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Abstract

Recently Wen et al. (2015) have proposed a Recurrent Neural Network (RNN) approach to the
generation of utterances from dialog acts, and shown that although their model requires less ef-
fort to develop than a rule-based system, it is able to improve certain aspects of the utterances, in
particular their naturalness. However their system employs generation at the word-level, which
requires one to pre-process the data by substituting named entities with placeholders. This pre-
processing prevents the model from handling some contextual effects and from managing multi-
ple occurrences of the same attribute.

Our approach uses a character-level model, which unlike the word-level model makes it possible
to learn to “copy” information from the dialog act to the target without having to pre-process
the input. In order to avoid generating non-words and inventing information not present in the
input, we propose a method for incorporating prior knowledge into the RNN in the form of a
weighted finite-state automaton over character sequences. Automatic and human evaluations
show improved performance over baselines on several evaluation criteria.

1 Introduction

Rule-based Natural Language Generation systems (Reiter and Dale, 2000) have been quite successful
but they suffer from some limitations. They require extensive human effort and tend to produce fixed,
repetitive outputs, which do not closely match human-like utterances. For this reason, there has been
much interest recently in developing NLG systems which are, at least partially, able to learn from human
produced data (Langkilde and Knight, 1998; Belz, 2008).

In the last couple of years, Neural Network (NN) based approaches have gained enormous popularity
within statistical NLP generally, with applications to Machine Translation (Sutskever et al., 2014), Con-
versation Modelling (Vinyals and Le, 2015) and Parsing (Tai et al., 2015), to cite only a few. In particular,
architectures based on Recurrent Neural Network (RNN) such as LSTMs (Hochreiter and Schmidhuber,
1997) and GRUs (Cho et al., 2014) have been succesfully used in Language Modelling tasks due to their
ability to model sequential information with long-range dependencies.

An RNN-based approach to NLG has been recently proposed by Wen et al. (2015) in the context of a
dialog system, where the input semantic representation is a Dialog Act (DA). The decoder uses words as
the units of generation. This word-based model requires pre-processing the original data by substituting
named entities with placeholders, a process called de-lexicalisation. This is necessary because a standard
word-level RNN is not able to “copy” input entities into the target, but has to learn each correspondence
individually, which it can only do with a lot of data.

Such a de-lexicalization approach has the advantage of reducing data sparsity, but it also suffers from
various shortcomings: (i) it requires some reliable mechanism for named-entity recognition, (ii) it re-
quires a post-processing “re-lexicalization” step, where the placeholders are replaced by the original
named entities, (iii) it is unable to account for subtle morphological or lexical effects that a specific
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named entity may have on its context,1 and (iv) it does not address the problem of multi-slots of the same
type, as for instance when two restaurants are mentioned in the same input.

In this work, we propose to use a character-level model which does not suffer from the same spar-
sity issues as a word-level model, and therefore does not require de-lexicalisation. We show that this
architecture, coupled with a bidirectional encoding and an attention mechanism (Bahdanau et al., 2014),
is able to “copy” information from the dialog act into the target realization, and to produce reasonable
results.

However, this model has two main defects. The first is that it can produce non valid words, the second
that it can invent named entities not present in the dialogue act. In order to improve this, we propose to
constrain the generation of characters through a certain weighted finite-state automaton that incorporates
prior knowledge: (i) about well-formed strings of characters and (ii) about the fact that named entities
in the realization originate from character strings present in the input.

The following points summarize the key contributions of this paper:

• We handle the NLG problem through an attention-based character-to-character model, in particular
we encode the input semantics as a string of characters. By enabling copying at the character level,
this prevents us from having to de-lexicalize some aspects of the input, as Wen et al. (2015) are
obliged to do.

• In order to improve the quality of the generated utterances (avoiding the generation of non-words or
the hallucination of named entities), we exploit a priori knowledge in the form of a weighted finite-
state automaton that constrains the generated strings of characters to either conform to a predefined
vocabulary of words, or to originate in portions of the semantic input. This automaton is integrated
within the RNN by employing a generic “background-adaptor” mechanism, a technique recently
proposed in (Dymetman and Xiao, 2016), which we explain briefly in a self-contained way.

We start in section 2 by defining the network architecture we apply to all our models and by explaining
the background-adaptor technique. We proceed to give details of our different models in Section 3 and
introduce a finite-state background over characters. In Section 4 we describe the experiments, with
details about the dataset, implementation and evaluation; we also give examples illustrating differences
between the models. In Section 5 we discuss related work and finally conclude in Section 6 with some
perspectives.

2 Proposed Approach

2.1 The architecture

2.1.1 Recurrent Neural Network (RNN)
Our encoder-decoder RNN is based on LSTMs (Hochreiter and Schmidhuber, 1997), which have been
shown to be effective in particular in Machine Translation (Sutskever et al., 2014). Our approach is
close to that of (Bahdanau et al., 2014), who relax the constraint of having a limited, fixed, length
vector representation of the source sentence by using the encoder to produce bi-directional embeddings
of words of this sentence along with an attention mechanism; this mechanism dynamically weighs the
source embeddings at each time step, thus enabling the network to “attend” to some specific parts of the
(still accessible) input during generation.

In our case, the input (source) representation of the information to be realised by NLG is in the form
of a dialog act, as in (Wen et al., 2015), for example:

Dialog Act: inform(name=‘phoenix hotel’; area=‘civic center’; accepts credit cards=‘yes’)
Realization: the phoenix hotel is near the civic center and accepts credit card -s .

1For example, number or gender (in some languages) agreements between a restaurant name and the remainder of a sentence
(French example: le ritz (la belle époque) est situé (est située) ...); or spurious repetitions of articles in hotel names (the
HOTEL NAME is ... → the the renaissance is ...).
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While Wen et al. (2015) handle the dialog act as a binary vector encoding different slot-value pairs (after
delexicalization), we instead directly encode it as a sequence of tokens, either at the word or at the
character level.

2.1.2 Background-Adaptor RNNs

In certain of our experiments, we exploit a variant of recurrent networks which we will call “Background-
Adaptor RNNs”, which is based on a recent proposal by Dymetman and Xiao (2016) for incorporating
prior knowledge in recurrent networks to help training in the presence of limited data.2 We now briefly
explain this technique, which is applied here for the first time to the problem of NLG and to character-
based models.

Abstracting away from details, a standard RNN model defines a conditional probability distribution
pθ(xt+1|x1, x2, ..., xt;C), where C is the context of the model (for us, this is the input dialog act), where
x1, x2, ..., xt are the already generated tokens, and where xt+1 is the token being generated; the matrix
parameters of the models are denoted by θ. The background-adaptor technique extends this as follows:

pθ(xt+1|x1, x2, ..., xt;C) ∝ aθ(xt+1|x1, x2, ..., xt;C)︸ ︷︷ ︸
adaptor

. b(xt+1|x1, x2, ..., xt;C)︸ ︷︷ ︸
background

. (1)

The difference is that now pθ is defined as a combined process, obtained by multiplying an “adaptor”
aθ, which is a standard RNN, with a “background” b, which is an arbitrary, a priori defined conditional
language model; it is given externally and is fixed during training of the combined process. This process
is simply obtained by the product of the adaptor and the background, normalized over the different
possible vocabulary symbols xt+1 to obtain a probability distribution (as indicated by the proportionality
symbol). Overall, the process is still only parametrized by θ, and training with it only requires a small
modification of the log-loss for taking into account the background factor.

To provide some intuition, let us note that when the background process is a uniform distribution
over the vocabulary, we are back to the usual RNN. The other extreme is when the background process
exactly corresponds to the actual observed data, in which case the adaptor only has to learn to produce a
(close to) uniform distribution (an easy task). The interesting cases are intermediary situations, where the
background process incorporates some prior information (for example a generic language model trained
on a large corpus), which the adaptor can leverage in order to more easily adapt to the training data (for
example a small in-domain corpus). In our application, the background process will provide some hard
or soft constraints that the generated symbols have to conform to, presented in the form of finite-state
automata.

3 The Models

Word-based model (WORD)

Our first, word-based, model uses the encoder-decoder architecture with the attention mechanism de-
scribed above. As mentioned earlier, for a word-based model the data has to be de-lexicalised first3 i.e.
the named entities, such as restaurant names, addresses, telephone numbers, etc., have to be replaced by
place-holders such as REST NAME, TEL NUMBER, and the like. These entities are then re-lexicalized
at the end of the decoding to form the final utterance.

2The log-linear RNNs introduced in (Dymetman and Xiao, 2016) go beyond background-adaptor RNNs as described here:
we only exploit the part of log-linear RNNs concerned with the distinction between the “background” and the “adaptor”, not
the aspects having to do with log-linear features. The use of a background for supporting RNN training is also implicit in the
semantic parsing paper (Xiao et al., 2016).

3To emphasize this point, let us note that, in standard word-based seq2seq RNNs, the input and output vocabularies are
totally disjoint. In order to map the input word “Ritz” into the output word “Ritz”, the RNN has to learn the mapping from
scratch based on training data, and cannot rely on any a priori knowledge about the correspondence; if “Ritz” is rare (or
nonexistent) in the training data, the mapping cannot be learnt reliably (or at all). By de-lexicalizing “Ritz” into the generic
“HOTEL”, both in the input and output, the training is much simplified: the RNN only has to learn to map “HOTEL” to
“HOTEL”, a much more frequent observation.
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Figure 1: The Background FSA which shows the inclusion of target vocabulary words such as “hotel”
and “wants” (top of the figure). Also, it is capable of accepting any substring from the dialog act such as
the number “182” (bottom of the figure). The large central state is both initial and final.

Differently from (Wen et al., 2015), who use a one-hot encoding for the input DA, and also add a
special gate mechanism to better control the consumption of slots, here we simply treat the DA as a
sequence of word tokens.

Character-based model (C)
Our second model is a character-based model in which both the input and the output are character strings.
Such models have been used in NMT (Neural MT) to tackle the problem of rare words (Ling et al., 2015;
Luong and Manning, 2016). One advantage is that they work over a small vocabulary (∼ 50 symbols),
which they have each observed many times; in consequence, they have the ability to learn to map a
character onto itself, if the context requires it. This copy mechanism is useful for carrying material from
the original unprocessed input to the target, and, perhaps counter-intuitively, is not present in usual word-
based RNNs, which have to learn each mapping from scratch (but see fn. 3, as well as the related work
section 5 below about augmenting word-level RNNs with a copy ability).

Character-based model(s) with a Finite State Background (C-NWFSA and C-WFSA)
Our last class of models use a background-adaptor approach where the character-based model (adaptor)
gets help from a finite-state automaton (FSA) which provides some prior knowledge (background).

The background FSA, in its non-weighted version (C-NWFSA) is illustrated in Figure 1. It accepts: (1)
All common words from the target vocabulary: these words are all the words (around 500) that may
appear in realizations, excluding the named-entities, independently of the DA input; (2) All substrings
from the source dialog act: the FSA has the freedom to transition to and from any character position in
the input DA; this acts as a prior, conditional on the input, which allows the adaptor to copy substrings,
in particular named entities, from any part of the DA.

The idea behind this background automaton is that although the character-level model has the capacity
to exploit dialog acts without de-lexicalisation (in contrast to the word-level models), nothing prevents
it from generating on the one hand non-words, and on the other hand strings of characters that have no
evidence in the DA. Through the “intersective” technique of equation (1), the background automaton b
constrains the combined process pθ to only produce common words or substrings of the DA. While the
RNN adaptor aθ works similarly similarly to model (C), the overall training loss depends on b also.

The FSA that we just described is the unweighted automaton (C-NWFSA), and its effect is strictly to
accept or reject strings of characters. We also consider a weighted version (C-WFSA), with the same
topology, but where the probabilistic weights on the arcs are parametrized (in a very elementary way)
through a single parameter α ∈ [0, 1], as we now explain.

The total mass of transitions from the start state to one of the “common words” at the top of the figure
is α, and the remaining mass (1 − α) is used for (epsilon) transitions to the character representation of
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the DA at the bottom of the figure. Between the common words the mass is then distributed uniformly,
and for edges from the start state to the DA, the mass is also distributed uniformly onto all the positions
of the DA, that is, inversely proportionally to the length of the DA. Once on a position in the DA, the
probability of escaping the DA back to the initial state is set to 1 − α, that of continuing in the DA to
α. Overall a higher value of α indicates on the one hand that it is more difficult to “escape” from using
common words once using common words, and also that once one is inside the DA, it is more difficult
to escape from it back to the common words, which then encourages longer stretches of the DA to be
produced once inside it. The way in which we fix α is detailed in section 4.

4 Experiments

4.1 Dataset

The datasets used for our experiments are those made available by Wen et al. (2015), in two domains,
hotel and restaurant. Each set consists of DAs along with their natural language realisations. There are
eight different DA types that indicate the communicative intent such as inform, reject, confirm etc. Each
DA is a combination of slot-value pairs of the information to be conveyed, with a total of 13 different
possible slots such as name, pricerange, address etc.

Each domain consists of roughly 5K samples, which we split in the ratio 8:1:1 into training, develop-
ment and test.4

4.2 Implementation

The implementation is done using the Python libraries: Theano (Theano Development Team, 2016) and
Lasagne (Dieleman et al., 2015). We implemented the attention mechanism (Bahdanau et al., 2014) by
modifying the LSTM class of the Lasagne library. Also, the probability of the combined process c is
calculated by element-wise multiplication of individual processes aθ and b followed by normalization.

The FSA over characters is handled through PyFST5, a python wrapper for OpenFST (Allauzen et al.,
2007). We use this tool to perform the operations of ε-removal and determinization (otherwise delicate
to program directly), in that order, from an initial non-deterministic weighted or unweighted FSA (which
depends in part on the DA input). Finally, the automaton obtained is exported in matrix form to facilitate
integration with Theano.

The models are all trained with the same configuration of hyperparameters: the forward and backward
RNNs of the bidirectional encoder have 300 hidden units each, similarly the decoder RNN has 300
hidden units. The number of hidden units used in the single layer perceptron for calculating the attention
weights is 100. For training, we use SGD together with Adam (Kingma and Ba, 2014) updates, with an
initial learning rate of 0.001. A small minibatch of size 20 is chosen due to GPU memory constraints
when storing FSA matrices for each sample contained in the minibatch. After the training procedure,
beam search is used to sample utterances from the obtained conditional language model. A beam of
length 5 is used to obtain the top 5 realisations and the one with highest probability is selected as the
prediction.

The α parameter of the weighted FSA is fit to the data by performing a search over the list of values
[0.99, 0.95, 0.9, 0.8, 0.7, ..., 0.1]. Log-likelihood of the training dataset is used as the optimization crite-
rion, calculated as the sum of log probabilities of all target realizations present in the training set. The
maximum likelihood is obtained for α = 0.9, both for Hotel and for Restaurant, and this α is used in all
our experiments.6

Also, the average number of states present in the deterministic weighted FSAs of the training samples
is approximately 70K and 120K for the hotel and restaurant domain respectively.

4Note that we had to produce our own split, the data provided along with (Wen et al., 2015) does not specify their split,
which prevents comparison with their results.

5https://github.com/vchahun/pyfst .
6As we already mentioned, our approach to fitting the automaton to the data with a single parameter α is simplistic. We

could clearly use more parameters, and fit them through some EM procedure.
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Model BLEU
Hotel Restaurant

WORD 0.4495 0.4322
C 0.4200∗∗ 0.3699∗∗

C-NWFSA 0.4109∗∗ 0.3971∗∗

C-WFSA 0.4655 0.4381

Table 1: BLEU scores of the models computed on the test set. Statistical significance is calculated using
paired bootstrap resampling (Koehn, 2004) ∗∗p < 0.01.

Model Adequacy Fluency
Precision Recall No non-words Non-redundant Naturalness

H
ot

el

WORD 0.952∗ 0.844 0.989 0.941∗ 1.841∗

C 0.844∗∗ 0.633∗∗ 0.911∗∗ 0.974 1.674∗∗

C-NWFSA 0.844∗∗ 0.615∗∗ 0.974∗ 0.974 1.756∗∗

C-WFSA 0.978 0.815 0.996 0.978 1.926

R
es

ta
ur

an
t WORD 0.956 0.793 0.994 0.976 1.908

C 0.846∗∗ 0.530∗∗ 0.926∗∗ 0.988 1.787∗∗

C-NWFSA 0.820∗∗ 0.609∗∗ 0.959∗∗ 0.935∗∗ 1.731∗∗

C-WFSA 0.973 0.778 0.997 0.982 1.932

Table 2: Human evaluation of top realisation of the models. Statistical significance is computed through
a pairwise difference one-tailed Student’s t-test between the model with maximum score against the
others. ∗p < 0.05, ∗∗p < 0.01.

4.3 Evaluation

4.3.1 Automatic Evaluation
Automatic evaluation results are shown in Table 1, using BLEU-4 (Papineni et al., 2002).7 The results
are shown for the four models (WORD, C, C-NWFSA, C-WFSA) described earlier, evaluated over our
test sets for Hotel (538 realisations) and Restaurant (520 realisations).

4.3.2 Manual Evaluation
The automatic metrics do not always correlate with human judgement, so we also perform manual eval-
uation, based on the following adequacy (information conveyed) and fluency (linguistic quality) scales:

1. Adequacy:

• Precision (i.e. “Correctness”) [1/0]: all information in the DA is present in the generated
utterance (1=yes, 0=no).
• Recall (i.e. “Completeness”) [1/0]: all information in the utterance is present in the DA (1=yes,

0=no).

2. Fluency:

• No non-words [1/0]: all tokens in the utterance are actual words (1=yes, 0=no).
• Non-redundant [1/0]: there is no repeated information in the utterance (1=yes, 0=no).
• Natural or “good english” [2/1/0]: the utterance is “good” english (grammatical and natural)

(2=good,1=acceptable,0=not acceptable). This is the main linguistic quality measure.

The evaluation was conducted on the full test set, both for Hotel and Restaurant, and is reported in
Table 2.

7We used the mteval-v13a.pl script with default options from http://www.itl.nist.gov/iad/mig/tests/mt/2009/.
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Selected samples from the Hotel domain

1

inform(name=’the inn san francisco’;address=’943 s van ness ave’;phone=’4156410188’)
[C]: the address of the inn san francisco is 943 s van ness ave . their phone number is 4156410188 .
[C-NWFSA]: the inn san francisco ’s phone number is 4156410188
[C-WFSA]: the address of the inn san francisco is 943 s van ness ave . the phone number is 4156410188 .
[WORD]: the the inn san francisco ’s address is 943 s van ness ave and the phone number is 4156410188 .

2

inform(name=’hotel des arts’;price range=’moderate’)
[C]: the hotel des artea hotel is in the moderate price range .
[C-NWFSA]: the hotel des arts is in the moderate price range .
[C-WFSA]: hotel des arts is in the moderate price range .
[WORD]: hotel des arts is moderate -ly priced .
Selected samples from the Restaurant domain

3

inform(name=’yummy yummy’;price range=cheap;good for meal=dinner)
[C]: i have found a restaurant called mimmmmey is good for dinner .
[C-NWFSA]: mmy much is a good restaurant is good for dinner .
[C-WFSA]: yummy yummy is cheap and good for dinner .
[WORD]: yummy yummy is a cheap dinner restaurant with a cheap price range .

4

inform(name=’straits restaurant’;price range=expensive;food=singaporean;good for meal=dinner)
[C]: straits restaurant is an expensive restaurant that serves singaporean food .
[C-NWFSA]: straits restaurant is expensive and serves singaporean food for dinner .
[C-WFSA]: straits restaurant is expensive and is good for dinner .
[WORD]: straits restaurant is an expensive restaurant that serves singaporean food and is good for dinner .

Table 3: Example realisations of the models. The most probable realization from a beam of length 5 is
shown in each case.

4.3.3 Discussion
In terms of BLEU scores, we observe that the character-based model with a weighted finite-state back-
ground (C-WFSA) is significantly better than the other character-based models, and slightly better than
the (WORD) model.

In terms of manual evaluation, the results are a bit more contrasted. Overall, (C-WFSA) is significantly
better than the other two character-based models, apart from the case of “non-redundancy”, where it be-
haves in a quite similar way; this is however not very surprising, because nothing in the FSA background
that we presented specifically controls for non-redundancy (the non-repetition of semantic material).
(C-WFSA)

All the models are quite deficient in Recall, but (WORD) is a bit better there; again, the FSA back-
ground does not control for Recall. On the other dimensions than Recall, (C-WFSA) is slightly better
than (WORD), but not always significantly; it is especially good in overall linguistic quality (Natural-
ness) and in Precision (which is something that the background more directly controls for); interestingly,
the unweighted model (C-NWFSA) is significantly worse on precision than the weighted version.

4.4 Illustrations

Examples We show in Table 3 a few examples from the different models. Example (1) shows a
case where (C) and (C-WFSA) are both correct, (C-NWFSA) is deficient in recall, and (WORD) after
re-lexicalization produces a sequence of two ‘the’. Example (2) is a case where (C) invents a named
entity. In example (3), (C) also invents a named entity and (C-NWFSA) incompletely copies one. In
Example (4), (C) and (C-WFSA) are both deficient in recall, but the other models are good.

Attention Heatmap Because of its independent interest, we also show in Figure 2 an “attention
heatmap”, here in the case of model (C), for the following example:

[DIALOG-ACT]: inform(name=’noe 7s nest bed and breakfast’;address=’1257 guerrero st’)
[REFERENCE]: * the address is 1257 guerrero st for noe 7s nest bed and breakfast. #
[REALISATION]: noe 7s nest bed and breakfast is located at 1257 guerrero st .

The input DA is written along the columns of the array and the corresponding target realisation is
written along the rows. An xth row in the array represents the weights given by the attention mechanism
over the character embeddings of the source dialog act at the point where it is generating the yth character
of the realisation.
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Figure 2: Attention heatmap for a selected ex-
ample. The x-axis and y-axis denote the input
DA and realisation respectively. Each pixel
shows the attention weight (white largest) of
the xth source character at the point where the
yth target character is produced.

We observe a certain “2-block” structure of the attention, with the attention over the hotel slot value
when generating the hotel name, over the address slot value when generating its address. The focus of
attention is specially strong when generating the four digits 1,2,5,7; one should note that the (C) model
has to learn to copy these digits one by one from the input to the target. By contrast, there is very little
attention specifically paid to the initial part of the DA “i n f o r m ( n a m e”, because the little specific
information contained there is easy to convey in a more distributed way over the whole input encoding.

5 Related Work

In the field of Neural Machine Translation (NMT), the problem of translating “rare words” such as named
entities has recently attracted a fair amount of attention. The main approaches have been ones that either
try to augment RNNs with some form of word-copying, or else have, similar to us, some character-level
aspects.

Luong et al. (2014) preprocess the data and replace each unknown word in the target sentence by a
placeholder token also containing a positional pointer to the corresponding word in the source sentence.
Through these pointers, they learn an explicit mapping for copying unknown words from the source to
the target. This is a bit similar to the de-lexicalization process of (Wen et al., 2015) in NLG, although
the positional aspect might allow to handle several values associated with the same slot type.

Ling et al. (2015) tackle the problem of unseen words by proposing the use of a character-level model
instead of a word-level model. As in our case, the limited vocabulary (namely, the different characters)
is small enough that the model can learn to copy characters in certain contexts. This model is different
from a strict character-level model as it introduces a hierarchy for forming words from characters instead
of regarding a sentence as a flat string of characters. Luong and Manning (2016) also propose an hybrid
word-character model to handle the rare word problem. For encoding the source sentence, they use a
character-level model for rare words and a word-level model for frequent words. Then, for generating a
target sentence, they use a word level model to get a first realisation of the target which contains <unk>
for rare words and in a second step use a character-level model to generate a realisation of the rare word
using contextual information.

Ling et al. (2016), in the context not of NMT this time, but of code generation, introduce a multiple
predictor framework, where they can handle jointly the generation of generic code tokens and that of
specific tokens for variable names and the like. They choose a character-level softmax for generating
generic target tokens along with a pointer network (Vinyals et al., 2015) for copying specific tokens.

We are not aware of any prior work making use of models for a priori constraining the string of
characters generated by an RNN, as we are doing here.
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6 Conclusion

In this work we have proposed a character-level generator which is able to “copy” information from
the source dialog act to the target utterance, and which uses original data without requiring pre-
processing. By incorporating prior knowledge in the form of a finite-state automaton, exploiting a
notion of “background-augmented” RNN, we discourage the character-level model from generating non-
existing words or information for which there is no evidence in the input. Overall, the weighted version
of the automaton performs much better than the version without prior knowledge, better than the non-
weighted version of the automaton, and slightly better than the word-based version that requires de- and
re- lexicalisation.

The main areas where our weighted automaton does not perform well (along with all other models,
to different extents) are those of “Recall” (expressing all information present in the DA) and “Non-
redundancy” (not expressing the same content twice). These are the same areas in which the original
model of (Wen et al., 2015) introduced specific machinery, both in terms of a technique for controlling the
“consumption” of slots, and of the use of a reranker on top of the operation of the RNN. As a perspective,
we could also easily use a reranker, but as a continuation of our overall approach we would preferably
incorporate the corresponding constraints as a priori knowledge, for instance by intersecting the current
automaton with one that (i) forced certain substrings of the DA to appear in the target (improving recall),
and (ii) prevented certain substrings to appear twice (improving non-redundancy).8
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