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Abstract

Evaluation of machine translation (MT) into morphologically rich languages (MRL) has not been
well studied despite posing many challenges. In this paper, we explore the use of embeddings ob-
tained from different levels of lexical and morpho-syntactic linguistic analysis and show that they
improve MT evaluation into an MRL. Specifically we report on Arabic, a language with complex
and rich morphology. Our results show that using a neural-network model with different input
representations produces results that clearly outperform the state-of-the-art for MT evaluation
into Arabic, by almost over 75% increase in correlation with human judgments on pairwise MT
evaluation quality task. More importantly, we demonstrate the usefulness of morpho-syntactic
representations to model sentence similarity for MT evaluation and address complex linguistic
phenomena of Arabic.

1 Introduction

Statistical machine translation (SMT) into morphologically rich languages (MRL) faces many chal-
lenges: from handling a complex and rich vocabulary, to designing adequate MT metrics that take
morphology into account. While the first problem has widely explored (e.g. by using morphological
analysis tools to reduce sparsity), the evaluation part has only been partly addressed. This is problematic
since traditional MT metrics struggle to distinguish between (i) incorrect lexical choices; (ii) valid alter-
native lexical or syntactic variations; and (iii) differences in morphological inflection that are the result
of incorrect case assignment or morphological agreement. While metrics like METEOR (Denkowski and
Lavie, 2011) have made it possible to distinguish between (i) and (ii) by using paraphrases, (iii) is still
an open problem. As a result, progress in SMT for MRL is hindered by the lack of adequate evaluation
metrics. Since SMT metrics are used not only for evaluation but also for tuning system parameters, it is
crucial that the MT metrics correctly handle morphology.

Most recently, deep learning models have been used more heavily in different parts of the natural lan-
guage processing (NLP) community, including MT and MT evaluation. One of the main advantages of
such models is the use of distributed word representations (embeddings). It has been shown that word
embeddings are able to capture to certain semantic and syntactic aspects of words (Mikolov et al., 2013).
Further refinements allow the inclusion of morphological information into distributed representations
(Cotterell and Schütze, 2015). Word embeddings have been shown to help with modeling textual simi-
larity well in the context of MT evaluation for MT into English (Guzmán et al., 2015), and community
Question Answering (Guzmán et al., 2016). Nonetheless little exploration has been done on the use of
embeddings for MT into MRL.

In this paper, we investigate how embeddings obtained from different levels of lexical and morpho-
syntactic linguistic analysis can improve MT evaluation into a MRL. Specifically we report on Arabic,
a language with complex and rich morphology paired with a high degree of ambiguity (Habash, 2010).
Our results show that using a pairwise neural-network over different representations produces results
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that clearly outperform the state-of-the-art for MT evaluation into Arabic, by almost over 75% increase
in correlation with human judgments on pairwise MT evaluation quality task. More importantly, we
demonstrate that the use of embeddings based on morpho-syntactic representations in conjunction with
the non-linear modeling capabilities of a neural-network help to capture the preferences of human judges.

Next, we present related work in Section 2. We describe our approach in detail in Section 3; and we
evaluate in Section 4. We present a discussion of our findings in Section 5.

2 Related Work

Despite its well-known shortcomings (Callison-Burch et al., 2006), BLEU continues to be the de-facto
MT evaluation metric. Several studies have attempted to improve upon it by taking into account differ-
ent aspects of linguistic structures including: (i) synonym dictionaries or paraphrase tables (Denkowski
and Lavie, 2011; Snover et al., 2010); (ii) syntactic information (Liu and Gildea, 2005; Giménez and
Màrquez, 2007; Liu et al., 2010; Chen and Kuhn, 2011); (iii) morphology (Tantug et al., 2008); (iv) se-
mantics (Dahlmeier et al., 2011; Lo et al., 2012) and (v) discourse (Guzmán et al., 2014b; Joty et al.,
2014). Generally, these metrics have been focused on translation into English. However, there has been
little attention into their direct applicability to languages with rich morphology.

Our work focuses on automatic evaluation of translation into morphologically rich languages, Arabic
more specifically. In that sense, our work is related to AL-BLEU (Bouamor et al., 2014) which is an
adaptation of BLEU that gives partial credits for stem and morphological matchings of hypothesis and
reference words. Here, in addition to using lexical information captured by n-gram metrics, we show that
using morpho-syntactic representations can significantly improve the correlation with human judgments.
Furthermore, we use a neural-network, which uses non-linearities to improve modeling.

Over the past few years, neural network models have dramatically improved the state-of-the-art of
different NLP applications (Goldberg, 2015). For instance, in SMT we have observed an increased use
of neural nets for language modeling (Bengio et al., 2003; Mikolov et al., 2010), for improving an-
swer ranking in community Question Answering (Guzmán et al., 2016), for improving the translation
modeling (Devlin et al., 2014; Bahdanau et al., 2014; Cho et al., 2014) and for machine translation
evaluation (Guzmán et al., 2015; Gupta et al., 2015). Our work is related to Guzmán et al. (2015), in sev-
eral levels of lexical, syntactic and semantic are combined in a compact fashion using a pairwise neural
framework. There are several differences between that work and ours: (i) we do not use syntactic embed-
ding representations, (ii) we include additional pairwise features, namely the pairwise cosine similarity
between embeddings; and (ii) we focus on an MRL language. While use of syntactic representations has
proven a useful component to evaluate English, it relies heavily on an syntactic neural parser (Socher et
al., 2013), which increases the complexity of the evaluation setup, and is not readily available for every
language. Here, we instead use morpho-syntactic representations which capture both syntactic and mor-
phological aspects of language. In our experiments, these simple representations are powerful enough to
provide state-of-the-art performance.

In this work, we use neural network models to improve MT evaluation into Arabic using representa-
tions that capture morphology. Morphological structure has been shown to improve the quality of word
clusters (Clark, 2003), word vector representations (Cotterell and Schütze, 2015) and neural language
models (Botha and Blunsom, 2014). The novelty of our work resides in the way we integrate lexical
and morpho-syntactic distributed representations into a neural-network. We demonstrate that combining
several sources of complementary information is useful to capture sentence similarity in a translation
evaluation scenario. And arguably, capture complex phenomena like morphological agreement.

3 Approach

We use a pairwise approach to translation evaluation (Guzmán et al., 2014a) using neural networks. We
use neural networks for two reasons. First, to take advantage of their ability to model complex non-linear
relationships efficiently. Second, to have a framework that allows for easy incorporation of distributed
representations captured by lexical and morpho-syntactic embeddings. In this section, we describe the
neural-network model and the distributed representations we use as features in this work.
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3.1 Learning framework

Neural Network Model Our full neural network model for pairwise evaluation is depicted in Figure 1.
It is a direct adaptation of the feed-forward NN proposed for English MTE (Guzmán et al., 2015). Tech-
nically, we have a binary classification task with input x = (r, t1, t2), which outputs 1 if t1 is a better
translation than t2 in the context of the reference r, or 0 otherwise. The network computes a sigmoid
function f(r, t1, t2) = sig(wT

v φ(r, t1, t2) + bv), where φ(x) transforms the input x through the hidden
layer, wv are the weights from the hidden layer to the output layer, and bv is a bias term.

f(t1,t2,r) 

ψ(t1,r) ψ(t2,r)h12

h1r

h2r
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xt2

xr

xt1
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Figure 1: Overall architecture of the neural network.

To decide which hypothesis is better given the
tuple (r, t1, t2) as input, we map the hypothe-
ses and the reference to a fixed-length vector
[xr,xt1 ,xt2 ], using embeddings based on dif-
ferent lexical and morpho-syntactic representa-
tions.

We model three types of interactions (between
t1, t2 and r) using different groups of nodes in
the hidden layer h12, h1r, h2r. The input to each
of these groups is the concatenation of the vec-
tor representations of the two interacting com-
ponents i.e., x1r = [xt1 ,xr], x2r = [xt2 ,xr],
x12 = [xt1 ,xt2 ].

In summary, the transformation φ(t1, t2, r) =
[h12,h1r,h2r] can be written as :

hij = tanh(Wijxij + bij)

where ij ∈ {12, 1r, 2r}, tanh(.) is a non-linear component-wise activation function, W ∈ RH×N are
the associated weights between the input layer and the hidden layer, and b are the bias terms.

The model further allows to incorporate external sources of information in the form of skip arcs ψ
that go directly from the input to the output layer. These arcs represent pairwise similarity between each
translation and the reference (we denote them as ψ1r = ψ(t1, r) and ψ2r = ψ(t2, r)). We use these
feature vectors to encode two basic elements: (i) the pairwise cosine similarity between the embeddings
from each translation and the reference; and (ii) N-gram based MT evaluation measures (e.g., AL-
BLEU, METEOR, and NIST). We provide more detail about pairwise features in the next section.

Pairwise Network Training The negative log-likelihood of the training data for the model parameters
θ = (W12,W1r,W2r,wv,b12,b1r,b2r, bv) can be written as follows:

Jθ = −
∑
n

yn log ŷnθ + (1− yn) log (1− ŷnθ) + λ
∑

θ2 (1)

where ŷnθ = fn(t1, t2, r) is the activation at the output layer for the n-th data instance, and λ is the L2

regularization penalty. The network is trained with stochastic gradient descent (SGD), mini-batches and
adagrad updates (Duchi et al., 2011), using Theano (Bergstra et al., 2010).

Evaluating a single translation Most of the MT evaluation metrics are not designed to do pairwise,
but absolute evaluation. In other words, we are interested in generating a score for a single translation t1
given a reference r. To achieve this with our pairwise network, we compute the goodness margin, which
tells us how good translation t1 is better than any other translation t∅ given the reference r. In this case,
t∅ is the average representation for all translations observed during training.

To compute the margin, we subtract the scores for the direct and reverse network predictions, and
generate the final score for the sentence: score(t, r) = 1 + (f(r, t, t∅)− f(r, t∅, t)) /2.

Note that we use both direct and reverse predictions as our network is not exactly symmetric. We also
shift the score to range between [0, 1].
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3.2 Features

In this work, we compare different sets of features representing different levels lexical and morpho-
syntactic information. As a baseline, we also used several MT metrics that are based on n-gram matches.

Lexical units A distinguishing characteristic of Arabic morphology is the presence of concatenative
morphemes, where words are formed via concatenations of stems, affixes and clitics. To allow our system
to model how morphemes interact at a finer level, we split the morphemes. We used MADAMIRA (Pasha
et al., 2014), the state-of-the-art morphological analyzer and disambiguator, to perform morphological
tokenization following ATB scheme (Habash and Sadat, 2006). We extracted two forms of lexical fea-
tures: NORM and TOKEN, which are tokens with and without Alef/Yaa normalization, respectively. We
also extract the LEMMA feature; a morphological abstraction that represents words related by inflectional
morphology.

Morpho-Syntactic units We extracted part-of-speech (POS) tags according to different POS
tagsets including: (i) CATIBPOS(Habash et al., 2009), (ii) KULICKPOS1 (Kulick et al., 2006),
(iii) BUCKWALTERPOS (Buckwalter, 2004) and (iv) STANFORDPOS tagsets. These tagsets differ
in their richness and complexity they capture. CATIBPOS is the simplest with only 6 base tags2,
BUCKWALTERPOS is the richest with 485 base tags, and KULICKPOS and STANFORDPOS come in-
between with 43 and 32 base tags, respectively. These tags were extracted using MADAMIRA, except
for the Stanford tags, for which we used Stanford CoreNLP (Manning et al., 2014). Table 1 illustrates an
example sentence with its lexical and morpho-syntactic features.3

Sentence: ςAd AlmSrywn Alðyn AxtTfwA Ǎlý bldhm − ÑëYÊK. úÍ@ @ñ 	®¢�J 	k@ 	áK

	YË @ 	àñK
Qå�ÖÏ @ XA«

TOKEN
Ñë+ YÊK. úÍ@ @ñ 	®¢�J 	k@ 	áK


	YË @ 	àñK
Qå�ÖÏ @ XA«
+hm bld Ǎlý AxtTfwA Alðyn AlmSrywn ςAd

NORM
Ñë+ YÊK. ú
Í@ @ñ 	®¢�J 	k@ 	áK


	YË @ 	àñK
Qå�ÖÏ @ XA«
+hm bld Aly AxtTfwA Alðyn AlmSrywn ςAd

LEMMA
Ñ �ë+ Y

�
Ê�K. ú

�
Í@�

	 �¢��J �	k@� ø

	Y�
��
Ë @ �ø
 Q�å�Ó� XA �«

+hum balad Ǎilaý Aix.taTaf Al∼aðiy miS.riy∼ ςaAd

CATIBPOS +NOM NOM PRT VRB-PASS NOM NOM VRB

KULICKPOS +PRP$ NN IN VBN WP DT+NNS VBD

STANFORDPOS PRP$ NN IN VBN WP DTNNS VBD

BUCKWALTERPOS
+POSS NOUN

PREP
PV_PASS

REL_PRON
DET+NOUN PV+

_PRON +CASE +PVSUFF +NSUFF PVSUFF
_3MP _DEF_GEN _SUBJ:3MP _MASC_PL_NOM _SUBJ:3MS

GLOSS their country to were abducted which the Egyptians returned

English The Egyptians who were abducted returned to their country.

Table 1: Illustration of the lexical and morpho-syntactic feature representations extracted for an example
sentence. The sentence is presented from right to left following the directionality of writing Arabic.

Distributed representations To obtain embeddings based on the lexical and morpho-syntactic units
described above, we annotated the fifth edition of the Gigaword corpus (LDC2011T11) with each of
the representations. Then, we trained word embeddings using word2vec (Mikolov et al., 2013). To

1(Pasha et al., 2014) refers to Kulick tagset as the Penn ATB tagset, while it is Buckwalter tagset that is used in Penn ATB.
2The size of each tagset is expected to increase since Arabic morphemes can function as clitics, and their corresponding

POS tags are then assigned a clitic marker (+). The final sizes of the extracted POS tags are shown in Table 4.
3Arabic transliteration is presented in the Habash-Soudi-Buckwalter scheme (Habash et al., 2007) (in alphabetical order):

@ H. �H �H h. h p X 	X P 	P � �� � 	�   	  ¨ 	̈ 	¬ �� ¼ È Ð 	à è ð ø
 Â b t θ j H x d ð r z s š S D T Ď ς γ f q k l m n h w y, and

the additional symbols: Z ’,

@ Â, @ Ǎ,

�
@ Ā, ð' ŵ, Zø' ŷ, �è ~, ø ý. Diacritics are represented as: �� a, �� u, �� i, �� ., �� ã, �� ũ, �� ı̃, and �� ∼.

1401



obtain sentence-level representations for each of the translations and the references, we used additive
composition (Mitchell and Lapata, 2010) with dropping unknown words.

N-gram MT metrics We used the different n-gram based metrics to serve as a benchmark, and as addi-
tional features that capture lexical similarity. We used: BLEU+1 (Nakov et al., 2012),NIST (Doddington,
2002); METEOR (Denkowski and Lavie, 2011), 1-TER (Snover et al., 2006), and AL-BLEU (Bouamor
et al., 2014), to compute scores at the sentence-level. For consistency with previous work, we report
scores over words, and not over morphemes.

4 Experimental Setup

In this section, we describe the experimental settings we used through our study. First, we introduce our
evaluation criteria, then we elaborate on the dataset and various settings we used for our experiments.

4.1 Performance evaluation

Automatic evaluation metrics are evaluated based on their correlation with human-performed evaluations
(Soricut and Brill, 2004). In this work, we use Kendall’s τ , a coefficient that measures the agreement
between rankings produced by human judgments and rankings produced by an automatic metric, at the
sentence-level. We use the WMT’12 (workshop of machine translation) definition of Kendall’s τ that
ignores ties, and is calculated as follows: [τ = (# concordant pairs − # discordant pairs) /total pairs],
where the # concordant pairs is the number of times the human judgment and the automatic metric agree
in the ranking of any two translations that belong to the same source sentence. The # discordant pairs is
the opposite. The value of τ ranges from −1 (all pairs are discordant) to +1 (all pairs are concordant).

4.2 Data

To evaluate the performance of the neural-network, we evaluated its Kendall’s τ given different input
representations. We used a medium-scale corpus of human judgments for Arabic MT outputs covering
different topics in the news domain (Bouamor et al., 2014). The corpus is composed of 1,383 sentences
selected from two datasets: (i) the standard English-Arabic NIST 2005 corpus, commonly used for MT
evaluations and composed of political news stories; and (ii) a small dataset of translated Wikipedia arti-
cles. This corpus contains the source and target text along with the automatic translations produced by
five English-to-Arabic MT systems: three research-oriented phrase-based systems with various morpho-
logical and syntactic features and two commercial, off-the-shelf systems. The corpus contains annota-
tions that assess the quality of the five systems, by ranking their translation candidates from best to worst
for each source sentence in the corpus. The annotation was conducted by mirroring the WMT evaluation
campaigns (Callison-Burch et al., 2011), but with few key differences: (i) the full corpus was annotated
with no random sampling, and (ii) the task was performed by two independent native speakers of Arabic.
The total number of annotated pairs in this corpus is 33,192 (each sentence has two annotations, each
yielding 12 rankings). The agreement between the annotators in terms of Kendall’s τ is 49.20 (which
roughly translates to agreement in 75% of all rankings). We used random partitions of 783 sentences for
training (TRAIN), 300 sentences for tuning (DEV) and 300 sentences for testing (TEST).

4.3 Network Settings

We train our model on TRAIN with hidden layers of size 10 for 30 epochs with mini batches of size
30, L2 regularization of 0.0001, and a learning rate of 0.01. We normalize the input feature values to
the [−1; 1] interval using minmax, and we initialize the network weights by sampling from a uniform
distribution as in (Bengio and Glorot, 2010).

We evaluate the model on DEV after each epoch, and keep the one that achieves the highest accuracy.
We selected the above parameter values on the DEV dataset using the full model, and we use them for
all experiments described in Section 5, where we evaluate on the official TEST dataset.

Note that, we train the pairwise neural-network using all pairwise rankings in the TRAIN set. At test
time, we compute the scores of the translations in TEST using the absolute scoring previously described.
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5 Results

In this section we present the main results from our experiments. Since the dataset is new, we first present
the Kendall’s τ scores obtained from five n-gram based metrics that are popular in the community. Then,
we present the results of using embeddings obtained from different representations as input to train the
neural-network. Finally, we present combination of representations, that shed light on the capabilities of
the neural-network to learn how to exploit different levels of lexical and morpho-syntactic information.

A. MT Metrics B. Embeddings
Kendall’s τ Kendall’s τ

Lexical
1 NIST 17.94 7 TOKEN 24.35
2 METEOR 17.90 8 NORM 23.22
3 AL-BLEU 17.02 9 LEMMA 21.17
4 BLEU 16.11 Morpho-syntactic
5 1-TER 4.97 10 BUCKWALTERPOS 25.49

11 KULICKPOS 16.25
6 5METRICS 18.12 12 STANFORDPOS 10.90

13 CATIBPOS 5.41

Table 2: Kendall’s τ on the TEST set for traditional n-gram based metrics as well as metrics built using
different lexical and morpho-syntactic embeddings as input to the neural-network.

5.1 MT Metrics
In Table 2.A, we present four of the most popular MT metrics: BLEU, NIST, METEOR and 1-TER,
along with AL-BLEU; a precision-based metric that is designed to handle Arabic morphology. These
metrics were calculated over tokenized text. From the results, we observe that NIST and METEOR obtain
very similar performances for this task, with 17.94 and 17.90, respectively.4 This suggests that both the
paraphrasing that METEOR uses, and the precision weighting by n-gram importance that NIST does,
yield results that are more in line with human judgments than other metrics. Additionally, the role of
morphology is important, as AL-BLEU presents an improvement over BLEU (17.02 vs 16.11).

Next, we combine the five metrics in a logistic regression model. We observe that the 5METRICS

combination yields only minor improvements over the best single metrics, suggesting limited comple-
mentarity. We use this 5METRICS combination as a baseline to compare to next experiments.

5.2 Embeddings
In Table 2.B, we present the results of using the neural-network with embeddings for different repre-
sentations. Using the embeddings for any lexical representations (TOKEN, NORM, LEMMA) produces
significant improvements (+3%) over any of the MT metrics and their combination, yielding state-of-
the-art results. The relative increase over 5METRICS ranges from 17% (+3.05% absolute with LEMMA)
to 34% (+6.23% absolute with TOKEN).

Using the embeddings obtained for morpho-syntactic representations results in a wide-range of results.
Surprisingly, the BUCKWALTERPOS representation obtains very competitive scores, even surpassing the
lexical representations and yielding the highest score yet with a 41% relative increase over 5METRICS

(+7.37% absolute). However, none of the other morpho-syntactic representations improve on 5METRICS.
There is a clear correlation between the size of the POS tag-set and the performance of the metric. We
explore this relationship more in depth in Section. 5.4.

5.3 Combination of Representations
Given the complimentary information embedded in the different representations, it is natural to combine
them to obtain a stronger metric. To combine different embedding representations, we simply concate-
nate the different embedding representations before feeding them to the network. Below, we present

4Note that the Kendall’s τ results for METEOR are in the range of the results for translation from English into other two
morphologically rich languages (German: 18.0 and Czech 16.0) reported in WMT 2012 (Callison-Burch et al., 2012)
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Kendall’s τ

Combinations result prev. best delta

C. Embeddings and N-gram based metrics
Lexical
14 5METRICS+TOKEN 23.62 24.35 ( -0.73)
15 5METRICS+NORM 24.17 23.22 (+0.95)
16 5METRICS+LEMMA 23.51 21.17 (+2.34)
Morpho-syntactic
17 5METRICS+BUCKWALTERPOS 29.81 25.49 (+4.32)
18 5METRICS+KULICKPOS 23.58 18.12 (+5.46)
19 5METRICS+STANFORDPOS 21.79 18.12 (+3.67)
20 5METRICS+CATIBPOS 18.93 18.12 (+0.81)

D. Embedding mixtures

Lexical + Lexical
21 TOKEN +NORM 25.12 24.35 (+0.77)
22 NORM + LEMMA 25.42 23.22 (+2.20)
23 TOKEN+LEMMA 24.90 24.35 (+0.55)
24 TOKEN+NORM+LEMMA 25.34 25.42 (-0.08)
Lexical + Morpho-syntactic
25 BUCKWALTERPOS+TOKEN * 31.87 25.49 (+6.38)
26 BUCKWALTERPOS+NORM 30.69 25.49 (+5.19)
27 BUCKWALTERPOS+LEMMA 30.69 25.49 (+5.19)

E. Embedding mixtures + Ngram-based metrics

Lexical + Lexical
28 5METRICS+TOKEN+NORM 25.56 25.12 (+0.44)
29 5METRICS+NORM+LEMMA 25.42 25.42 (+0.00)
30 5METRICS+TOKEN+LEMMA 25.45 24.90 (+0.55)
31 5METRICS+TOKEN+NORM+LEMMA 28.35 25.42 (+2.93)
Lexical + Morpho-syntactic
32 5METRICS+BUCKWALTERPOS+TOKEN 29.78 31.87 (-2.09)
33 5METRICS+BUCKWALTERPOS+NORM 30.73 30.69 (+0.04)
34 5METRICS+BUCKWALTERPOS+TOKEN+LEMMA+NORM 30.44 31.87 (-1.43)

Table 3: Kendall’s τ on the TEST set for metrics built using combination of lexical and morpho-syntactic
embeddings in addition to the 5METRICS. For comparison, we compare the result of the combination to
the best result of any of the components in the combination. The best result overall is marked with *.

three sets of results involving different types of combinations in Table 3. In addition to the Kendall’s τ
of a particular combination x, we indicate the best previous result (i.e., result of a sub-combination that
was presented already, underlined), and its delta from combination x.

Embeddings and MT Metrics In Table 3.C, we present the results of adding the 5METRICS to the
different embeddings in Table 2.B as skip-arc features. For lexical embeddings, we observe slight im-
provements, except for the TOKEN representation, which has a small decrease. The combination of each
of the morpho-syntactic embeddings with 5METRICS improves over 5METRICS. For the best performer
so far, BUCKWALTERPOS, we get even more improvements, reaching an 11.69 absolute increase over
5METRICS (65% relative). This showcases that the neural-network is able to successfully make use of the
complementarity between n-gram-based MT metrics and other sources of morpho-syntactic information.

Embedding Mixtures Table 3.D presents the results of combining lexical and morpho-syntactic em-
beddings. Every pairwise combination of lexical embeddings improves over either embedding combined.
However, putting all lexical embeddings together is not as good as NORM+LEMMA. Combining the best
morpho-syntactic performer (BUCKWALTERPOS) with each lexical embedding produces large improve-
ments. This highlights the ability of the neural-network to exploit the interactions between different
representations to provide a more robust metric. With BUCKWALTERPOS+TOKEN, we reach our best
results, improving over the 5METRICS baseline by 13.75% (or 75.9% relative improvement).
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Embedding Mixtures and MT Metrics Finally, we present in Table 3.E the results of combining
5METRICS with different combinations of embeddings. The addition of 5METRICS to pairs of lexical
embeddings does not hurt and only slightly improves the scores. However, putting all of the lexical
embeddings together with 5METRICS makes a nice increase, although still not competitive with our
best result so far. Finally, combining 5METRICS+BUCKWALTERPOS with different lexical embeddings
seems to make little improvement if any.

5.4 Discussion
One of the interesting results from Table 2.B is the wide range of scores for the different embeddings.
Surprisingly, the BUCKWALTERPOS representation does remarkably well. Here we investigate some
possibilities for this behavior.

Feature expressiveness In Table 4, we consider different aspects of the different embeddings: their
vocabulary size, their token out-of-vocabulary rate, the standard deviation of the cosine similarity scores
they assign to each sentence in TEST, as well as their respective Kendall’s τ scores. The larger the
variance, the more expressive and informative the representation is, as it gives more diverse values for
cosine similarity between translation and references.

Vocab Size Token OOV Rate (%) StDev Cos Sim Kendall’s τ

TOKEN 98,923 1.32 9.57·10−2 24.35
NORM 97,870 1.29 9.51·10−2 23.22
LEMMA 51,493 1.25 9.12·10−2 21.17
BUCKWALTERPOS 714 0.00 9.87·10−2 25.49
KULICKPOS 53 0.00 4.97·10−2 16.25
STANFORDPOS 32 0.00 4.16·10−2 10.90
CATIBPOS 11 0.00 3.84·10−2 5.41

Table 4: Statistics for the different embedding representations and their impact on TEST: vocabulary
size of the embedding representations, token OOV rate of the embedding vocabulary on the TEST set,
the standard deviation (StDev) of cosine similarity values for all translation–reference pairs in the TEST

set and the Kendall’s τon the TEST.

Overall, we observe that the variance (or the standard deviation) of the values in the cosine similarity
and the Kendall’s τ scores correlate very well at ρ = 0.94. One way to interpret this is that the more
expressive the representation is, the better it performs at MT evaluation. The size of the vocabulary
generally adds expressiveness to a feature, and correlates within the lexical subset and the morpho-
syntactic subset of the representations (but not across or overall). However, lexical representations lose
expressiveness because OOVs.

Agreement The BUCKWALTERPOS representation is particularly rich and captures the morphological
complexity of Arabic. Thus, it can be used to represent patterns of grammatical agreement across words,
e.g., verb-subject and noun-adjective. While the lexical embedding may capture that the two verbs
I. �JºK
 yktb ‘he writes’ and I. �Jº�K tktb ‘she writes’ may occur in similar contexts, the BUCKWALTERPOS
representation models for agreement with the context they appear in. Since Arabic uses agreement
heavily across verbs and noun phrases, we expect that the simple additive combination used with word
embeddings is able to capture impressions of gender or number, just enough to allow the model to
distinguish between sequences that are closer to the reference from those that are not. For example, the
sentence I. �JºK
 	à


@ Q�
 	ª�Ë@ É 	®¢Ë@ YK
QK
 yryd AlTfl AlSγyr Ân yktb ‘the little boy wants to write’ encodes

the masculine singular gender in four of its words. Simpler POS tags do not mark this information and
thus are unable to distinguish between sentences that use the correct and incorrect gender information.
In our experience, human judges pay careful attention to agreement errors as they reduce the fluency of
the text even as the basic "accuracy" of it is kept.

Morpho-semantics The BUCKWALTERPOS representation contains some semantic features related
to specific POS tags. To give a concrete example, in our data set, a future verb was translated correctly
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using the particle
	¬ñ� swf ‘will’ (BUCKWALTERPOS: FUT_PART) by system A, and incorrectly as

the particle 	áË ln ‘will not’ (BUCKWALTERPOS: NEG_PART) by system B. However, the reference had
no future particle. While both translations were penalized equally (in terms of cosine similarity) in
the TOKEN representation, the sentence with the negation POS NEG_PART was penalized more in the
BUCKWALTERPOS representation. There are a number of negative particles in Arabic and all get the
same BUCKWALTERPOS tag. This, we believe allows the neural-network to abstract and model them
correctly.

Task specific Another reason that using morpho-syntactic helps MT evaluation even in isolation is that
by definition, the setup of the MT evaluation forces translation and references to be somewhat close.
Here, capturing agreement and POS semantics seem to correlate well with human judgments. We don’t
expect that using the morpho-syntactic to capture other type of sentence similarity (e.g mining sentence
pairs in comparable corpora) will work as well.

6 Conclusions and Future Work

In this paper, we explored the use of different lexical and morpho-syntactic representations to model
similarity in the context of MT evaluation for a morphologically rich language such as Arabic. Our results
show that using the neural-network with the input embeddings obtained from different representations
makes impressive gains individually and, especially, in combination. This confirms the neural-network
ability to model complex interactions between the feature sets. The fact that the best performers in
each of these subsets when combined (BUCKWALTERPOS+TOKEN) show very high gains; suggests that
they are modeling very different aspects of the text. The lexical embeddings we posit model semantic
similarity between test and reference; while the morpho-syntactic embeddings model syntactic similarity,
and complex phenomena like morphological agreement.

Furthermore, when paired to morpho-syntactic representations, the distributed lexical information
seems to be a good alternative to n-gram metrics to obtain state-of-the-art results. In the future, we
would like to use rich morpho-syntactic representations for evaluation into other MRL languages to
validate our observations for Arabic. For instance, this framework can be easily ported to European lan-
guages, such as German, Russian or Czech, where: (i) there the existence of morphological analyzers
makes it feasible to develop morpho-syntactic embeddings, and (ii) there are datasets available (from
WMT Evaluation Campaigns) to develop and evaluate such metrics. Finally, we want to test the use of
morpho-syntactic representation in other tasks such as source language modeling for Neural Machine
Translation.
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