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Abstract

Learning word categories is a fundamental task in language acquisition. Previous studies show
that co-occurrence patterns of preceding and following words are essential to group words into
categories. However, the neighboring words, or frames, are rarely repeated exactly in the data.
This creates data sparsity and hampers learning for frame based models. In this work, we propose
a paradigmatic representation of word context which uses probable substitutes instead of frames.
Our experiments on child-directed speech show that models based on probable substitutes learn
more accurate categories with fewer examples compared to models based on frames.

1 Introduction

Children abstract grammatical rules from individual words (e.g. baby, talk) and eventually apply them
to word categories (e.g. noun, verb, adverb). A word category represents a group of words that can be
substituted for one another without altering the grammatical appropriateness of a sentence. Learning
word categories is an important step in language development.

The Distributional Hypothesis (Harris, 1954) suggests that words occurring in similar contexts tend to
have similar meanings and grammatical properties. Studies on extraction of word categories have shown
that distributional information of word co-occurrences is a reliable cue for the learning of word categories
(Mintz, 2003; St Clair et al., 2010; Redington et al., 1998). Children need to extract word categories from
incoming speech stream in order to be able to predict how words behave in various grammatical contexts
and to produce words in appropriate grammatical constructions. Children tend to form word categories
that group words used in similar contexts.

To judge how similar two contexts are, one can use syntagmatic or paradigmatic representations of
the word context: A syntagmatic representation is based on the neighbors of the target word whereas a
paradigmatic representation uses potential substitutes for the target word.

In this paper, we hypothesize that children judge context similarity using a paradigmatic represen-
tation: a context is similar to another if the same words can be substituted in both. The following two
examples1 illustrate the advantage of paradigmatic representations in uncovering latent similarities where
a syntagmatic representation would fail to see any overt similarities. The word “you” from the first sen-
tence and the word “I” from the second sentence have no common neighbors within the same sentence.
The paradigmatic representation, shown below the sentences as substitute word probabilities, captures
the similarity of these contexts by suggesting similar top substitutes for both:

(1) “they fall out when you put it in the box .”
you: you(.8188), I(.1027), they(.0408), we(.0146) . . .

(2) “what have I got here ?”
I: we(.8074), you(.1213), I(.0638), they(.0073) . . .

This work is licenced under a Creative Commons Attribution 4.0 International License. License details: http://
creativecommons.org/licenses/by/4.0/

∗Work was done when authors were at Koç University.
1These examples are extracted from the Anne corpus from CHILDES (MacWhinney, 2000). The computation of substitute

word probabilities is described in Section 3.3.
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The high probability substitutes reflect both semantic and grammatical properties of the context. The
top substitutes for “I” and “you” are pronouns. As an additional example, the top substitutes for the word
“fall” in the first sentence are other motion verbs: come(.7875), go(.0305), fall(.0232), . . .

These examples show that the paradigmatic representation can relate a pair of words according to the
substitute word distribution of their contexts even when the surface forms of the contexts do not share
any common neighbors. This makes the paradigmatic representations of word context more robust to the
data sparsity compared to the syntagmatic representations, due to low re-occurrence frequency of large
frames.

The rest of the paper is organized as follows. In the next section, we describe prior distributional
approaches to word category acquisition. In Section 3, we provide a detailed explanation of our calcu-
lations of substitute words. In Section 4, first we introduce the experimental setup we used and give the
details of the experiments to contrast the paradigmatic approach with the syntagmatic approach. The last
section summarizes our contributions.

2 Related Work

In this section we review distributional approaches to word category acquisition and evaluate them based
on two success criteria: accuracy and completeness. Accuracy measures how accurate the predictions
were at grouping the words into the same word category together. Completeness, on the other hand,
measures how well a given category is predicted.

Redington et al. (1998) define the context of a word as the previous and following words. They
construct context vectors of target words for clustering. Using average link clustering, target words are
separated into categories. Although the resulting categorizations are generally accurate, the method is
weak in completeness because words that do not appear in frequent frames cannot be covered.

Mintz (2003) proposes top-N frequent frames surrounding a target word as a more fitting context
to derive word categories from. A frequent frame consists of left and right neighbors that co-occur
frequently. Experiments on child-directed speech reveal that frequent frames have the ability to assign
word categories with high accuracy. However, this method also lacks satisfactory completeness. St Clair
et al. (2010) combine the bigram’s coverage power (Redington et al., 1998; Monaghan and Christiansen,
2008) and the accuracy of frequent frames (Mintz, 2003). Their experiments suggest that to match the
performance of infants both bigram and trigram sources may need to be used.

Freudenthal et al. (2005) identify a complication of distributional methods for constructing word cat-
egories. Distributional methods suggest that words occurring in a similar context can be used inter-
changeably. They claim the evaluation methods used in studies like (Redington et al., 1998; Monaghan
and Christiansen, 2008; Mintz, 2003) could be misleading. Specifically, if a word is substituted with
another one in its category, the resulting sentences could be erroneous in a way that they are not ob-
served in infants’ speech. As a success criterion, they argue that the proposed categorization should
generate plausible sentences. They introduce a chunking mechanism merging words that are seen fre-
quently. The mechanism is successful in generating meaningful sentences, still, the proposed solution is
computationally too complex as a learning mechanism in infants.

Alishahi and Chrupała (2012) propose an incremental learning scheme inducing soft word categories
while learning the meaning of words. Thothathiri et al. (2012) examine the role of prosody in infants’ dis-
tributional learning of syntactic categories and concludes that the prosody shows little influence. Reeder
et al. (2013) discuss the use of distributional knowledge when the evidence in the possible context of
a word is not enough. Furthermore, they explain how and when language users form new categories
depending on the overlaps between the context words.

In the related part-of-speech induction literature2, Schütze (1995) incorporates paradigmatic infor-
mation by concatenating the left and the right co-occurrence vectors of the right and left neighbors
respectively, and groups words that have similar vectors. The limitation of this model is that it uses only
bi-gram information and suffers from sparsity as the context size gets larger. Yatbaz et al. (2012) cal-
culate the most probable substitutes of a given context using a 4-gram statistical language model. Their

2See (Christodoulopoulos et al., 2010) for a comprehensive review of the part-of-speech induction literature.
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model achieves the state-of-the-art result in the part-of-speech induction literature. Part-of-speech induc-
tion aims to induce word-categories from large amounts of unannotated text (mostly news corpora). Our
paper evaluates the substitute-based context representation by Yatbaz et al. (2012) as a possible feature
for classifying words in relatively small amounts of child-directed speech.

3 Method

In this section we explain the experimental methodology we used, including how the input corpora was
processed, the language model was trained, the evaluation metrics, and the computational model to learn
grammatical categories.

3.1 Input Corpora

To compare results with (St Clair et al., 2010) and (Mintz, 2003), we use the same six corpora of child-
directed speech from the CHILDES3 corpus (MacWhinney, 2000): Anne and Aran (Theakston et al.,
2001), Eve (Crystal, 1974), Naomi (Sachs, 1983), Nina (Suppes, 1974), Peter (Bloom et al., 1974;
Bloom et al., 1975). Following (Mintz, 2003) we only analyze the adult utterances in sessions where the
target child is 2.6 years old or younger. Table 1 summarizes the number of target word tokens and types
in each corpus.

Table 1: Summary of the total number of tokens, utterances and types in each child corpus together with
the number of utterances and types that are observed as target word in a three word window aXb.

Corpus Tokens Utterances Utterances
Categorized Types Types

Categorized
Count % Count %

Anne 121726 93371 42789 45.82 2623 1846 70.37
Aran 129823 104997 54768 52.16 3256 2595 79.69
Eve 78778 59095 27315 46.22 2184 1465 67.07
Naomi 38302 28793 13002 45.15 1883 1194 63.40
Nina 89957 72879 39335 53.97 2036 1580 77.60
Peter 94521 72834 34997 48.05 2145 1472 68.62

The target grammatical categories of words in CHILDES are extracted by first applying the MOR
parser (MacWhinney, 2000) and then using the POST disambiguator (Sagae et al., 2004). The accuracy
of CHILDES grammatical categories is approximately 95% (Parisse and Le Normand, 2000) and is
encoded in the MOR line of the CHILDES corpus.

3.2 Algorithm

We use supervised learning with a feed-forward connectionist model (a single hidden layer neural net-
work) to compare the effect of distributional cues from various context representations on the word
category learning. The input is a representation of the word context and the output is a word category.
We evaluate two models with different input representations:

• aX + Xb model: This is the flexible frames model of St Clair et al. (2010), the best performing
syntagmatic model. Consider a five word window a1a2Xb1b2 where X is the target word. The
input to the model consists of two one-hot vectors, one that correspond to the preceding bigram
(a1a2) and one to the succeeding bigram (b1b2). Thus two input units are activated to represent the
context of each target word.

• a ∗ b model: This is the paradigmatic model investigated in this paper. First, a small number of
substitutes are sampled for the target word based on an n-gram language model as described in the
next section. The input to the model consists of the counts of the substitutes in the sampled set. The
length of the input vector is equal to the size of the substitute vocabulary.

3Specifically, CHILDES version 2.0.1 is used in experiments.
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Figure 1: Number of input layer units of the flexible frame (aX + Xb) and the substitute based (a ∗ b)
models. (a ∗ b) samples 16 substitutes per target word. Standard errors are reported with error bars.

Figure 1 gives the number of input layer units of syntagmatic (aX + Xb) and paradigmatic (a ∗ b)
models on each child corpus separately. The number of distinct frames is fixed for any given corpus
while the number of distinct substitutes varies due to the random sampling. Both models have 10 output
units due to the standard labeling (Mintz, 2003).

Unless stated otherwise, all connectionist models in this paper use the following parameters: (1) num-
ber of hidden units is set to 200 and initialized randomly for each model. (2) The non-linearity is sigmoid
and the learning rate is 0.2.

3.3 Substitute Words
In the paradigmatic (a ∗ b) model, we predict the word category of a word in a given context based on its
most likely substitute words. We measure the likelihood of substitute words using an n-gram language
model. Here, we first describe how substitute probabilities can be computed using an n-gram model and
give details on training the n-gram model.

It is best to use both the left and the right context when estimating the probabilities for potential lexical
substitutes. For example, in “He lived in San Francisco suburbs.”, the token San would be difficult to
guess from the left context but it is almost certainly determined looking at the right context.

We define the context cw of a given word w as the 2n− 1 word window centered around the position
of w : w−n+1 . . . w . . . wn−1. The probability of a substitute word w in a given context cw is estimated
as:

P (w0 = w|cw) ∝ P (w−n+1 . . . w0 . . . wn−1) (1)

= P (w−n+1)P (w−n+2|w−n+1) . . . P (wn−1|wn−2
−n+1) (2)

≈ P (w0|w−1
−n+1)P (w1|w0

−n+2) . . . P (wn−1|wn−2
0 ) (3)

where wj
i represents the sequence of words wiwi+1 . . . wj . In Equation 1, P (w0 = w|cw) is proportional

to P (w−n+1 . . . w0 . . . wn+1) because the words of the context are fixed. Terms without w0 are identical
for each substitute in Equation 2 therefore they have been dropped in Equation 3. Finally, only the closest
n − 1 words are used in the experiments. Note that the substitute word distribution is a function of the
context only and is indifferent to the target word.

Near the sentence boundaries the appropriate terms were truncated in Equation 3. Specifically, at the
beginning of the sentence shorter n-gram contexts were used and at the end of the sentence terms beyond
the end-of-sentence utterance were dropped.

To train the n-gram model, we first extracted training data of approximately 6.8 million tokens4 of
child-directed speech data from CHILDES. We trained a 4-gram language model on this data with
Kneser-Ney discounting using SRILM (Stolcke, 2002). Words that were observed less than 2 times in
the language model training data were replaced with an unknown word tag, which gave us a vocabulary
size of 21734.

4Anne, Aran, Eve, Naomi, Nina, and Peter corpora are excluded.
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3.4 Evaluation

To evaluate classification accuracy we use the standard labeling (Mintz, 2003)5 that categorizes target
words as: nouns (including pronouns), verbs (including copula and auxiliaries), prepositions, adjectives,
adverbs, determiners, conjunctions, wh-words, negation (i.e., “not”) and interjections. Following St Clair
et al. (2010), we also report the asymmetric lambda value (Goodman and Kruskal, 1979) to compare the
association among the classification of grammatical categories.

3.5 Training and Testing

We measure and compare the classification accuracy of models by applying 10-fold cross validation on
the union of six child corpora. We randomly split each child corpus into 10 folds. The main advantage
of the cross validation is that all sentences are eventually used both for testing and training.

To compare the effects of paradigmatic representation (a ∗ b) with the syntagmatic one (aX + Xb)
we train and test both models using the identical 10-fold cross validation split. Thus every model in this
paper is exposed to the identical sequence of training and testing patterns. Unless stated otherwise, in
the rest of this paper, we stopped the training phase of feed-forward connectionist model on each corpus
after 100K input patterns, used the standard labeling to evaluate model accuracies, calculated substitute
distributions as described in Section 3.3, and sampled 16 substitutes per target word in models using the
paradigmatic representation.

Section 4 compares the classification accuracies of syntagmatic and paradigmatic representation based
models. The effects of the number of substitutes and the language model n-gram order on the paradig-
matic model performance are inspected in Section 5 and 6, respectively.

4 Experiment 1: Syntagmatic vs Paradigmatic

To compare the distributional information of syntagmatic and paradigmatic representations, we train
separate feed-forward connectionist models for each child corpus based on these representations. St Clair
et al. (2010) showed that flexible frames have richer distributional information than other frame types
both in terms of classification accuracy and coverage. Thus we only report results of the models based
on substitute words (a ∗ b) and flexible frames (aX + Xb).

Method. All models are trained and evaluated according to steps summarized in Section 3.5. To see the
effect of training data size, similar to the analysis in (St Clair et al., 2010), we split the training of each
model into short and long training phases in which we stop and evaluate the models on the corresponding
test sets after presenting identical 10K and 100K training patterns, respectively.

Results of Short Training Phase. Table 2 gives the overall classification accuracies of aX + Xb and
a ∗ b models on each child corpus. The accuracy of a ∗ b model significantly outperforms the aX + Xb
model on each child corpus even with a limited amount of training patterns. Lambdas of the a ∗ b model
are significantly closer to the perfect association than lambdas of the aX + Xb model. Lambdas of both
models are significantly different from zero association.

To further investigate the accuracy gap between aX + Xb and a ∗ b models, we plot the classification
accuracies of each grammatical category in the standard labeling for both models in Figure 2. Even after
10K training patterns both models are able to achieve relatively high accuracies on nouns (n), verbs (v),
determiners (det) and prepositions (prep) than the rest of the word categories. The a ∗ b model is more
successful than the aX +Xb model in learning word categories such as wh-words (wh), adjectives (adj),
adverbs (adv), conjunctions (conj), and negations (neg).

Finally, with limited amount of training patterns, the a ∗ b model is able to categorize nine out of ten
grammatical categories in each child corpus with some accuracy. On the other hand, the aX +Xb model
performs poorly on wh, conj, adv, neg and int and can not correctly classify any members of these word
groups in at least one of the child corpora.

5(Mintz, 2003) also defined an expanded labeling in which pronouns, auxiliaries and copula forms have their own categories.
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Table 2: 10-fold cross-validation classification accuracies of models based on flexible frames (aX +Xb)
and substitutes (a ∗ b) on each child corpus after 10K training patterns are summarized. Standard errors
are reported in parentheses. Lambdas of aX + Xb and a ∗ b are both tested against each other and zero
association by using two tailed z-test. All tests have p < .001.

Corpus aX +Xb a ∗ b
Accuracy λ Accuracy λ

Anne .6252 (.0231) .4323 (.0352) .7970 (.0069) .6925 (.0111)
Aran .5968 (.0218) .3908 (.0327) .7783 (.0083) .6653 (.0123)
Eve .6193 (.0192) .4248 (.0306) .8091 (.0100) .7116 (.0141)
Naomi .6054 (.0236) .3960 (.0395) .7771 (.0100) .6598 (.0178)
Nina .6438 (.0216) .4521 (.0362) .8146 (.0096) .7150 (.0162)
Peter .6255 (.0246) .4402 (.0372) .8086 (.0088) .7140 (.0130)
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Figure 2: Individual tag accuracies of aX +Xb and a∗b on each child corpus after 10K training patterns
are presented.

Results of Long Training Phase. The previous section shows that the a ∗ b model is more accurate
than the aX + Xb model on learning word categories with limited amount of language exposure. In this
section each model is trained with 100K input patterns to observe the effect of more extensive language
exposure on learning.

Table 3 summarizes the overall classification accuracies of aX + Xb and a ∗ b models on each child
corpus. Although differences between corresponding accuracies and lambda values of aX + Xb and
a ∗ b models are less than 10K experiments, the a ∗ b model is still significantly more accurate than the
aX + Xb model on all child corpora. The a ∗ b model benefits less from the extensive training than the
aX + Xb model. One possible explanation for this behavior is that the number of input units of the a ∗ b
model on each child corpus is significantly higher than the aX + Xb (see Figure 1) while the number of
hidden units is fixed to 200 for both models. Following St Clair et al. (2010), we experimented with the
number of hidden units such that the ratio between the number of input units and the number of hidden
units is the same for both models. We did not observe significant changes on the result.

Table 3: 10-fold cross-validation classification accuracies of models based on flexible frames (aX +Xb)
and substitutes (a ∗ b) on each child corpus after 100K training patterns are used. Standard errors are
reported in parentheses. Lambdas of aX + Xb and a ∗ b are both tested against each other and zero
association by using two tailed z-test. All tests have p < .001.

Corpus aX +Xb a ∗ b
Accuracy λ Accuracy λ

Anne .7628 (.0075) .6407 (.0124) .8311 (.0068) .7442 (.0109)
Aran .7337 (.0059) .5977 (.0081) .8139 (.0073) .7189 (.0108)
Eve .7580 (.0068) .6351 (.0083) .8396 (.0107) .7576 (.0160)
Naomi .7316 (.0086) .5892 (.0113) .8041 (.0090) .7000 (.0169)
Nina .7755 (.0040) .6547 (.0075) .8389 (.0097) .7523 (.0165)
Peter .7670 (.0071) .6518 (.0088) .8379 (.0073) .7579 (.0112)
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Figure 3: Individual tag accuracies of aX + Xb and a ∗ b on each child corpus after 100K training
patterns are presented.

Similar to the 10K results, aX + Xb model performs poorly on wh, conj, neg, and int as shown in
Figure 3. Both models accurately learn the noun, verb, determiner, and preposition groups. However,
the a ∗ b model is significantly more accurate on adjectives, conjunctions, and negation.

5 Experiment 2: Number of Substitutes

In this experiment we analyze the effect of the number of substitutes sampled per context on the classifi-
cation accuracy.

Method. We used the same experimental settings except that the number of substitutes per target word
is varied between 1 and 64. We did not observe any significant difference on model classification accu-
racies for the number of substitutes that are more than 64.

Results and discussion. Figure 4 plots the model classification accuracy of each child corpus versus
the number of substitutes. The classification accuracy dramatically increases on each child corpus until
the number of substitutes reaches 16. After 16 substitutes, increasing the number of substitutes does
not significantly change the classification accuracy. Thus, the model is fairly robust to the number of
substitutes as long as the model can observe at least 16 substitutes per target word.

1 4 8 16 25 32 48 64

Number of Substitutes

0.72

0.74

0.76

0.78

0.80

0.82

0.84

0.86

A
v
e
ra

g
e
d
 A

cc
u
ra

cy

anne

aran

eve

naomi

nina

peter

Figure 4: 10-fold cross validation accuracy of each child corpus for different number of substitutes.

6 Experiment 3: Language Model N-gram Order

In this set of experiments, we test the paradigmatic model by changing the n-gram order of the language
model that is used to sample substitutes. A language model defines probabilities for the sequences of

713



strings in a language. The n-gram order of language model determines the number of preceding items
taken into account while determining the probability of the upcoming word. The previous studies show
that young children are sensitive to statistical properties of language (Saffran et al., 1996) and are able
to store 4-word sequences (Bannard and Matthews, 2008). Experiments with adults also suggest that the
language users are sensitive to co-occurrence patterns beyond bigram (Arnon and Snider, 2010).

The perplexity of the language model is a measurement of the variation of words that can be observed
in a given n-gram context window and is determined by n-gram order of the language model. Therefore,
as the n-gram order increases the model assigns more relevant substitutes to the context6.

Method. We used the same experimental settings except that the n-gram order of the language model
that is used to sample substitutes is varied from 2 to 5.

Results and discussion. The perplexity of each child corpus is dramatically improved when the n-
gram order of the language model is increased from 2 to 3 and varies slightly for orders higher than
3. Figure 5(a) plots the perplexity versus the n-gram order. Figure 5(b) plots the model classification
accuracy versus the n-gram order on each child corpus which slightly improve for orders higher than 3
which is in fact parallel to the perplexity trends in Figure 5(a). Overall, the classification accuracy of
paradigmatic model is highly correlated with the perplexity of the language model that is used to sample
substitutes.
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Figure 5: Language Model perplexities on each child corpus for different n-gram orders are presented on
the left figure while 10-fold cross validation accuracies calculated based on these models are presented
on the right.

7 Conclusion

In this work, we proposed representing word context with substitute-based paradigmatic representations
as opposed to neighbor-based syntagmatic representations for word category acquisition. The paradig-
matic approach suggests using probable substitutes of word (a ∗ b). On the other hand, the syntagmatic
approach we used proposes using the preceding bigram and the succeeding bigram, whichever is fruitful
(aX + Xb). Our experiments showed that paradigmatic representation of context is more accurate in
learning word categories.

To contrast these two representations we replicated the experimental setup of St Clair et al. (2010).
Experiments showed that when the models exposed to limited amount of training patterns the a ∗ b is
significantly more accurate than aX + Xb. Results of the long training phase demonstrated the same
pattern, however, the gap between these approaches decreased.

We investigated the dependency of the model to the number of substitutes sampled for each context.
In this experimental setup the number of substitutes varies from 1 to 64. The results showed that the
accuracy of the model dramatically increases up to 16. After 16 substitutes, no significant improvement
in accuracy was observed. We conclude that the model is robust as long as 16 substitutes are sampled.

6(Goodman, 2001) showed that the perplexity plateaued when the order is higher than 5 for datasets of about 108 words.
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We explored the effect of the n-gram order of the language model to the accuracy of the model. While
determining the probability of the next word in a sequence of words, n-gram order determines how
many preceding words should be used. Our results demonstrated that the model’s performance depends
on the n-gram order of the language model up to order 3, larger contexts do not seem to improve the
performance.
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