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Abstract

Evocation is a directed yet weighted semantic relationship between lexicalized concepts. Al-
though evocation relations are considered potentially useful in several semantic NLP tasks, the
prediction of the evocation relation between an arbitrary pair of concepts remains difficult, since
evocation relationships cover a broader range of semantic relations rooted in human perception
and experience. This paper presents a supervised learning approach to predict the strength (by
regression) and to determine the directionality (by classification) of the evocation relation that
might hold between a pair of lexicalized concepts. Empirical results that were obtained by in-
vestigating useful features are shown, indicating that a combination of the proposed features
largely outperformed individual baselines, and also suggesting thatsemantic relational vectors
computed from existing semantic vectors for lexicalized concepts were indeed effective for both
the prediction of strength and the determination of directionality.

1 Introduction

Evocation, defined as the extent to which one concept (thesourceconcept,s) brings to mind another (the
targetconcept,t), is a directed yet weighted semantic relationship between semantic units (Boyd-Graber
et al., 2006). As in the previous work (Boyd-Graber et al., 2006; Ma, 2013), the present work also
considers evocation to be a semantic relationship between lexicalized concepts, rather than a relation
between words. The weight of an evocation relation instance should measure the strength of the directed
association froms to t, which we cannot directly observe nor compute from corpora.

Although evocation relations are potentially useful in several semantic NLP tasks, such as the mea-
surement of textual similarity/relatedness and the lexical chaining in discourse, the prediction of the evo-
cation relation between an arbitrary pair of concepts remains more difficult than measuring conventional
similarities (synonymy, as well as hyponymy/hypernymy) or relatednesses (further including antonymy,
meronymy/holonymy, as well as predicate-argument relations and maybe more), since evocation rela-
tionships cover a far broader range of semantic relationships (Cramer, 2008). Besides, as Ma (2013)
argues, some types of evocation relations might be rooted in human perception and experience, implying
that the acquisition of evocation relations solely from textual corpora is rather difficult, as they are the
outcome of already accomplished activities of language production.

To the best of our knowledge, this paper is the first to present a supervised learning approach to predict
the strength of an evocation as a regression task, and to determine the directionality as a classification
task. We utilize Princeton WordNet (PWN) (Fellbaum, 1998) as the inventory of lexicalized concepts
(synsets). Our empirical results show that combining a range of features is effective as intended, and that
thesemantic relational vectors(detailed in section 3.2.3) computed from existing semantic vectors for
word senses and lexicalized concepts are indeed effective for both the prediction of strength and the de-
termination of directionality. This definitely highlights the effectiveness of the semantic vectors derived
for WordNet lexemes and synsets (Rothe and Schütze, 2015) (henceforth, Autoextend lexeme/synset
semantic vector) that were utilized in the present work.

This work is licensed under a Creative Commons Attribution 4.0 International Licence. Licence details:http:
//creativecommons.org/licenses/by/4.0/
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The proposed method (section 3) utilizes several types of features: their effectiveness was examined
by a series of experiments that employed the strength data provided by (Boyd-Graber et al., 2006) (PWN
evocation data), and the directionality data made available by (Ma, 2013) (Ma’s evocationNet data)
(section 2). Although the empirical results (section 4) we obtained were rather promising, there remains
considerable room for improvement. Thus, the paper concludes with possible future directions (section
6) after a brief review of some related research (section 5).

2 Evocation Relationship and the Resources

Evocation is the outcome of a kind of psychological phenomenon rooted in human perception and expe-
rience (Ma, 2013). This strongly implies that human-rated resources are required to uncover the under-
lying psycholinguistic mechanisms and to develop a computational mechanism to predict the evocation
relationship between an arbitrary pair of lexicalized concepts.

To date, two resources have been publicized to facilitate research associated with the evocation rela-
tionship: one is the Princeton WordNet (PWN) evocation dataset (Boyd-Graber et al., 2006) that collects
human ratings of the evocation strength; the other is Ma’s evocationNet dataset (Ma, 2013) that provides
directionality judgments.

2.1 PWN evocation dataset

The PWN evocation dataset1 is a collection of ratings of evocation strength for 119,652 PWN synset
pairs (Boyd-Graber et al., 2006). Each synset pair was judged by at least three raters, where each rating
ranges between 0 and 100. We simply averaged the ratings in this work. As the synset pairs had been
randomlyselected from thecore synsets, two thirds of them (80,343) are rated as zero, which means “no
evocation.” The mean and the standard deviation of the ratings greater than zero are 8.389 and 12.00,
respectively, showing that the evocation strengths vary considerably.

For example, for some of the positively rated synset pairs (39,309), the evocation fromprize.n.01
to honor.n.02 records the highest strength of 100.0, whereas that fromcritical.a.04 to
obstruct.v.01 shows the lowest, namely 0.0625. Figure 1 further displays the distribution of the
positive evocation ratings while binning them into five classes:{b0 : r > 0, b1 : r ≥ 1, b25 : r ≥
25, b50 : r ≥ 50, b75 : r ≥ 75}.

Figure 1: Distribution of the evocation ratings in the PWN evocation data.

Reports from as early as in (Boyd-Graber et al., 2006) showed that major similarity measures could not
reproduce the evocation ratings well: the best result reported in the literature was as low asρ = 0.131 (ρ:

1http://wordnet.cs.princeton.edu/downloads.html
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Directionality Count

x→ y (outbound) 172,126
x← y (inbound) 123,147
x↔ y (bidirectional) 43,459
no-evocation (original) 9,715
no-evocation (incorporated from PWN) 90,058
Total 428,790

Table 1: Distribution of the directionality categories in Ma’s evocationNet dataset (augmented by PWN
Evocation data).

the Spearman correlation coefficient), which was achieved with semantic vectors derived by applying the
Latent Semantic Analysis (LSA) method (Deerwester et al., 1990) toward the British National Corpus.
Remind here, however, that the work (Boyd-Graber et al., 2006) did not intend to develop a method to
predict evocation strengths, rather their intention was to explore a different type of semantic relationship
that could be incorporated into PWN.

2.2 Ma’s evocationNet dataset

Ma (2013) presented a method to create a dataset of concept pairs that are in evocation relation, and
she publicized the dataset, which we refer to as Ma’s evocationNet2. This dataset provides directionality
annotations for a number of PWN synset pairs, but not their evocation strength ratings. She created this
dataset by converting the word-based association data given inThe University of South Florida Free
Word Association Norms(Nelson et al., 2004) intoword sense-based data by first applying an automatic
word sense disambiguation process, and then a manual verification process. Because of this creation
process, Ma’s evocationNet dataset contains a number of duplications in the synset-level, but we did not
exclude these duplicated data in the present research.

The dataset consists of 13,975 files from which we extracted 348,447 synset pairs. Each of the files
is designated by a pair consisting of a word and a synset. As a simple example, the content of the file
namedbanana {banana.n.01 }.txt (for word: banana, synset:banana.n.01 ) is given below,
showing this synsetbanana.n.01 (food sense) is linked to the synsetsapple.n.01 as well as
orange.n.01 andorange.n.02 , whereas it is co-linked with the synsetbanana.n.02 (plant
sense).

apple {apple.n.01}++
orange {orange.n.01}++
oranges {orange.n.01}++
banana {banana.n.02}+=

That is, the symbol ’++’ denotes an outbound link, whereas ’+=’ indicates a bidirectional link. Other
categories that appeared in the dataset are: ’+-’ (inbound) and ’==’ (no evocation).

Table 1 counts the frequencies of the directionality categories. As displayed in the table, Ma’s original
dataset contains a relatively small number of “no-evocation” instances that causes the problem of skewed
distribution. Thus, as a remedy, we added the synset pairs of which the evocation strength was rated as
zero in the PWN dataset to this category, finally giving us a data set of 428,790 synset pairs.

3 Supervised Learning Approach

3.1 Machine-Learning Frameworks

Since the psychological mechanism underlying evocation or association is not yet well under-
stood (De Deyne and Storms, 2015), it is natural to use an exploratory approach to build a computational
method that exploits potentially effective features obtained from several resources. As detailed in the

2http://kettle.ubiq.cs.cmu.edu/ ˜ xm/DataSet/webpage/evocationNet/
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previous section, the data for evocation strength are numerical ratings, and the data for evocation direc-
tionality are discrete categories. We therefore naturally defined the prediction of evocation strength as a
regression task, and the determination of evocation direction as a classification task.

We adopt a supervised machine-learning approach, and compare a feed-forward neural network (NN)
with the Random ForestTM(RF) algorithm as the basic learning framework. Since the submitted paper
is not intended as a contribution to the machine-learning field, we simply applied straightforward or
off-the-shelf classifiers/regressors in the experiments. The hyperparameters were determined through a
series of pre-experiments.

Neural Network: We adopted simple perceptron with two hidden layers, both for the regression task
and the classification task. We applieddropoutand employedReLuas the activation functions.Mean
squared errorandAdam algorithmwere utilized for the optimization in the regression tasks. Almost the
same architecture was adopted for the classification tasks, wheresoftmax cross entropywas adopted as
the error function, and the number of nodes in the output layer was equal to the number of classes (that
is, four). We utilized a Python-based framework known as chainer3 for the implementation.

Random Forest: We employed another Python-based framework named scikit-learn4 for the Random
Forest classifiers and regressors. The hyperparameters we used were similar to the default parameters of
the system, except that the number of estimators was boosted to 125 from the default of 10.

3.2 Features

We integrate potentially effective features, which can be divided into the following three groups.

3.2.1 Similarity/relatedness features

Even for an asymmetric semantic relationship such as evocation,symmetricsimilarity/relatedness would
provide a certainbias or basis(De Deyne et al., 2013). With this motivation, we utilize four similar-
ity/relatedness features as shown below. Note here that (c) and (d) are synset-based, whereas (a) and (b)
are word-based. We were able to incorporate these word-based similarities, as the utilized data explicitly
specify the focused word for each of the synsets. In addition, notice that (b) and (d) rely on distributed
representation vectors, whereas (a) and (c) do not.

• (a) ldaSim provides the cosine similarity between the word vectors created by applying the Latent
Dirichlet Allocation (LDA) algorithm (Hoffman et al., 2010). We trained an LDA model from
the enwik9 Wikipedia corpus5 while using the gensim6 Python library for topic modeling. The
dimensionality of the vectors is 300, which is the same as the vectors employed by (b) and (d).

• (b) w2vSim provides the cosine similarity between Word2Vec-induced word embedding vec-
tors (Mikolov et al., 2013a). We used the pre-trained 300-dimensional vectors available at Google’s
Word2Vec site7. Note that these vectors were created by applying the continuous bag-of-words
(CBOW) model.

• (c) wupSim computes Wu-Palmer similarity (Budanitsky and Hirst, 2006) defined by the formula
shown below: here,depth(s) gives the depth of nodes from the root;lcs(s, t) computes the least
common subsumer node ofs andt. Wu-Palmer similarity is convenient in the sense that the sim-
ilarity ranges0 < wupSim(s, t) ≤ 1. To cope with cross-POS evocation relations, we assumed a
virtual root node that integrates PWN’s POS-oriented subtrees.

wupSim(s, t) =
2× depth(lcs(s, t))
depth(s) + depth(t)

3http://chainer.org/
4http://scikit-learn.org/
5http://mattmahoney.net/dc/text.html
6https://radimrehurek.com/gensim/
7https://code.google.com/p/word2vec/

1660



• (d) autoexSim provides the cosine similarity between Autoextend synset semantic vectors. These
300-dimensional vectors were created by the method proposed in (Rothe and Schütze, 2015), and
made available on the author’s site8. Recall that these vectors were induced by using the same
Word2Vec CBOW embedding vectors described above. We adopt the Autoextend method, since
it conveniently utilizes the semantic-relational structure that resides in an existing lexical-semantic
resource (in this case, PWN), while exploiting ready-made word embedding vectors.

3.2.2 Lexical resource features

Lexical resources, such as PWN, can be utilized as a precious source of features. In the present work,
we employed the three features listed below. Note that all of these features have been incorporated in
expectation of contributing to capturing someasymmetricaspects of evocation relationships.

• posSem is introduced to dictate some of the fundamental attributes of the query synset pair. It
concatenates the feature vector of the source concept with that of the target concept in this order.
Each feature vector for a concept consists of a1-of-kencoding of the part-of-speech sub-vector (five
dimensions, corresponding to:a, s, n, r,andv) and a 45-dimensional sub-vector for the coarse-level
semantic classification. This eventually provides us with a 100-dimensional ((5 + 45) × 2) vector
to represent the query synset pair. As for the labels of the coarse-level semantic classes, we utilize
the names of the lexicographer files in PWN, such asnoun.artifact , noun.process , and
verb.motion .

• lexNW attempts to dictate the difference in graph-theoreticinfluenceof the source/target concepts
in the underlying PWN lexical-semantic network. The rationale behind this is: the evocation relation
from a less important concept to a weighty concept may be more likely than in the reverse direction.
More specifically, we compute the betweenness and load centralities (Barthélemy, 2004) for each
synset node, and dispose the values in the order of source concept and target concept, resulting in a
four-dimensional vector for the query synset pair.

The betweenness centralitybc(v) defined by the formula below measures the influence of the des-
ignated node in terms of network flow. In the formula,npaths(a, b, c) counts the number of the
shortest paths froma throughc to b. The load centrality also assesses the importance of a node by
using load distribution.

bc(v) =
∑

s̸=v ̸=t

npaths(s, t, v)
npaths(s, t, ∗)

We computed these graph-theoretic metrics simply by using the NetworkX9 Python library for pro-
cessing complex networks.

• dirRel also exploits the network structure of PWN, attempting to mimic the notion offeature
inclusion: “an object with many features is judged as less similar to a sparser object than vice
versa” (Gawron, 2014). In the present work, sets of neighboring concept nodes in the lexical-
semantic network are considered as features.

Figure 2 illustrates the notion ofdirRel(s, t, k), suggesting that this measure is associated with
paths connectings to t. In the present work, we setk = 3 as it performed best in the preliminary
experiments. Note that this means that we considered the semantic paths in PWN of which the
length is at most six as effective features.

The defining formula shown below simply quantifies the overlap ink-neighbor nodes in the PWN
lexical-semantic network, in whichnb(x, k) denotes the set ofk-neighbor nodes of nodex.

dirRel(s, t, k) =
|nb(s, k) ∩ nb(t, k)|

|nb(s, k)|
8http://www.cis.lmu.de/ ˜ sascha/AutoExtend/embeddings.zip
9https://networkx.github.io/
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Figure 2: Notion ofdirRel(s, t, k), k = 2.

Notice that this formula is a version of the well-known Tversky indexTI(X,Y ) (Tversky, 1977)
(whereα = 1 andβ = 0), which dictates the asymmetric similarity of two given sets,X andY .

TI(X, Y ) =
|X ∩ Y |

|X ∩ Y |+ α|X − Y |+ β|Y −X]

3.2.3 Semantic relational vectors

One of the prominent advantages introduced by distributional word embedding vectors is the tendency:
“all pairs of words sharing a particular relation are related by the same constant (vector)offset” (Mikolov
et al., 2013b). Following this result, a number of research groups have tried to capture the characteristics
of a semantic relationship from the offset vectors. Among them, for example, (Fu et al., 2014) success-
fully learned the hypernymy relationship by estimating the projection matrices that map words to the
hypernyms.

Although it is not clear whether a similar approach would be effective for potentially complex se-
mantic relationships such as evocation, we, in the present work, incorporated the offset semantic vectors
relV ec(s, t) (referred to assemantic relational vectorsin this research) as a vectorial feature. That is, we
concatenated the obtained 300-dimensional relational vector with the vector obtained from other features
described so far.

relV ec(s, t) could be defined as follows, provided an adequate semantic path froms to t is given by
path(s, t) that sequences edges. Here, each edge froma to b may carry a lexical-semantic relationr, and
it could be associated with a relation weightw(r).

relV ec(s, t) =
∑

(a,b,r)∈path(s,t)

w(r)(semV ec(b)− semV ec(a))

This formula can be simplified as follows by assuming a uniform relation weight (w(r) = 1, ∀r). This
means that we seean evocation relation as a short cut of a potential pathin the lexical-semantic network.

relV ec(s, t) = semV ec(t)− semV ec(s)

In the formula,SemV ec(x) basically denotes the Autoextend synset semantic vector for synsetx, but,
as detailed in the experimental section, we experimentally altered it to other types of vectors.

4 Experiments and the Results

We assessed the proposed framework and investigated the effectiveness of the proposed features by
conducting a series of experiments, where a five-fold cross-validation was employed in each of the ex-
perimental settings. The performances are measured by computing the Pearson (r) and Spearman (ρ)
correlation coefficients between the gold data and the predictions for the regression tasks10, and by the
standard Precision/Recall/F1/Accuracy measures for the classification tasks, respectively. The results
achieved by the combination of the proposed features were compared with each individual baseline case.
Additionally we performed ablation tests in order to assess the importance of each feature.

10We included these two correlation measures, although we realized that the relative ordering captured by the Spearman was
more adequate to compare.

1662



4.1 Results: Prediction of strength

The whole combination of the proposed features yielded the best results ofr = 0.4391; ρ = 0.4000
with NN, which significantly outperformed the results with RF,r = 0.3695; ρ = 0.3291. Thus, in the
following, we only discuss the results achieved by NN.

Table 2 displays the strength prediction results inr andρ, where eachfoo indicates an individual
baseline with featurefoo. Table 3 additionally displays the results of ablation tests, where each−foo
indicates the ablated featurefoo. Both tables show two baseline results: one is the figure shown in (Boyd-
Graber et al., 2006); the other is the result achieved by a simple baseline which uniformly assigns the
average strength (2.756) computed from the entire PWN Evocation dataset.

Feature r ρ

All 0.4391 0.4000
ldaSim 0.1559 0.1441
w2vSim 0.2472 0.1841
wupSim 0.0907 0.0663
autoexSim 0.2395 0.1924
posSem 0.2442 0.2489
lexNW 0.1379 0.1211
dirRel 0.0839 0.0622
relV ec 0.2931 0.2763
(Boyd-Graber et al., 2006) NA 0.131
Average 0.0 NA

Table 2: Results: Prediction of evocation
strength (individual features).

Feature r ρ

All 0.4391 0.4000
−ldaSim 0.4378 0.3994
−w2vSim 0.4370 0.3991
−wupSim 0.4387 0.3997
−autoexSim 0.4333 0.3962
−posSem 0.4269 0.3837
−lexNW 0.4379 0.3999
−dirRel 0.4385 0.4000
−relV ec 0.3959 0.3534
(Boyd-Graber et al., 2006) NA 0.131
Average 0.0 NA

Table 3: Results: Prediction of evocation
strength (ablation tests).

The results listed in Table 2 and Table 3 can be summarized as follows.

• None of the individual baseline features could outperform the feature combination caseAll.

• The semantic relatedness measures based on distributed representation (w2vSim andautoexSym)
performed relatively well, suggesting that distributed representation of meaning would be promis-
ing. Besides, it is shown that even asymmetric evocation relationships could be somewhat recovered
by symmetric semantic relatedness.

• A further effective feature wasrelV ec, which in this case is a vector computed from the correspond-
ing Autoextend semantic synset vectors. This definitely highlights the effectiveness of distributed
representation at the concept level.

• Surprisingly,posSem, which essentially is a sparse representation of a synset pair, was a useful
feature by itself, implying that characterization at a coarse semantic level could capture some aspects
of evocation relationships.

• The contributions oflexNW anddirRel, unfortunately, were not remarkable as expected. Indeed,
dirRel might have suffered from the relatively sparse connective structure of PWN.

4.2 Results: Determination of directionality

The combination of all the proposed features yielded 0.8703 in total accuracy with RF, which is consid-
erably more accurate than 0.7642 with NN. Thus, in the following, we only discuss the RF results11.

Table 4 displays the results of the directionality determination for the overall classification accuracy
with individual features, whereas Table 5 displays additional results of the ablation test. The tables also

11The results are markedly different from the tendency observed in the regression results, where NN is superior to RF.
Although, in general, RF algorithms are said to not perform well in regression tasks, this difference should be further examined.
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list the accuracy figures obtained by two baselines:Most frequentalways assigns the most frequent label
(outbound), whereasRandomrandomly assigns a directionality label while observing the distribution
shown in Table 1.

Feature Accuracy

All 0.8703
ldaSim 0.4574
w2vSim 0.4872
wupSim 0.4014
autoexSim 0.4460
posSem 0.4674
lexNW 0.7084
dirRel 0.4400
relV ec 0.7939
Most frequent 0.4014
Random 0.2860

Table 4: Results: Determination of evocation
directionality (individual features).

Feature Accuracy

All 0.8703
−ldaSim 0.8741
−w2vSim 0.8771
−wupSim 0.8709
−autoexSim 0.8704
−posSem 0.8684
−lexNW 0.8670
−dirRel 0.8704
−relV ec 0.7047
Most frequent 0.4014
Random 0.2860

Table 5: Results: Determination of evocation
directionality (ablation tests).

The results in Table 4 and Table 5 can be summarized as follows.

• Similar to the strength prediction problem, the semantic relational vectorsrelV ec played the most
significant role: Without this feature, the accuracy drops by almost 17%. This clearly indicates that
the semantic offset vectors are also useful in this classification task.

• Most of the individual features, including the asymmetric features (posSem anddirRel) did not
perform well by themselves. However, somewhat surprisingly, the graph-theoretic metriclexNW
played a greater role by itself (Accuracy=0.7084), implying that this simple NW-based metric could
capture some aspect of the directionality of evocation relationships.

• On the contrary, contributions of the similarity/relatedness features are not very prominent even
comparing to the random baseline. This might be however reasonable, given that these similar-
ity/relatedness measures are innately symmetric.

Table 6 breaks down the results for theAll feature case. It shows that the performance is generally
good, but that distinguishing “no-evocation” from the other features is rather difficult. We may need to
incorporate features that explicitly model someirrelevancybetween the concept pair.

Directionality Precision Recall F1

outbound 0.8311 0.9272 0.8765
inbound 0.9008 0.8029 0.8491
bidirectional 0.9600 0.9992 0.9792
no-evocation 0.8716 0.7913 0.8295

Table 6: Breakdown of the results forAll features (Accuracy=0.8703).

4.3 Results: Types of semantic relational vectors

It is now evident that semantic relational vectors can be employed as a highly effective feature in both
task types, suggesting that the characteristics of semantic relations, even though they are largely vague
relationships such as evocations, can be captured to some extent by offset semantic vectors. The results
reported thus far were achieved by utilizing Autoextend synset semantic vectors. However, alternatives
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Vector type r ρ Accuracy

synset 0.4391 0.4000 0.8703
w2v 0.4551 0.4158 0.7535
lexeme 0.4267 0.3880 0.7636

Table 7: Comparison of relational vector types.

would be possible: Word2Vec embedding vectors and the Autoextend lexeme semantic vectors can be
assayed.

Table 7 thus compares the results when the type of semantic relational vector was altered. The most
prominent observation in this table is: the synset-based relational vectors are far more effective than other
types of vectors in the directionality classification task (0.8703 compared to around 0.76 in accuracy).
This may indicate that a concept-level representation is more adequate in the classification task, which
essentially is a coarser-level task compared to the strength prediction task. On the other hand, the strength
prediction task may benefit from word-oriented features, asrelV ec(w2v) produced the most accurate
results (although the differences are subtle).

Interestingly however, the in-between representationrelV ec(lexeme) failed to perform better than
any of these. Although the reason should be further examined, it might reflect the mechanism of Autoex-
tend that employs auto-encoders having the layer of lexemes as the middle layer.

5 Related Work

Among the efforts to enrich wordnets, similar to the work of (Boyd-Graber et al., 2006; Ma, 2013)
are (Nikolova et al., 2012) and (Lebani and Pianta, 2012): The former, in the context of ViVA project,
populated PWN with evocation links collected by using a crowd sourcing service, which may help people
with anomic aphasia to navigate among words and concepts; the latter also extended PWN, but with
more semantically relevant feature descriptions acquired from human subjects. Note also that these two
projects may share the purpose: assisting people with verbal disorders.

Although there is a scarcity of research into a computational mechanism for predicting evocation
relationships, some related research can be found in the areas of psycholinguistic semantic association
and asymmetric semantic relatedness. Among a number of psychological/cognitive research studies on
mental lexicons (Maki et al., 2004; De Deyne et al., 2013; De Deyne and Storms, 2015), De Deyne and
Storms (2015) argue that “the entire set of connections between a pair of words in a large network of
knowledge may determine the associative strength between them.” Although thedirRel feature proposed
in this paper partly reflects this indication (since it virtually considers multiple short paths between the
synsets), we could probe the network structures of the underlying lexical-semantic resources even further.

Since an evocation relation is a type of asymmetric semantic relation between lexicalized concepts, it
is naturally associated with the issue of asymmetric similarities (Tversky, 1977). As already mentioned
in this paper, the central notion behind the asymmetric similarity/relatedness isfeature inclusion. In
particular, (Kotlerman et al., 2010) and (Gawron, 2014) make use of dependency parses acquired from
textual corpora as features. These features could potentially also be effective in predicting the evocation
relations in part.

In addition to these areas, the use of semantic relational vectors (offset semantic vectors) (Fu et al.,
2014; Bollegala et al., 2015; Necsulescu et al., 2015; Vylomova et al., 2016) would be worth pursuing
further, as the present results strongly insist that these vectors could be an effective source of features.
Our preliminary attempts (not discussed in this paper) to simply cluster the set of offset vectors into
groups, however, have been proven ineffective in the present task. This may confirm that an evocation
relation may be a composite of elementary semantic relations (Boyd-Graber et al., 2006). In this regard,
we would need to further explore the semantic relational vectors, while considering the semantic paths
connecting the source and target concepts in lexical-semantic networks. Presumably, deciding the edge
weightw(r) for each lexical-semantic relation type in the formula given in 3.2.3 would be a key to this
issue. A closely related approach found in the literature is the “bag-of-edges” approach (Shwartz et al.,
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2015) for automatically selecting an optimized subset of resource relations in a structured resource, given
a target lexical inference task.

6 Concluding Remarks

This paper proposed a supervised learning approach to predict the strength and to determine the direc-
tionality of the evocation relation between lexicalized concepts. The empirical results evidently showed
that the combination of the proposed features largely outperformed the individual baselines, and insisted
that thesemantic relational vectorscomputed from existing semantic synset embedding vectors (Rothe
and Scḧutze, 2015) are quite useful in both tasks.

Although the achieved performances (ρ ≈ 0.42 in regression;Accuracy ≈ 0.87 in classification) are
substantially superior to the figures reported in the literature, they could be further improved by applying
more sophisticated machine learning frameworks. Once we get better performance figures, the proposed
mechanism could be utilized with semantic NLP downstream applications, such as the measurement of
textual similarity/relatedness and the lexical chaining in discourse.

Possible research directions for breakthroughs are (at least) threefold. First, we could explore more
appropriate representations for words/lexemes/lexicalized-concepts. Although we proved in this research
that the AutoExtend vectors were excellent, other approaches might be more effective. Among the
possibilities we are interested in are the incorporation of perceptual features such as those acquired from
images (Silberer and Lapata, 2014; Kiela and Bottou, 2014), as some evocation relationships might be
rooted in human perception.

Second, we should incorporate more relational features. In particular, asymmetric similarity features
that can be acquired from corpora (Kotlerman et al., 2010; Gawron, 2014) would be beneficial, as some
of the evocation relations are rather direct asymmetric relations, such as hypernymy and meronymy. To
facilitate this line of research, we would start with error analysis of the present results.

Finally, but not least important, we can exploit rich but latent information from a range of semantic
resources, such as those with a networked structure; not necessarily limited to PWN. As an evocation
relation could be considered as a shortcut for some longer semantic/conceptual association chains, paths
in the semantic networks that link the source and target concepts could be utilized as a useful source of
features.
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