
Proceedings of COLING 2016, the 26th International Conference on Computational Linguistics: Technical Papers,
pages 750–761, Osaka, Japan, December 11-17 2016.

Modeling Diachronic Change in Scientific Writing
with Information Density

Raphael Rubino†‡ Stefania Degaetano-Ortlieb†
†Universität des Saarlandes, ‡DFKI

Saarbrücken, Germany
{s.degaetano,e.teich}@mx.uni-saarland.de

{raphael.rubino,josef.vangenabith}@uni-saarland.de

Elke Teich† Josef van Genabith†‡

Abstract
Previous linguistic research on scientific writing has shown that language use in the scientific
domain varies considerably in register and style over time. In this paper we investigate the in-
troduction of information theory inspired features to study long term diachronic change on three
levels: lexis, part-of-speech and syntax. Our approach is based on distinguishing between sen-
tences from 19th and 20th century scientific abstracts using supervised classification models. To
the best of our knowledge, the introduction of information theoretic features to this task is novel.
We show that these features outperform more traditional features, such as token or character
n-grams, while leading to more compact models. We present a detailed analysis of feature in-
formativeness in order to gain a better understanding of diachronic change on different linguistic
levels.

1 Introduction

Supervised classification has been applied to various natural language processing tasks over the past
decades. To date, however, distinguishing between time periods has not received extensive attention.
Early research on classifying time periods is presented in de Jong et al. (2005) for Dutch. Dalli and Wilks
(2006) and Kumar et al. (2011) use word frequencies for temporal classification of documents, while
Sagi et al. (2009) and Kim et al. (2014) predict semantic changes over time. While lexical features are
commonly used for classification approaches of time periods, features based on more abstract linguistic
levels have not yet been widely investigated.

In our study, we use supervised classification to distinguish scientific abstracts written in the 19th and
20th century at the sentence-level. From previous work, we know that in the scientific domain, shared
expertise among authors and audience affects their language use. Over a longer time period, it drives
the evolution of domain-specific language with respect to lexis (Halliday, 1988; Teich et al., 2016) and
a more standardized and convention-driven style with respect to grammar (Biber and Gray, 2011; Biber
and Gray, 2016; Banks, 2005).

Considering that language variation affects all linguistic levels — from sounds and words to syntactic
structure — we investigate a set of features extracted at the lexis, part-of-speech and syntactic levels to
test how well they act as predictors of time period-specific language use. Moreover, based on psycholin-
guistic evidence it has been shown that language users choose those linguistic options that they know
to be relatively predictable in a specific context to optimize communication (Hale, 2001; Levy, 2008;
Demberg and Keller, 2008). To model communication in this sense, in our research we employ features
based on the information-theoretic notion of surprisal or information density.

Specifically, we make use of information theory inspired features on the linguistic levels of lexis,
part-of-speech and syntax. In addition, these features allow an unlexicalized dense-vector representa-
tion, which enormously reduces the amount of features used for classification. Besides achieving high
performance in classification, we are particularly interested in insights on long-term diachronic linguis-
tic change, which are important to historical linguistics, sociolinguistics and the like. We do this by
inspecting classification results and discriminative features more closely.
This work is licensed under a Creative Commons Attribution 4.0 International License. License details: http://
creativecommons.org/licenses/by/4.0/
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Our analyses are driven by the following assumptions:
1. Lexical diversification: On the lexical level, scientific abstracts from the 19th and 20th century will

be well distinguished from one another, due to topical changes in the scientific domain.
2. Grammatical consolidation: On more abstract linguistic levels, scientific abstracts from the 19th

and 20th centuries will be less well distinguished from one another, as grammatical changes develop
rather slowly over time, but we expect a tendency towards denser grammatical encodings in the 20th
century texts.

The remainder of the paper is structured as follows. In Section 2, we present previous work on classifi-
cation of time periods, diachronic change and information density. Section 3 describes the experimental
setup up followed by the results and detailed analysis in Section 4. Finally, Section 5 provides a short
summary and conclusions.

2 Related work

2.1 Classification of time periods
Classification of time periods has been less investigated so far in comparison to other classification tasks.
Most of the existing work is based on lexical features and the classification of documents rather than
individual sentences. In the study conducted by de Jong et al. (2005), the authors classify Dutch texts
according to time (considering the time span 1999 to 2005) using uni-gram language models achieving
around 65% accuracy. Dalli and Wilks (2006) (considering weekly to yearly levels, with an accuracy of
the yearly classifier of ∼88%) and Kumar et al. (2011) (yearly classification) use classification methods
based on word frequencies to determine the time period a text was written.

Other approaches – also based on lexical features – investigate semantic change over time. For in-
stance, Sagi et al. (2009) focus on specific words to identify their semantic change from Early to Modern
English. Mihalcea and Nastase (2012) use supervised learning to predict a word’s time period given the
context it occurs in. More recently, Kim et al. (2014) use neural language models to identify words that
have changed semantically from 1900 to 2009. So far, only few studies have used features other than
lexical ones for time period classification. Štajner and Zampieri (2013) have used stylistic features (such
as average word and sentence length, pos tag n-grams, etc.) for classification of Portuguese texts into
centuries achieving an F-measure of 0.92.

Besides the fact that most approaches use lexical features to predict time periods, the common exper-
imental setup involves document-level classification of texts. To the best of our knowledge, there has
been no work on sentence-based classification of time periods. Classifying sentences rather than texts
allows us to build finer-grained classification models. In our approach, we classify sentences according
to time periods going beyond lexis-based representations by using information theory inspired features,
which inherently account for the context of use.

2.2 Information Density (ID)
Assuming that language users strive for efficient communication, they will tend to encode their message
using an approximately uniform information density that exploits channel capacity while avoiding to
overload the recipient or being uninformative. Information theory (Shannon, 1949) measures the amount
of information conveyed by a unit in a given context in bits (Shannon, 1949). This notion is also known
as surprisal (Levy, 2008) and is formulated as the negative log probability of a unit (e.g. a word) in
context (e.g. its preceding words): S(uniti) = − log p(uniti|Context). Based on a limited context of
size n words, the surprisal value of the following word wn+1 corresponds to the negative log-probability:
S(wn+1) = − log P (wn+1|w1 . . . wn).

There are two properties inherent to surprisal: (1) units with low probability convey more information
than those with high probability, and (2) information conveyed by a unit is crucially dependent on its
context. Thus, linguistic units that are highly predictable in a given context convey less information with
troughs in surprisal, while less predictable units convey more information with peaks in surprisal.

Over a longer period of time, the predictability of a word will change according to its use in specific
contexts. In the scientific domain, shared expertise among researchers, for example, will affect language
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use and give rise to domain-specific language. Particular words (e.g. terminology) will become more
predictable over time (showing lower surprisal values) and may result in shorter encodings (consider e.g.
acronym use in scientific fields such as genetics). Among researchers this will optimize communication.
A more conventionalized use of scientific language will result in changes of surprisal values over time
with conventionalized expressions (e.g. formulaic expressions) showing lower surprisal.

However, not only changes in lexis will be reflected in changes of surprisal values. From studies on
language change, we know that diachronically there has been, for example, a shift from a more verbal
towards a more nominal style (cf. notably Biber and Gray (2011)). This will have an impact on surprisal
values with respect to grammatical units (such as parts of speech or syntactic units), motivating the use
of information theory inspired features to classify between time periods.

So far, these kinds of features have been successfully used in classification of Gospels (see Islam and
Dundia (2015) being able to identify the Greek Gospel as the original text and the American and Georgian
ones as translations) and classification of human translated texts (see Rubino et al. (2016) distinguishing
original from manually translated texts of different levels of expertise).

2.3 Language Change
Previous computational work on diachronic change in scientific language mostly discusses short-term
change (see e.g. Blei and Lafferty (2006; 2007) on changes in scientific topics and Hall et al. (2008) on
the ACL anthology corpus, both using topic models) rather than long-term change and is mostly con-
cerned with change related to lexis (such as topical shifts) rather than change on more abstract linguistic
levels.

In corpus-linguistic work on language change, approaches are typically frequency-based (e.g. Biber
and Gray (2011; Biber and Gray (2013; Biber and Gray (2016), Taavitsainen and Pahta (2012),
Moskowich and Crespo (2012)) and do not inherently account for context – diachronic change be-
ing observed through the lens of unconditioned probabilities. In contrast, information density mea-
sures as we apply them here, are based on conditional probabilities and thus inherently take context
into account. Based on our previous work on long-term change using information-theoretic features
(Degaetano-Ortlieb and Teich, 2016), we have shown how these features help model diachronic change,
further motivating their use to classify different time periods.

3 Experimental Setup

The experiments presented in this paper focus on the use of sentence-level information density measures
— in particular n-gram log-probabilities according to a language model and n-gram distribution accord-
ing to frequency quartiles — to classify texts from different time periods. In this section, we present the
supervised classification setup and the set of features as well as the data used.

3.1 Supervised Classification
A linear Support Vector Machine (SVM) (Cortes and Vapnik, 1995) is used to train our time-period
classification model based on a feature representation of sentences which aims at capturing the density
of information. All training, development and test sentences are represented as feature vectors xi, and
the two corpora (19th century and 20th century) are associated with a class yi, resulting in instance-label
pairs (xi, yi) with xi ∈ Rn, and y ∈ {0, 1}l as a binary classification task. We use the L2-regularized L2-
loss SVC implementation of LIBLINEAR (Fan et al., 2008) to solve the following optimization problem:

minwwT w

2
+ C

l∑
i=1

max(0, 1− yiw
T xi)2 (1)

The cost parameter C is selected with grid-search using the accuracy obtained on the held-out devel-
opment set. Finally, the model is evaluated using the precision, recall, f-measure per class and general
accuracy obtained on the test set.
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Sentences Tokens Types
Corpus 19cA 20cA 19cA 20cA 19cA 20cA

Train 20.0 20.0 890.5 495.2 28.8 31.5
Development 1.5 1.5 66.3 36.7 7.7 7.2
Test 1.5 1.5 64.2 37.0 7.7 7.3

(a) Corpora used as training, development and test sets.

Corpus Sentences Tokens Types

19cLM 623.2 16,541.7 320.0
20cLM 423.4 11,137.8 261.9

(b) Corpora used as resources to train the language mod-
els and to extract n-gram frequencies.

Table 1: Statistics (in thousands) of the corpora used in our experiments.

3.2 Datasets
Four corpora are used in our experiments, two for each time period (early 19th century: 1800-1850; late
20th century: 1970-2007). Two corpora compose our training, development and test sets (henceforth:
19cA and 20cA) while two others allow us to train language models and extract n-gram frequencies
(henceforth 19cLM and 20cLM). Statistics about these corpora are presented in Table 1a and Table 1b.

For the 19th century time period, we use a corpus of research articles from the Royal Society of
London (Kermes et al., 2016). Abstracts are taken from this corpus to form the 19cA classification
subset. For feature extraction full research articles (19cLM) are taken from the same corpus, filtering
out articles with abstracts included in 19cA. For the 20th century time period, abstracts are taken from
a corpus of research articles (Degaetano-Ortlieb et al., 2013) covering several disciplines1 as our 20cA
classification subset. For feature extraction, we collected abstracts from several fields (20cLM) matching
those of 20cA. The main difference between 19cLM and 20cLM is the type of document used to extract
them, the former being composed of full articles due to research abstract scarcity for this time period,
while the latter is composed of abstracts. The classification subsets (19cA and 20cA) are pre-processed
by means of regular expressions and manually verified in order to remove headlines preceding abstracts,
dates, formulas and mathematical expressions, etc.

3.3 Feature Sets
We consider three sets of features: shallow base-line features, n-gram frequency features, and informa-
tion density features. Both n-gram and features specifically referred to as information density features
capture aspects of information density and rely on the external resources presented in Table 1b.

Shallow features Here we consider popular lexical features such as bags of character and token n-
grams as a baseline, as well as bags of part-of-speech (POS) n-grams (n ∈ [1; 3]). For POS tagging and
syntactic parsing, we use the Stanford NLP toolkit (Manning et al., 2014).2 For bags of token n-grams,
three feature sets are built: one taking into account all n-grams, one considering n-grams appearing at
least 200 times in the training corpus and one keeping only n-grams appearing at least 500 times, noted
Tokens All, Tokens 200 and Tokens 500 respectively. The two latter sets allow for more compact models
and less sparsity in the feature vectors. Additionally, 13 surface features are used, extracted from the
surface-level of each sentence, which aim to capture meta representations of sentences’ lexical form
including sentence and average word lengths, the number of punctuation marks, letter and word casing,
binary values encoding whether the sentence ends with a period and starts with an uppercase letter, etc.

N -gram Frequency Features To capture the rarity of n-grams used in the sentences to classify, the
percentage of n-grams in frequency quartiles are extracted (n ∈ [1; 5]). The corpora used to model
the frequency quartiles are the same resources as the ones used for the language models (19cLM and

1computer science, computational linguistics, bioinformatics, computer-aided design, microelectronics, mechanical engi-
neering, electrical engineering, biology, linguistics

2We use the bidirectional maximum entropy POS tagger with a pre-trained English model based on the WSJ sections 0-18,
including word shape and distributional similarity features. The probabilistic context free grammar lexicalized parser is used to
obtain syntactic information from text (Manning et al., 2014).
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Figure 1: Classification results of 19th century and 20th century abstracts for lexis (LEX).

20cLM). Frequencies of word, part-of-speech and delexicalized flattened syntactic sequences are aver-
aged at the sentence level, leading to 4 features per sentence (one per quartile) given one value of n,
for each of the external resource used to model the quartiles (the corpora 19cLM and 20cLM). This ap-
proach leads to a dense representation of the information encoded in a sentence based on lexical, POS
and syntactic information, without encoding raw word sequence n-gram features.

Information Density Features Using language models trained on sentences, delexicalized part-of-
speech sequences and delexicalized flattened syntactic trees, a set of 120 sentence-level features are
extracted: 15 features per individual LM resource (presented in Table 1b) and type of language model
(lexical, POS and syntactic). We extract n-gram (n ∈ [1; 5]) log-probabilities (surprisal) as well as per-
plexities, with and without the tags indicating the beginning and ending of sentences, using the SRILM
toolkit (Stolcke et al., 2011).

4 Results and Analysis

In the following, we present classification results of 19th vs. 20th century abstracts based on shallow as
well as n-gram and information density features on three linguistic levels: lexis (LEX), part-of-speech
(POS), and syntax (SYN). Moreover, by considering feature rankings obtained by the classification re-
sults, we analyze diachronic changes on these three linguistic levels.

4.1 Classification Results
Classification results on the lexical level (LEX) are shown in Figure 1. The bags of token n-grams
features are unpruned (Tokens All). The best performing features are n-gram frequency (F-measure of
0.991) and ID features ranking second (0.984), both outperforming shallow features (bags of character
and token n-grams, and surface features). Considering classification results on the part-of-speech level
(POS), Figure 2 shows that POS 3-grams work best (0.9224) in classifying 19th c. and 20th c. abstracts,
followed by POS 2-grams (0.9222) and ID features (0.9112).

Regarding classification at the syntactic level (SYN), Figure 3 shows that 19th c. and 20th c. abstracts
are less well distinguished from one another in comparison to the lexical and part-of-speech level. Nev-
ertheless, ID features work best on this task, achieving an F-measure of 0.88. Overall, ID features work
relatively well on all three linguistic levels targeted in this study in comparison to other features, which
work well on some levels (e.g. n-gram frequencies for lexis or POS 3-grams on the part-of-speech level),
but less well on the other linguistic levels.
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Figure 2: Classification results of 19th century and
20th century abstracts for part-of-speech (POS).
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Figure 3: Classification results of 19th century
and 20th century abstracts for syntax (SYN).

By considering combinations of feature sets, the best classification performance of 99.18 accuracy
is obtained by a combination of n-gram frequency and ID features at all three linguistic levels (LEX,
POS and SYN) (see Table 2). Moreover, looking at the number of features used for classification, better
results can be obtained with a very small number of features (216) using n-gram frequency and ID
features in comparison to the high number of features when using shallow features (e.g. more than 1
million features for surface tokens; see again Table 2). Pruning the low frequency n-grams considered
in the bags of tokens features does not lead to accuracy improvement, but the resulting models are more
compact with 3, 081 and 996 features for the Tokens 200 and Tokens 500 sets respectively.

19cA 20cA
Feature set Number of features Accuracy P R F P R F

Characters (LEX) 37,367 98.05 98.14 98.86 98.50 98.85 98.13 98.49
Tokens All (LEX) 1,896,263 98.12 97.43 98.84 98.13 98.82 97.39 98.10
Tokens 200 (LEX) 3,081 94.93 93.94 96.05 94.98 95.96 93.80 94.87
Tokens 500 (LEX) 996 90.38 89.68 91.26 90.46 91.10 89.50 90.29
POS-Tags (POS) 14,227 93.18 93.20 91.73 92.46 91.86 93.31 92.58

n-gram freq. + ID (LEX) 72 99.10 98.98 99.24 99.11 99.24 98.97 99.11
n-gram freq. + ID (POS) 72 88.85 93.20 91.73 92.46 91.86 93.31 92.58
n-gram freq. + ID (SYN) 72 88.67 91.38 89.10 90.22 89.37 91.59 90.47
n-gram freq. + ID (LEX, POS, SYN) 216 99.18 99.04 99.31 99.18 99.31 99.04 99.17

Table 2: Feature sets used in our experiments, number of features per set, accuracy obtained on the test
set, as well as per class Precision (P), Recall (R) and F-measure (F).

4.2 Diachronic Changes at the Lexical Level
To investigate changes between 19th and 20th c. abstracts and evaluate the performance of the differ-
ent feature types, we conduct a non-linear feature selection using the forest of randomized trees ap-
proach (Geurts et al., 2006) and describe the results for the top n-gram frequency and ID features in the
paragraphs below. These two types of features are the focus of our study and lead to the best classification
results as shown in Figure 1.

Lexis and N -gram frequency Inspecting the n-gram frequencies in detail based on feature ranking,
we can observe general tendencies in lexis related change across the 19th and the 20th century. The
highest ranking n-gram frequency features are based on 20cLM, comprising among the top 10 features
1- to 4-grams of very high (quartile 4) and low (quartile 1) frequency. This might be an indicator of
conventionalized/formulaic language use with respect to high frequency high-order n-grams (4-grams
quartile 4), on the one hand, and diversified language use with respect to low frequency low-order n-
grams (1-grams quartile 1), on the other. Figure 4 shows the n-gram frequency distribution for 1- to
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Figure 5: Averaged perplexity values obtained for 1- to 5-grams (LEX).

4-grams based on four quartiles (from high to low frequency) and on the resources used for language
modeling (19cLM and 20cLM). Obviously, the higher the n-gram order, the higher the percentage of
low frequency n-grams, i.e. rare n-grams. More specifically, Figure 4 shows that the 19cLM covers
the 19th c. abstracts (19cA) quite well in terms of lexis, as the percentage of high frequency 1-grams
(quartile 4) is high (∼97%). The same can be observed for the 20cLM and the 20th c. abstracts (20cA)
(∼95%). However, while the 20cLM also covers relatively well the 19cA (∼93% of high frequency
1-grams, quartile 4), the 19cLM on the 20cA shows a higher amount of low frequency 1-grams (quartile
1) covering high frequency 1-grams only by ∼80%. This indicates that while the vocabulary of 19th c.
abstracts is relatively well covered by the 20th c. LM resource, the 20th c. abstracts make use of new
words not covered by the 19th c. LM resource.

Considering 2-grams, which rank highest in classification, a similar but even more pronounced ten-
dency can be observed, i.e. while the percentage of high frequency 2-grams is still relatively high for
20cLM and 19cA (∼64%), 19cLM and 20cA show a relatively high amount of low frequency 2-grams
(∼53%). Nevertheless, the percentage of 20cLM and 19cA high frequency (quartile 4) n-grams remains
higher than for 19cLM and 20cA. Thus, 20th c. abstracts have more diverse lexical n-grams than those
written in the 19th c.
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In addition, the amount of high frequency (quartile 4) n-grams of the 19cLM and 19cA is higher than
the ones for the 20cLM and 20cA. This might indicate a process of diversification in scientific writing,
i.e. 19th c. texts in science are lexically closer than texts written in the 20th c.

Lexis and ID Feature ranking shows that perplexity values from 2- to 5-grams are the most discrimi-
native ID features. Inspecting the perplexity values more closely (see Figure 5), we observe that from 2-
to 5-grams 19cLM has relatively low average perplexity values for 19cA compared to the ones obtained
for 20cA. While 19cLM is relatively close to 19cA, i.e. the abstracts’ lexis is relatively predictable and
obtains low perplexities according to the language model trained on 19cLM, lexis of 20th c. abstracts is
less well predictable. This observation matches the results obtained with n-gram frequencies presented
in Figure 4.

Considering 20cLM (see again Figure 5), it shows lower perplexity values for 20cA than for 19cA.
However, the difference is relatively small in comparison to the difference observed for 19cLM on 19th
and 20th c. abstracts. Thus, 20cLM is better in predicting lexical choices in both 19th c. and 20th c.
abstracts compared to 19cLM. In terms of diachronic changes, this reflects how new lexical choices
have entered scientific language, which were not present in the 19th century, while 19th c. language can
still be understood by a contemporary language model. These results support the assumption of lexical
diversification over time.

4.3 Diachronic Changes at More Abstract Linguistic Levels
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POS 3-gram examples

19
th

ce
nt

ur
y , IN DT , that the, , in the, , on the

IN DT NN by the author, in this paper, of the earth
NN , CC water , and, acid , and, light , and
DT NN , the author, , this paper, , the earth ,
DT NN IN the action of, the quantity of, the surface of

20
th

ce
nt

ur
y JJ NN NN superficial gas velocity, natural language processing, optimal control problem

DT NN NN a computer program, the heat transfer, the nucleotide sequence
NN NN IN nucleotide sequence of, sequence analysis of, gene expression in
JJ NN NNS partial differential equations, open reading frames, linear matrix inequalities
NN NN . gene expression ., power consumption ., control system .

Table 3: Most frequent lexical realizations of top 5 POS 3-grams for 20th c. and 19th c. abstracts

POS Sequences To investigate diachronic changes at the POS level, we consider POS 3-gram se-
quences, which perform best in POS-based classification (see again Figure 2). We inspect the top 20
features of the POS 3-gram sequences obtained by feature ranking and look at their frequency distribu-
tion in the training data of the 19th and 20th c. abstracts. Figure 8 shows how complex nominal structures
(consisting of compounds with a at least two nouns, e.g. DT NN NN such as the heat transfer) are dis-
criminative for the 20th c. abstracts, while shorter nominal structures (consisting of POS sequences with
one noun, e.g. followed by a comma (DT NN , such as the heat,)) and prepositional phrases (e.g. IN DT
NN such as on the eye) are discriminative for the 19th c. abstracts. This clearly reflects a shift towards
a denser linguistic encoding in 20th c. abstracts, where information is more densely packed into longer
nominal structures. Table 3 shows the top 5 POS 3-gram sequences of both periods with examples. We
can see from the examples that while in the 19th c. there are relatively general and short nouns (such
as author, water, action), in the 20th century more specific compound nouns are used. Inspecting these
examples in their sentential context confirms the use of quite complex nominal phrases in abstracts of the
20th century (see examples (1) and (2)) vs. shorter, less complex ones in the 19th century (see examples
(3) and (4)).

(1) We have determined the complete DNA nucleotide sequence of the carp Cyprinus carpio fast
skeletal myosin heavy chain (MYH) gene. (20th century)

(2) Nitric oxide generation rate and concentration distribution in combustors containing regions of
recirculating flow are calculated using a computer program developed for two-dimensional
elliptic compressible flows. (20th century)

(3) Those who cultivate chemistry with any degree of ardour, will be gratified to see in this paper the
pains taken by the author, and the various modes he has devised, to produce this compound
metal in its most perfect state of combination. (19th century)

(4) The substance here examined by the author, we are told, was first made known by the celebrated
Klaproth. (19th century)

POS and ID We also inspect ID features as they achieve an F-measure above 0.90 (see Figure 2),
indicating that 19th c. and 20th c. abstracts differ with respect to ID. The top three features refer to the
log probabilities of 3- to 5-grams. In Figure 6, for both time periods the log probabilities increase with
higher n-gram order, indicating lower surprisal values for POS n-grams of higher order. However, 19th
c. abstracts differ from 20th c. abstracts as the log probabilities for the earlier period are lower (wrt both
LM resources) than the ones for the 20th c. This indicates that POS sequences of 20th c. abstracts are
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more predictable than those of the 19th c. abstracts, thus pointing to a more conventionalized use of POS
sequences in 20th c. abstracts. These findings support our hypothesis of grammatical consolidation over
time.

Syntax and ID The top three features on the syntactic level are again log probabilities of 3- to 5-
grams. By inspecting the log probability distribution (see Figure 7), we see a very similar tendency
to the results on POS. Thus, for both time periods the log probabilities increase with higher n-gram
order, i.e. syntactic n-grams of higher order can be better predicted, indicating also on the syntactic level
a more conventionalized use in 20th c. abstracts, which supports again our hypothesis of grammatical
consolidation.

5 Conclusion

We have presented a sentence-based classification approach of time periods based on information the-
ory inspired features. Our classification task focused on distinguishing 19th century and 20th century
research abstracts. For this, we used features at three linguistic levels: lexis, part of speech, and flattened
syntactic structure. This allows us to model not only lexical but also grammatical/stylistic long-term
change in scientific writing.

Regarding classification, we show that while shallow features such as character and token n-grams
achieve good results at the lexical level, applying features based on information density measures (log
probability, perplexity) – achieves similar results and even outperforms shallow features at different lin-
guistic levels. Furthermore, the best classification results were obtained by a combination of information
density features considering all three linguistic levels with only a minimum number of features as we use
unlexicalised dense feature-vector representations.

By a deeper analysis of the classification results, we obtained insights on long-term diachronic change
with respect to our assumptions of lexical diversification and grammatical consolidation. Considering
lexical diversification, new lexical choices have entered scientific writing from 19th to 20th century.
Considering grammatical consolidation, a trend towards a denser linguistic encoding in terms of compact
nominal structures was observed. Beyond lexical variation, we assume the methodology to be domain-
and language independent. This will be pursued in future work with application on other genres/registers
and languages.
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