observed
triples, and the second term further requires the space to be temporally consistent and more accurate.
Hyperparameter λ strikes a trade-off between the two cases. Stochastic gradient descent (in mini-batch
mode) is adopted to solve the minimization problem.

3 Joint Inference for Time-Aware KG Completion

In this section, we incorporate temporal information as temporal consistency constraints for KG comple-
tion. We take advantage of temporal logic transitivity and use ILP to derive more accurate predictions.

3.1 Temporal Consistency Constraints

The candidate predictions we obtained in the traditional KG embedding inevitably include many incor-
rect predictions. By applying temporal consistency constraints, we can identify and then discard such
errors to produce more accurate results.

As the complexity of resolving conflicts strictly depends on the constraints to apply, we need to choose
them with great care. In the following, we consider three kinds of temporal constraints.
Temporal Disjointness. The time intervals of any two facts with a common functional relation and a

common head entity are non-overlapping. For example, a person can only be spouse of one person at a
time: (e1,wasSpouseOf, e2, [1990, 2010))∧(e1,wasSpouseOf, e3, [2005, 2013))∧e2 6=e3 → false.
Temporal Ordering. For some temporal ordering relations, one fact always happens before an-

other fact. For example, a person must be born before he graduated: (e1,wasBornIn, e2, t1) ∧
(e1,graduateFrom, e3, t2) ∧t1 > t2 → false.
Temporal Spans. Some facts are true only during a specific time span. In general, the fact is invalid for
other time periods outside the range of its time span in KGs. For example, given time interval t′ outside
the range t in (e1,presidentOf, e2, t) ∈ KG, the fact (e1,presidentOf, e2, t

′) is invalid.

3.2 Integer Linear Program Formulation

We formulate the time-aware inference as an ILP problem with temporal constraints. Traditional KG
embedding methods can capture the intrinsic properties of data, which can be treated as a probability
to predict unseen facts. For each candidate fact (ei, rk, ej), we use w(k)

ij = f(ei, rk, ej) to represent

the plausibility predicted by an embedding model, and introduce a Boolean decision variable x(k)
ij to

indicate whether the fact (ei, rk, ej , t) is true or not for time t. Our aim is to find the best assignment
to the decision variables, maximizing the overall plausibility while complying with all the temporal
constraints. The objective function can be written as:

max
∑
x

(k)
ij

w
(k)
ij x

(k)
ij . (6)

We add the constraints described in Section 3.1 for the above objective function.
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The temporal disjointness constraints avoid the disagreement between the predictions of two facts
sharing the same head entity and relation. These constraints can be represented as:

x
(k)
ij + x

(k)
il ≤ 1, ∀k ∈ Cd, t

x
(k)
ij

∩ t
x

(k)
il

6= ∅ (7)

where Cd are functional relations described such as wasSpouseOf and t
x

(k)
ij

, t
x

(k)
il

are time intervals for

two facts, respectively.
The Temporal Ordering constraints ensure the occurring order for some relation pairs. These con-

straints can be represented as:

x
(k)
ij + x

(k′)
il ≤ 1,∀(k, k′) ∈ Co, t

x
(k)
ij

≥ t
x

(k)
il

(8)

where Co = {〈rk, r′k〉} are relation pairs that have precedent orders such as 〈wasBornIn,diedIn〉.
These relation pairs are discovered automatically in the training set by statistics and finally manually
calibrated.

The temporal span constraints ensure the specific time span when the corresponding fact is true. These
constraints can be represented as:

x
(k)
ij = 0, ∀k ∈ Cs, t

x
(k)
ij

∩ t∆ = ∅ (9)

where Cs are those relations valid for only a specific time span such as presidentOf and t∆ is the
valid time span in KG.

Using ILP, we can combine the ability of capturing the intrinsic properties of KG data and the temporal
constraints that are embedded into global consistencies of the relations together. As shown in Eq.(10),
any unseen fact’s plausibility is encoded in scores wk

ij which captures the intrinsic properties of KG
data. Temporal consistency constraints are formulated as Eq.(7)-(9) and apply to the objective function
naturally. By solving Eq.(10), we will obtain a list of selected candidate entities or relations for a missing
fact as our final output.

3.3 Integrating Two Time-Aware Models

As mentioned above, the two time-aware models are complementary for each other: ILP model considers
more temporal constraints than TAE model while TAE model generates more accurate embeddings for
the ILP objective function.

For each unseen quad (ei, rk, ej , t), we use a Boolean decision variable x(k,t)
ij to indicate whether it’s

true or not. We can use the embeddings of TAE model in Section 2.3 to calculate the plausibility v(k,t)
ij

for the ILP objective function. The objective function is

max
∑
x

(k,t)
ij

v
(k,t)
ij x

(k,t)
ij . (10)

Eq.(7)-(9) remain the same.

4 Experiments

We use similar evaluation metrics as traditional KG completion methods (Bordes et al., 2013) for time-
aware KG completion.

4.1 Data Sets

To create temporal KG data sets, we need to decide whether a fact has temporal information. We catego-
rize relations into time-sensitive relations and time-unsensitive relations according to YAGO2 (Hoffart
et al., 2013). For example, diedIn is time-sensitive, but hasNeighbor is not. We extract temporal
annotations for time-sensitive facts from YAGO2 and Freebase2.

In YAGO2, temporal facts are in the form (factID,occurSince,tb), (factID,occurUntil,te) indicating
the fact is true during [tb, te]. Here factID denotes a specific fact (ei, r, ej). We directly represent these
temporal facts as quads (ei, r, ej , [tb, te]). We selected 10 frequent time-sensitive relations to make a pure
temporal data set. Then we selected the subset of entities which have at least two mentions in temporal

2www.freebase.com
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Dataset #Rel #Ent #Train/#Valid/#Test #Quads
YG15k 10 9513 13345/1320/1249 15914
YG36k 10 9513 29757/3252/3058 15914

FB42 42 8376 23827/2173/2610 28610
FB87 87 8844 142598/14848/17566 175012

Table 1: Statistics of data sets.
DataSets YG15k YG36k FB42 FB87

Metric MeanRank Hits@10(%) MeanRank Hits@10(%) MeanRank Hits@10(%) MeanRank Hits@10(%)
Raw Filter Raw Filter Raw Filter Raw Filter Raw Filter Raw Filter Raw Filter Raw Filter

TransE 990 971 26.6 29.5 179 163 65.7 75.6 383 341 39.5 46.6 105 54 47.7 70.2
TransE-TAE 245 244 34.4 35.3 62 58 75.4 81.9 328 300 45.0 51.3 92 50 53.8 77.5
TransE-ILP - - 40.5 41.9 - - 80.1 85.4 - - 53.5 55.2 - - 62.1 82.7
TransE-TAE-ILP - - 44.8 46.1 - - 84.7 89.4 - - 65.1 70.2 - - 65.7 85.3
TransH 986 966 25.7 28.0 174 158 65.3 77.8 378 333 40.3 48.1 102 58 45.3 71.8
TransH-TAE 243 241 33.4 34.7 63 58 75.3 81.6 320 291 46.4 52.7 93 52 55.3 78.5
TransH-ILP - - 41.7 42.6 - - 81.5 85.6 - - 53.7 56.4 - - 63.5 81.1
TransH-TAE-ILP - - 43.3 46.6 - - 85.4 88.7 - - 65.3 71.4 - - 67.2 86.0
TransR 976 955 29.5 30.2 175 153 68.3 80.1 371 325 42.5 49.2 96 52 49.3 72.1
TransR-TAE 253 251 33.5 33.9 56 45 79.5 86.9 318 282 47.2 54.9 88 47 56.5 79.9
TransR-ILP - - 41.9 44.3 - - 82.6 82.5 - - 57.8 57.1 - - 63.4 87.9
TransR-TAE-ILP - - 45.4 47.7 - - 85.8 89.5 - - 66.5 72.3 - - 68.2 88.2

Table 2: Evaluation results on entity prediction.

facts. This resulted in 15,914 triples (quadruples) which were randomly split with the ratio shown in
Table 1. This data set is denoted YG15k. Although YAGO2 has many temporal annotations for facts,
a lot of temporal annotations are still missing for time-sensitive facts. We consider the data set YG36k
consisting of half facts with temporal annotations and the other half missing temporal annotations to
evaluate whether partial temporal information of data improves the performance or not. The relationship
set is the same in YG15k and YG36k.

We extracted temporal facts mainly from FB15k (Bordes et al., 2013), a subset of Freebase consisting
of 1345 relations. Among them, 707 relations are long relations in the form “r1.r2” concatenating short
relations r1 and r2. Long relations do not exist in the original schema of Freebase. Many associated facts
in Freebase are organized as a CVT structure (similar to an event), e.g., (Einstein,hasWonPrize, No-
bel) is stored as (Einstein, /award/award winner/awards won, x), (x,/award/award honor/award,Nobel)
in Freebase, where x is called mediator and not a real entity. FB15k facts are created by concatenating
two relations: (Einstein,/award/award winner/awards won. /award/award honor/award,Nobel). We ex-
tracted temporal annotations from the original Freebase CVT structure for these facts with long relations.
For short relations such as /film/director/film, we used creation/destruction dates of head or tail entity as
their time, e.g., the released date of the film. This resulted in 42 time-sensitive relations and 28,610
temporal facts. We denoted the data set as FB42. We further added triples without time annotations
and created FB87. In FB15k, there are about 50% temporal facts in our setting. The data set will be
publicly available. All experiments are repeated five times by drawing new training/validation/test splits,
and results averaged over the five rounds are reported.

4.2 Time-aware KG Completion

Time-aware KG completion (link prediction) is to complete the triple (ei, r, ej , t) when ei, r or ej is
missing given a specific time interval t. We divided the stage into two sub-tasks, i.e., entity prediction
and relation prediction.

4.2.1 Entity Prediction
Evaluation protocol. For each test triple with missing head or tail entity, various methods are used to
compute the scores for all candidate entities and rank them in descending order. We use two metrics
for our evaluation as in (Bordes et al., 2013): the mean of correct entity ranks (Mean Rank) and the
proportion of valid entities ranked in top-10 (Hits@10). As mentioned in (Bordes et al., 2013), the
metrics are desirable but flawed when a corrupted triple exists in the KG. As a countermeasure, we
may filter out all these corrupted triples which have appeared in KG before ranking. We name the first
evaluation set as Raw and the second as Filter.

For each test quad (triple), we replace the head/tail entity ei by those entities with compatible types
as removing triples with incompatible types during test time leads to better results (Chang et al., 2014;
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Wang et al., 2015). Entity type information is easy to obtain for YAGO and Freebase. Then we rank
the generated corrupted triples in descending order, according to the plausibility (for baselines and TAE
model) or the decision variables (for time-aware ILP model). Then we check whether the original cor-
rect triple ranks in top-10. To calculate Hit@10 for ILP model, for each test quad, we add additional
constraints that at most 10 corrupted are true:

∑
i,j x

(r1)
eiej ≤ 10. Mean Rank is missing for ILP method

as we could not rank the binary decision variables.
Baseline methods. For comparison, we select TransE (Bordes et al., 2013), its extensions TransH (Wang
et al., 2014b) and TransR (Lin et al., 2015b) as our baselines. We then compare time-aware embedding
and time-aware ILP inference with each baseline. For example, TransE with TAE and time-aware ILP is
denoted as “TransE-TAE” and “TransE-ILP”, respectively. The combined model of the two time-aware
models are denoted as “TransE-TAE+ILP”.
Implementation details. For all embedding methods, we create 100 mini-batches on each data set. The
dimension of the embedding n is set in the range of {20,50,100}, the margin γ1 and γ2 are set in the range
{1,2,4,10}. The learning rate is set in the range {0.1, 0.01, 0.001}. The regularization hyperparameter
λ is tuned in {10−1,10−2,10−3,10−4}. The best configuration is determined according to the mean rank
in validation set. For YAGO data set, the optimal configurations are n = 100,γ1 = γ2 = 4,λ = 10−2,
learning rate is 0.001 and taking `1−norm; For Freebase data set, the optimal configurations are n =
100,γ1 = γ2 = 1,λ = 10−1, learning rate is 0.001 and taking `1−norm.

We then incorporate temporal constraints into the six models with optimal parameter settings using
ILP. To generate the objective function of ILP, plausibility predicted by embedding models is normalized
by w′ij = (wij − MIN)/(MAX − MIN), where MAX and MIN are max/min scores for each corrupted
test triple. We use the lp solve package3 to solve the ILP problem.
Results. Table 2 reports the results for each data set. From the results, we can see that 1) TAE methods
outperform all the baselines on all the data sets and with all the metrics. The improvements are quite sig-
nificant. The Mean Rank drops by about 75%, and Hits@10 rises about 19% to 30%. This demonstrates
the superiority and generality of our method. 2) Adding more temporal facts improve the performance
for TAE models. YG15k consists of 100% temporal facts while YG36k consists of 50% temporal facts.
All the temporal information in YG15k is utilized to model temporal associations and make the embed-
dings more accurate. Therefor, it obtains larger improvement for TAE than YG36k. 3) Improvement for
YAGO is larger than Freebase because YAGO data set contains more temporal ordering relation pairs
than Freebase data set.

As we can see from Table2, the time-aware ILP method improves each baseline model by about
10% to 16%. This demonstrates the effectiveness of incorporating temporal consistency constraints.
Combining two time-aware models further improves the performance by 2% to 3%. This indicates that
1) although TAE models encode temporal order information, only pair-wise temporal ordering relations
are optimized during each training iteration. ILP can take advantage of global temporal transitivity
which pair-wise methods can’t. 2) Adding time span information in the ILP model can remove more
false predictions.

4.2.2 Relation Prediction
Relation prediction aims to predict relations between two entities. Evaluation results are shown in Table 3
on YG15K and FB87 due to space limit, and here we report Hits@1 instead of Hits@10. For ILP models,
we report Hits@1 for the same reason in entity prediction. Again, two time-aware models improve
baselines greatly.

The ILP models improve the precision by about 10%, showing that incorporating temporal constraints
directly is better for this task. The main reason is that our temporal constraints are designed to better han-
dle temporal conflicts in relations. Relation prediction and relation extraction from text have common
multi-label problems that the same entity pair may have multiple relation labels. For example, (Oba-
ma,US) could have two valid relations: wasPresidentOf, wasBornIn. Through temporal constraints, we
are aware that the two relations have different valid time, and therefore we could remove the false one to

3http://lpsolve.sourceforge.net/5.5/
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Data Sets YG15K FB87

Metric Mean Rank Hits@1 (%) Mean Rank Hits@1 (%)
Raw Filter Raw Filter Raw Filter Raw Filter

TransE 1.5 1.4 69.4 73.0 1.9 1.7 60.0 73.8
TransE-TAE 1.4 1.3 71.4 75.7 1.7 1.6 63.4 76.7
TransE-ILP - - 81.6 85.4 - - 71.0 82.9
TransE-TAE-ILP - - 82.5 86.5 - - 72.3 83.1
TransH 1.5 1.3 69.7 73.4 1.8 1.6 61.3 75.6
TransH-TAE 1.3 1.3 74.6 76.9 1.4 1.30 64.2 77.2
TransH-ILP - - 81.1 85.7 - - 71.7 83.1
TransH-TAE-ILP - - 83.2 86.2 - - 73.2 84.4
TransR 1.4 1.2 71.1 74.3 1.6 1.5 62.1 77.3
TransR-TAE 1.2 1.1 74.5 78.9 1.2 1.1 64.3 79.6
TransR-ILP - - 82.8 86.6 - - 72.2 83.2
TransR-TAE-ILP - - 83.1 88.3 - - 73.8 85.1

Table 3: Evaluation results on relation prediction.
Testing quads TransE TransE-TAE TransE-ILP

(Stanford Moore,?,New York City,[1982,1982]) wasBornIn,diedIn diedIn,wasBornIn diedIn,wasBornIn
(John Schoenherr,?,Caldecott Medal,[1988,1988]) owns,hasWonPrize hasWonPrize,created hasWonPrize,created
(John G. Thompson,?,University of Cambridge,[1968,1994]) graduatedFrom,worksAt worksAt,graduatedFrom worksAt,graduatedFrom
(Tommy Douglas,?,New Democratic Party,[1961,1972]) isMarriedTo,isAffiliatedTo isAffiliatedTo,isMarriedTo isAffiliatedTo,isMarriedTo
(Carmen Electra,?,Owen Wilson,[2004,2005]) isMarriedTo,sameAward winner isMarriedTo,sameAward winner sameAward winner,isMarriedTo

Table 4: Examples of relation prediction in descending order. Correct predictions are in bold.

improve Hit@1 accuracy.
Qualitative analysis. Examples of relation prediction for TransE, TransE-TAE and TransE-ILP are com-
pared in Table 4. From the results we have the following two conclusions. 1) Temporal order information
is useful to distinguish similar relations. For example, when testing (Stanford Moore, ? , Chicago, [1982,
1982]), it’s easy for TransE to mix relations wasBornIn and diedIn as they behave similarly for a per-
son and a place. But knowing that he graduated in 1935 from the training set, and TransE-TAE have
learnt temporal order that wasBornIn→graduated→diedIn, the regularization term |rgraduateT− rdied|
and |rgraduateT − rborn| helps rank diedIn higher than wasBornIn. TransE-ILP also benefits from
such temporal order constraints and obtains more accurate predictions. 2) Time span information is
useful to make accurate predictions. For example, TransE and TransE-TAE both predict (Carmen Elec-
tra,?,Owen Wilson,[2004,2005]) has wasMarriedTo relation. Temporal order constraints don’t work
for this example. But the time span constraints help TransE-ILP to remove wasMarriedTo because
Carmen Electra was married to Dave Navarro during [2003,2008] and a person cannot marry two people
at the same time.

5 Related Work

There are two lines of research related to our work.
Knowledge Graph Completion. Nickel et al. (2016) provide a broad overview of machine learning
models for KG completion. These models predict new facts in a given knowledge graph using informa-
tion from existing entities and relations. The most related work from this line of work is KG embedding
models (Nickel et al., 2011; Bordes et al., 2013; Socher et al., 2013). Aside from fact triples, external
information is employed to improve KG embedding such as combining text (Riedel et al., 2013; Wang et
al., 2014a; Zhao et al., 2015), entity type and relationship domain (Guo et al., 2015; Chang et al., 2014),
relation path (Lin et al., 2015a; Gu et al., 2015), and logical rules (Wang et al., 2015; Rocktäschel et al.,
2015). However, these methods have not utilized temporal information among facts.
Temporal Information Extraction. This line of work mainly falls into two categories: methods that
extract temporal facts from web (Ling and Weld, 2010; Wang et al., 2011; Artiles et al., 2011; Garrido et
al., 2012) and methods that infer temporal scopes from aggregate statistics in large Web corpora (Taluk-
dar et al., 2012b; Talukdar et al., 2012a). The TempEval task (Pustejovsky and Verhagen, 2009) and
systems (Chambers et al., 2007; Bethard and Martin, 2007; Chambers and Jurafsky, 2008; Cassidy et al.,
2014) have been successful in extracting temporally related events. Temporal reasoning is also explored
to solve temporal conflicts in KG (Dylla et al., 2011; Wang et al., 2010). This paper differs from this line
of work as we directly use temporal information from KG to perform KG completion.
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6 Conclusion and Future Work

In this paper, we propose two novel time-aware KG completion models. Time-aware embedding (TAE)
model imposes temporal order constraints on the geometric structure of the embedding space and en-
forces it to be temporally consistent and accurate. Time-aware joint inference with ILP framework
considers global temporal constraints as well as KG embeddings. It naturally preserves the benefits of
embedding models and is more accurate with respect to various temporal constraints. We further inte-
grate two models to make full use of temporal information.

As future work: 1) Many temporal facts are not stored by current KGs (about 30% facts in YAGO and
50% in Freebase lack temporal annotations), we will extract more temporal information from texts. 2)
We will consider using our time-aware KG completion model to predict temporal scopes of new facts.
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