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Abstract

We present a model of visually-grounded language learning based on stacked gated recurrent
neural networks which learns to predict visual features given an image description in the form of
a sequence of phonemes. The learning task resembles that faced by human language learners who
need to discover both structure and meaning from noisy and ambiguous data across modalities.
We show that our model indeed learns to predict features of the visual context given phonetically
transcribed image descriptions, and show that it represents linguistic information in a hierarchy
of levels: lower layers in the stack are comparatively more sensitive to form, whereas higher
layers are more sensitive to meaning.

1 Introduction

Children acquire their native language with little and weak supervision, exploiting noisy correlations
between speech, visual, and other sensory signals, as well as via feedback from interaction with their
peers and parents. Understanding this process is an important scientific challenge in its own right, but
it also has potential to generate insights useful in engineering efforts to design conversational agents or
robots. Computationally modeling the ability to learn linguistic form–meaning pairings has been the
focus of much research, under scenarios simplified in a variety of ways, for example:

• distributional learning from pure word-word co-occurrences with no perceptual grounding (Lan-
dauer et al., 1998; Kiros et al., 2015);

• cross-situational learning with word sequences and sets of symbols representing sensory input
(Siskind, 1996; Fazly et al., 2010);

• cross-situational learning using sensory audio and visual input, but with extremely limited sets of
words and objects (Roy and Pentland, 2002; Iwahashi, 2003).

Some recent models have used more naturalistic, larger-scale inputs, for example in cross-modal dis-
tributional semantics (Lazaridou et al., 2015) or in implementations of the acquisition process trained on
images paired with their descriptions (Chrupała et al., 2015). While in these works the representation
of the visual scene consists of pixel-level perceptual data, the linguistic input consists of sentences seg-
mented into discrete word symbols. In this paper we take a step towards addressing this major limitation,
by using the phonetic transcription of input utterances. While this type of input is symbolic rather than
perceptual, it goes a long way toward making the setting more naturalistic, and the acquisition prob-
lem more challenging: the learner may need to discover structure corresponding to morphemes, words
and phrases in an unsegmented string of phonemes, and the length of the dependencies that need to be
detected grows substantially when compared to word-level models.

This work is licensed under a Creative Commons Attribution 4.0 International License. License details: http://
creativecommons.org/licenses/by/4.0/
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Our contributions We design and implement a simple architecture based on stacked recurrent neural
networks with Gated Recurrent Units (Chung et al., 2014): our model processes the utterance phoneme
by phoneme while building a distributed low-dimensional semantic representation through a series of re-
current layers. The model learns by projecting its sentence representation to image space and comparing
it to the features of the corresponding visual scene.

We train this model on a phonetically transcribed version of MS-COCO (Lin et al., 2014) and show
that it is able to successfully learn to understand aspects of sentence meaning from the visual signal, and
exploits temporal structure in the input. In a number of experiments we show that different levels in
the stack of recurrent layers represent different aspects of linguistic structure. Low levels focus on local,
short-time-scale spans of the input sequence, and are comparatively more sensitive to form. The top level
encodes global aspects of the input sequence and is sensitive to visually salient elements of its meaning.

2 Related work

A major part of learning language consists in learning its structure, but in order to be able to communicate
it is also of crucial importance to learn the relation of words to entities in the world. Grounded lexical
acquisition is often modeled as cross-situational learning, a process of rule-based (Siskind, 1996) or sta-
tistical (Fazly et al., 2010; Frank et al., 2007) inference of word-to-referent mappings. Cross-situational
models typically work on word-level language input and symbolic representations of the context. How-
ever, infants have to learn from continuous perceptual input. Lazaridou et al. (2016) partially remedy this
shortcoming and propose a model of learning word meanings from text paired with continuous image
representations; the limitation of their work is the toy evaluation dataset.

Recent experimental and computational studies have found that co-occurring visual information may
help to learn word forms (Thiessen, 2010; Cunillera et al., 2010; Glicksohn and Cohen, 2013; Yurovsky
et al., 2012). This suggests that acquisition of word form and meaning are interactive, rather than sepa-
rate.

The Cross-channel Early Lexical Learning (CELL) model of Roy and Pentland (2002) and the more
recent work of Räsänen and Rasilo (2015) take into account the continuous nature of the speech signal,
and incorporate visual information as well. The CELL model learns to discover words in continuous
speech through co-occurence with their visual referent, but the visual input only consists of the shape
of single objects, effectively bypassing referential uncertainty. Räsänen and Rasilo (2015) propose a
probabilistic joint model of word segmentation and meaning acquisition from raw speech and a set of
possible referents that appear in the context. In both Roy and Pentland (2002) and Räsänen and Rasilo
(2015) the visual context is considerably less noisy and ambiguous than that available to children.

There is an extensive line of research on image captioning (see Bernardi et al. (2016) for a recent
overview). Typically, captioning models learn to recognize high-level image features and associate them
with words. Inspired by both image captioning research and cross-situational human language acquisi-
tion, two recent automatic speech recognition models learn to recognize word forms from visual data. In
Synnaeve et al. (2014), language input consists of single spoken words and visual data consists of image
fragments, which the model learns to associate. Harwath and Glass (2015) employ two convolutional
neural networks, a visual object recognition model and a word recognition model, and an embedding
alignment model that learns to map recognized words and objects into the same high-dimensional space.
Although the object recognition works on the raw visual input, the speech signal is segmented into words
before presenting it to the word recognition model. As both Harwath and Glass (2015) and Synnaeve
et al. (2014) work with word-sized chunks of speech, they bypass the segmentation problem that human
language learners face.

Character-level input representations have recently gained attention in NLP. Ling et al. (2015) and
Plank et al. (2016) use bidirectional LSTMs to compose characters into word embeddings, while Chung
et al. (2016) propose machine translation model with character level output. These approaches exploit
character-level information but crucially they assume that word boundaries are available in the input.

Character-level neural NLP without explicit word boundaries in the input is studied in cases where
fixed vocabularies are inherently problematic, e.g. with combined natural and programming language
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input (Chrupała, 2013) or when specifically dealing with misspelled words in automatic writing feedback
(Xie et al., 2016).

Character-level language models are analyzed in Hermans and Schrauwen (2013) and Karpathy et
al. (2015). Both studies show that character-level recurrent neural networks are sensitive to long-range
dependencies: for example by keeping track of opening and closing parentheses over stretches of text.
Hermans and Schrauwen (2013) describe the hierarchical organization that emerges during training, with
higher layers processing information over longer timescales. In our work we show related effects in a
model of visually-grounded language learning from unsegmented phonemic strings.

We use phonetic transcription of full sentences as a first step towards large-scale multimodal language
learning from speech co-occurring with visual scenes. The use of phonetic transcription rather than raw
speech signal simplifies learning and allows us to perform experiments on the encoding of linguistic
knowledge as reported in section 4 without additional annotation. Our goal is to model a multi-modal
language learning process that includes the segmentation problem faced by human language learners.
In contrast to character-level NLP and language modeling approaches, our input data therefore does not
contain word boundaries or strong cues such as whitespace and punctuation.

In contrast to Roy and Pentland (2002) and Räsänen and Rasilo (2015), the visual input to our model
consists of high-level visual features, which means it contains ambiguity and noise. In contrast to Syn-
naeve et al. (2014) and Harwath and Glass (2015), we consider full utterances rather than separate words.

To our knowledge, there is no work yet on multimodal phoneme or character-level language modeling
with visual input. Although the language input in this study is low-level-symbolic rather than perceptual,
the learning problem is similar to that of a human language learner: discover language structure as well
as meaning, based on ambiguous and noisy data from another modality.

Chrupała et al. (2015) simulate visually grounded human language learning in face of noise and am-
biguity in the visual domain. Their model predicts visual context given a sequence of words. While the
visual input consists of a continuous representation, the language input consists of a sequence of words.
The aim of this study is to take their approach one step further towards multimodal language learning
from raw perceptual input. Kádár et al. (2016) develop techniques for understanding and interpretation
of the representations of linguistic form and meaning in recurrent neural networks, and apply these to
word-level models. In our work we share the goal of revealing the nature of emerging representations,
but we do not assume words as their basic unit. Also, we are especially concerned with the emergence
of a hierarchy of levels of representations in stacked recurrent networks.

3 Models

Consider a learner who sees a person pointing at a scene and uttering the unfamiliar phrase Look, the
monkeys’re playing. We may suppose that the learner will update her language understanding model such
that the subsequent utterance of this phrase will evoke in her mind something close to the impression of
this visual scene. Our model is a particular instantiation of this simple idea.

3.1 Phon GRU

The architecture of our main model of interest, PHON GRU is schematically depicted in Figure 1 and
consists of a phoneme encoding layer, followed by a stack of K Gated Recurrent Neural nets, followed
by a densely connected layer which maps the last hidden state of the top recurrent layer to a vector of
visual features.

Gated Recurrent Units (GRU) were introduced in Cho et al. (2014) and Chung et al. (2014) as an
attempt to alleviate the problem of vanishing gradient in standard simple recurrent nets as known since the
work of Elman (1990). GRUs have a linear shortcut through timesteps which bypasses the nonlinearity
and thus promotes gradient flow. Specifically, a GRU computes the hidden state at current time step, ht,
as the linear combination of previous activation ht−1, and a new candidate activation h̃t:

gru(xt,ht−1) = (1− zt)� ht−1 + zt � h̃t (1)
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Figure 1: A three-timestep slice of the stacked
recurrent architecture with three hidden layers.

A young woman riding a horse holding a flag

Figure 2: (Top) Example of a postprocessed
phonetic transcription from eSpeak used as in-
put to the PHON GRU model. (Bottom) Corre-
sponding image.

where � is elementwise multiplication, and the update gate activation zt determines the amount of new
information mixed in the current state:

zt = σs(Wzxt + Uzht−1) (2)

The candidate activation is computed as:

h̃t = σ(Wxt + U(rt � ht−1)) (3)

The reset gate rt determines how much of the current input xt is mixed in the previous state ht−1 to
form the candidate activation:

rt = σs(Wrxt + Urht−1) (4)

By applying the gru function repeatedly a GRU layer maps a sequence of inputs to a sequence of
states:

GRU(X,h0) = gru(xn, . . . , gru(x2, gru(x1,h0))) (5)

where X stands for the matrix composed of input column vectors x1, . . . ,xn. Two or more GRU layers
can be composed into a stack:

GRU2(GRU1(X,h10),h20). (6)

In our version of the Stacked GRU architecture we use residualized layers:

GRUres(X,h0) = GRU(X,h0) + X (7)

Residual convolutional networks were introduced by He et al. (2015), while Oord et al. (2016) showed
their applicability to recurrent architectures. We adopt residualized layers here as we observed they speed
up learning in stacks of several GRU layers.

Our gated recurrent units use steep sigmoids for gate activations:

σs(z) =
1

1 + exp(−3.75z)

and rectified linear units clipped between 0 and 5 for the unit activations:

σ(z) = clip(0.5(z + abs(z)), 0, 5)

There are two more components of our PHON GRU model: the phoneme encoding layer, and mapping
from the final state of the top GRU layer to the image feature vector. The phoneme encoding layer is
a simply a lookup table E whose columns correspond to one-hot-encoded phoneme vectors. The input
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phoneme pt of utterance p at each step t indexes into the encoding matrix and produces the input column
vector:

xt = E[:, pt]. (8)

Finally, we map the final state of the top GRU layer hKn to the vector of image features using a fully
connected layer:

î = IhKn (9)

Our main interest lies in recurrent phoneme-level modeling. However, in order to put the performance
of the phoneme-level PHON GRU into perspective, we compare it to two word-level models. Importantly,
the word models should not be seen as baselines, as they have access to word boundary and word identity
information not available to PHON GRU.

3.2 Word GRU
The architecture of this model is the same as PHON GRU with the difference that we use words instead of
phonemes as input symbols, use learnable word embeddings instead of fixed one-hot phoneme encodings,
and reduce the number of layers in the GRU stack. See Section 4 for details.

3.3 Word Sum
The second model we use for comparison is a word-based non-sequential model, consisting of a word
embedding matrix, a vector sum operator, and a mapping to the image feature vector:

î = I
n∑

t=1

E[:, wt] (10)

where wt is the word at position t in the input utterance. This model simply learns word embeddings
which are then summed into a single vector and projected to the target image vector. Thus this model
does not have access to word sequence information, and is a distributed analog of a bag-of-words model.

4 Experiments

For all experiments, the models were trained on the training set of MS-COCO. MS-COCO contains over
163,000 images accompanied by at least five captions by human annotators. With an average of 7.7
labeled object instances per image, images typically contain more objects than the captions mention,
making reference to the scene ambiguous. Textual input for the PHON GRU models was transcribed
automatically using the grapheme-to-phoneme functionality with the default English voice of the eSpeak
speech synthesis toolkit.1 Stress and pause markers were removed, as well as word boundaries (after
storing their position for use in experiments), leaving only phoneme symbols. See Figure 2 for an
example transcription.

Visual input for all models was obtained by forwarding images through the 16-layer convolutional
neural network described in Simonyan and Zisserman (2014) pre-trained on Imagenet (Russakovsky et
al., 2014), and recording the activation vectors of the pre-softmax layer. The z-score transformation was
applied to these features to ease optimization.

Most of the details of the three model types and training hyperparameters were adopted from related
work, and adapted via a limited amount of exploratory experimentation. Exhaustive exploration of the
search space was not feasible due to the large number of adjustable settings in these models and their
long running time. Given the importance of depth for our purposes, we did systematically explore the
number of layers in the PHON GRU and WORD GRU models. A single layer is optimal for WORD

GRU. For PHON GRU, see Section 4.1 below. Other important settings were as follows:

• All models: Implemented in Theano (Bastien et al., 2012), optimized with Adam (Kingma and Ba,
2014), initial learning rate of 0.0002, minibatch size of 64, gradient norm clipped to 5.0.

1Available at http://espeak.sourceforge.net
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• WORD SUM: 1024-dimensional word embeddings, words with frequencies below 10 replaced by
UNK token.

• WORD GRU: 1024-dimensional word embeddings, a single 1024 dimensional hidden layer, words
with frequencies below 10 replaced by UNK token.

• PHON GRU: 1024-dimensional hidden layers.

4.1 Prediction of visual features
The models are trained and evaluated on the prediction of visual feature vectors from captions. While
our goal is not to develop an image retrieval method, we use this task as it reflects the ability to extract
visually salient semantic information from language. For the experiments on the prediction of visual
features all models were trained on the training set of MS-COCO. As validation and test data we used a
random sample of 5000 images each from the MS-COCO validation set.

Figure 3 shows the value of the validation average cosine distance between the predicted visual vector
and the target vector for three random initializations of each of the model types.

The Phonetic GRU model is more sensitive to the initialization: one can clearly distinguish three
separate trajectories. The word-level models are much less affected by random initialization. In terms
of the overall performance, the PHON GRU model falls between the WORD SUM model and the WORD

GRU model.
We also evaluated the models on how well they perform when used to search images: for each val-

idation sentence the model was used to predict the visual vector. The image vectors in the validation
data were then ranked by cosine similarity to the predicted vector, and the proportion of times the correct
image was among the top 5 was reported. By correct image we mean the one which the sentence was
used to describe (even though often many other images are also good matches to the sentence).

In Figure 4 we report the validation accuracies on this task for the two word-level models, as well as
for the Phon GRU model with different number of hidden layers. We trained each model version with
three random initializations for each model setting, and evaluate after each epoch. We report the score
of the best epoch for each initialization. The overall ranking of the models matches the direct evaluation
of the loss function above: the phoneme-level models are in between the two word-level models. PHON

GRU with three hidden layers is the best of the phoneme-level models.
In Table 1 we show the accuracies of the best version of each of the models types on the test images;

these are also the model versions used in all subsequent experiments. The scores for the WORD GRU
are comparable to what Chrupała et al. (2015) report for their multitask IMAGINET model, whose visual
pathway has the same structure, and who use the same data. More recently, Vendrov et al. (2016) report
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substantially higher scores for image search with a word-level GRU model, with the following main
differences from our setting: better image features, larger training set, and a loss function optimized for
the ranking task.2

4.2 Word boundary prediction

To explore the sensitivity of the PHON GRU model to linguistic structure at the sub-word level, we
investigated the encoding of information about word-boundaries in the hidden layers. Logistic regression
models were trained on activation patterns of the hidden layers at all timesteps, with the objective of
identifying phonemes that preceded a word boundary. For comparison, we also trained logistic regression
models on n-gram data to perform the same tasks, with positional phoneme n-grams in the range 1-n.
The location of the word boundaries was taken from the eSpeak transcriptions, which mostly matches the
location of word boundaries according to conventional English spelling. However, eSpeak models some
coarticulation effects which sometimes leads to word boundaries disappearing from the transcription.
For example, bank of a river is transcribed as [baNk @v@ ôIv@].

All models were implemented using the LogisticRegression implementation from Scikit-learn
(Pedregosa et al., 2011) with L2-regularization. The random samples of 5,000 images each that served
as validation and test sets in the visual feature prediction task were used as training and test sets. For the
models based on the activation patterns of the hidden layers, the z-score transformation was applied to the
activation values to ease optimization. The optimal value of regularization parameter C was determined
using GridSearchCV with 5-fold cross validation on the training set, after which the model with the
optimal settings was trained on the full training sample.

Table 2 reports the scores on the test set. The proportion of phonemes preceding a word boundary is
0.29, meaning that predicting no word boundary by default would be correct in 0.71 of cases. At the
highest hidden layer, enough information about the word form is available for correct prediction in 0.82
of cases – substantially above the majority baseline. The lower levels allow for more accurate prediction
of word boundaries: 0.86 at the middle hidden layer, and 0.88 at the bottom level. Prediction scores of
the logistic regression model based on the activation patterns of the lowest hidden layer are comparable
to those of a bigram logistic regression model.

These results indicate that information on sub-word structure is only partially encoded by PHON GRU,
and is mostly absent by the time the signal from the input propagates to the top layer. The bottom layer
does learn to encode a fair amount of word boundary information, but the prediction score substantially
below 100% indicates that it is rather selective.

Model Acc @ 5 Acc @ 10
WORD SUM 0.158 0.243
WORD GRU 0.205 0.306
PHON GRU 0.180 0.276

Table 1: Image retrieval accuracy at
5 and at 10 on test data for the ver-
sions of WORD SUM, WORD GRU
and PHON GRU chosen by valida-
tion.

Model Acc Prec Rec
Majority 0.71
Phon GRU Layer 1 0.88 0.82 0.78

Layer 2 0.86 0.79 0.71
Layer 3 0.82 0.74 0.60

n-gram n = 1 0.80 0.79 0.41
n = 2 0.87 0.79 0.78
n = 3 0.93 0.86 0.90
n = 4 0.95 0.90 0.93

Table 2: Prediction scores of logistic regression models based
on activation vectors of PHON GRU and on positional n-grams

4.3 Word similarity

To understand the encoding of semantic information in PHON GRU, we analyzed the cosine similarity
of activation vectors for word pairs from the MEN Test Collection (Bruni et al., 2014). The MEN

2We have preliminary results indicating that most of the analyses in the rest of Section 4 show the same general pattern for
phoneme models trained following the setting of Vendrov et al. (2016).
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dataset contains 3,000 pairs of English words with semantic similarity judgements on a 50-point scale,
which were obtained through crowd-sourcing.3 For each word pair in the MEN dataset, the words were
transcribed phonetically using eSpeak and then fed to PHON GRU individually. For comparison, the
words were also fed to WORD GRU and WORD SUM. Word pair similarity was quantified as the cosine
similarity between the activation patterns of the hidden layers at the end-of-sentence symbol. In contrast
to WORD GRU and WORD SUM, PHON GRU has access to the sub-word structure. To explore the role
of phonemic form in word similarity, a measure of phonemic difference was included: the Levenshtein
distance between the phonetic transcriptions of the two words, normalized by the length of the longer
transcription.

Table 3 shows Spearman’s rank correlation coefficient between human similarity ratings from the
MEN dataset and cosine similarity at the last timestep for all hidden layers. In all layers, the cosine sim-
ilarities between the activation vectors for two words are significantly correlated with human similarity
judgements. The strength of the correlation differs considerably between the layers, ranging from 0.09
in the first layer to 0.28 in the highest hidden layer. The second column in Table 3 shows the correlations
when only taking into account the 1283 word pairs of which both words appear at least 100 times in
the training set of MS-COCO. Correlations for both WORD GRU and WORD SUM are considerably
higher than for PHON GRU. This is expected given that these are word level models with explicit word-
embeddings, while PHON GRU builds word representations by forwarding phoneme-level input through
several layers of processing.

All words Frequent words
PHON GRU Layer 1 0.09 0.12

Layer 2 0.21 0.33
Layer 3 0.28 0.45

WORD GRU 0.48 0.60
WORD SUM 0.42 0.56

Table 3: Spearman’s correlation coefficient between
word-word cosine similarity and human similarity judge-
ments. All correlations significant at p < 1e−4. Frequent
words appear at least 100 times in the training data.

Layer ρ

1 −0.30
2 −0.24
3 −0.15

Table 4: Spearman’s rank correlation co-
efficient between PHON GRU cosine sim-
ilarity and phoneme-level edit distance.
All correlations significant at p < 1e−15.

Table 4 shows Spearman’s rank correlation coefficient between the edit distance and the cosine sim-
ilarity of activation vectors at the hidden layers of PHON GRU. As expected, edit distance and cosine
similarity of the activation vectors are negatively correlated: words which are more similar in form are
also more similar according to the model.4

The negative correlation between edit distances and cosine similarities is strongest at the lowest hidden
layer and weakest, though still present and stronger than for human judgements, at the third hidden layer.

The correlations of cosine similarities with edit distance on the one hand, and human similarity rating
on the other hand, indicate that the different hidden layers reflect increasing levels of representation:
whereas at the lowest level mostly encodes information about form, the highest layer mostly encodes
semantic information.

4.4 Position of shared substrings

Here we quantify the time-scale at which information is retained in the different layers of PHON GRU.
We looked at the location of phoneme strings shared by sentences and their nearest neighbors in the
5,000-image validation sample. We determined each sentence’s nearest neighbor for each hidden layer
in PHON GRU. The nearest neighbour is the sentence for which the activation vector at the end of
sentence symbol has the smallest cosine distance to the activation vector of the original sentence. The

3The MEN dataset is available at http://clic.cimec.unitn.it/˜elia.bruni/MEN
4Note that in the MEN dataset, meaning and word form are also (weakly) correlated: human similarity judgements and edit

distance are correlated at −0.08 (p < 1e−5).
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position of matching substrings is the average position in the original sentence of symbols in substrings
that are shared by the neighbor sentences, counted from the end of the sentence. A high mean average
substring position thus means that the shared substring(s) appear early in the sentence. This gives an
indirect measure of the timescale at which the different layers operate. Table 5 shows an example.

As can be seen in Table 6, the average position of shared substrings in neighbor sentences is closest
to the end for the first hidden layer and moves towards the beginning of the sentence for the second
and third hidden layer. This indicates a difference between the layers with regards to the timescale they
represent. Whereas in the lowest layer only information from the latest timesteps is present, the higher
layers retain the input signal over longer timescales.

Layer 1
A metallic bench on a path in the park

A man riding a bicycle on a path in a park
Layer 3

A metallic bench on a path in the park
A stone park bench sitting in an empty green park

Table 5: An illustrative sentence with its nearest neighbour at
layer 1 and layer 3. For readability, sentences are displayed in
conventional spelling, and only highlight matching substrings
of length ≥ 3. In reality we used phonetic transcriptions
to compute shared substring positions, and substrings of all
lengths.

Layer Mean position
1 12.1
2 14.9
3 16.8

Table 6: Average position of
phonemes in shared substrings be-
tween nearest neighbour sentences
according to PHON GRU represen-
tations at the different layers. Posi-
tions are indexed from end of string.

5 Future work

Although our analyses show a clear pattern of short-timescale information in the lower layers and larger
dependencies in the higher layers, the third layer still encodes information about the phonetic form:
its activation patterns were predictive of word boundaries, and similarities between word pairs at this
level were more strongly correlated with edit distance than human similarity judgements are. It would
be interesting to investigate exactly what information that is, and to what extent it is analogous to lan-
guage representation in the mind of human speakers. In humans both word phonological form and word
meaning can act as primes, which is somewhat reminiscent of the behavior of our model.

Finally, we would like to take the next step towards grounded learning of language from raw perceptual
input, and apply models similar to the one described here to acoustic speech signal coupled with visual
input. We expect this to be a challenging but essential endeavor.
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