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Abstract

We propose a dependency parsing pipeline, in which the parsing of long-distance projections
and localized dependencies are explicitly decomposed at the input level. A chosen baseline de-
pendency parsing model performs only on ’carved’ sequences at the second stage, which are
transformed from coarse constituent parsing outputs at the first stage. When k-best constituent
parsing outputs are kept, a third-stage is required to search for an optimal combination of the
overlapped dependency subtrees. In this sense, our dependency model is subtree-factored. We
explore alternative approaches for scoring subtrees, including feature-based models as well as
continuous representations. The search for optimal subset to combine is formulated as an ILP
problem. This framework especially benefits the models poor on long sentences, generally im-
proving baselines by 0.75-1.28 (UAS) on English, achieving comparable performance with high-
order models but faster. For Chinese, the most notable increase is as high as 3.63 (UAS) when
the proposed framework is applied to first-order parsing models.

1 Introduction

Incorporating ’non-local’ features into syntactic parsing has been well-studied in literature. For exact
parsing, we have seen cubic-time decoders for first and second-order models (Eisner, 1996; McDonald
and Pereira, 2006), quadratic-time decoders for third-order models (Koo and Collins, 2010) and etc.
In transition-based parsers, e.g. (Nivre et al., 2006), so-called non-local features can be easily extracted
from parsing history. With a global inference framework, e.g. approximate Linear Programming (Martins
et al., 2011; Koo et al., 2010), arbitrary structural constraints can be imposed. There are two main
research goals underlying these works, one is to localize long-distance dependencies, which can be
achieved by assuming the optimal substructure property or introducing parsing actions like reductions.
The other goal is to appropriately factor tree score, over parts like arcs as well as over parsing actions.

In this work, we propose a dependency parsing pipeline, so that long-distance dependencies are ex-
plicitly localized at the input level. With the proposed factorization, dependency tree score sums over
its subtrees. More specifically, we address a distinction between long-distance projections and localized
dependencies, which can be characterized by word categories of their lexical heads. The long-distance
projections can be captured by a coarse constituent parser, which only sees peripheral and head words
of such long-distance projections. So as to reduce error propagation, we transform k-best constituent
parsing outputs to ’carved’ sequences for the following dependency parsing, which could be overlapped.
Therefore, a third stage is required to search for the optimal subset of all candidate subtrees to combine.

Given previous work on parsing, e.g. (Charniak and Johnson, 2005),(McDonald et al., 2005),(Martins
et al., 2013) and so on, reliable constituent-based parsers and dependency parsers are available. Our
main implementation challenge is to select an subset of those subtrees over overlapped carved sequences
of the original input to cover the original sentence. We propose to formulate this as an Integer Linear
Programming (ILP) problem, which is similar to a set cover problem. Note that, since the search space at
this stage is highly constrained by the input of the previous stages, an exact decoding is efficient enough.

This work is licensed under a Creative Commons Attribution 4.0 International Licence. Licence details:
http://crativecomons.org/licenses/by/4.0/.
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Figure 1: Example 2.2 demonstrates ’carved sequences’. Ex-
ample 2.3 demonstrates the coarse constituent parsing.

Figure 2: The averaged length of projec-
tions headed by each POS category, as com-
puted from Penn WSJ treebank.

We experiment with two alternative approaches for scoring subtrees. A feature-based perceptron clas-
sifier, and Dependency-based Convolutional Neural Networks (DCNN) (Ma et al., 2015). Previous use of
continuous representation in parsing mainly models parsing actions, phrases, words, or features. When
dependency chains are modeled, they were only used for reranking of k-best lists of whole dependency
trees, e.g. (Le and Zuidema, 2014; Zhu et al., 2015). Since transition-based parsers are known to act
worse on long-distance dependencies, they benefit from this pipeline the most. With no algorithmic
change to transition-based or first-order models, an increase of 1.28/1.21 (UAS) can be achieved solely
due to the proposed factorization of input, thus achieving comparable performance with high-order mod-
els but faster. For Chinese, the most notable increase is as high as 3.63 (UAS), when the proposed
framework is applied to first-order parsing models.

2 System Design

2.1 Motivation

Consider a sentence as follows:

Example 2.1. The SEC will probably vote on the proposal early next year , he said .

Suppose, magically, we could determine oracle ’carved’ sequences of this input, such that all words in
a sequence are dependent of some word in the same sequence, except for one head word, e.g. Example
2.2 in Figure 1. Further dependency parsing over these short sequences could be much easier than
parsing the original input. This kind of localization is implicitly realized during a dynamic programming
parsing process, assuming the optimal substructure property. We propose to explicitly capture this kind
of localization by decomposing input space, especially motivated by the following two observations:

• There is a notable distinction in word categories with respect to their averaged projection scope.
• The input to a first-stage constituent-based parsing for long projections can be pruned to contain

relevant peripheral and head words only (otherwise, the pipeline is of no practical interest at all.)

First of all, we acquire the distinction in word categories and define long-distance projecting POS
categories according to statistics of the training corpus. Based on this statistically verifiable distinction
we propose the following parsing pipeline:

(1) Constituent-based parsing for phrases headed by long-distance projecting word categories.
(2) Dependency parsing over carved sequences of input, which are transformed from the coarse con-

stituent parsing outputs of the first stage.
(3) When k-best constituent-based parsing is employed at the first stage, search for an optimal subset

of subtrees to combine into a whole dependency tree over the original input.
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Figure 3: A parsing framework of three stages.

Given previous work on parsing, e.g. (Charniak and Johnson, 2005),(McDonald et al., 2005),(Martins
et al., 2013) and so on, reliable constituent-based parsers and dependency parsers are available. In other
words, other than selecting the set of POS tags that are considered as long-distance projecting categories,
there are few implementation details for the first and second stages. Our main implementation challenge
seems lies in the third stage. However, since the search space at this stage is highly constrained by the
input of the previous stages, we propose to straightforwardly model this search as an ILP problem, which
can be efficiently solved by a general ILP decoder, e.g. cplex.

2.2 The first constituent parsing stage
In a projective dependency tree, we consider the projection of a head as the range of input covering all
of its descendants. As shown in Figure 2, the POS categories that project longer distance in average is in
accordance with our ’linguistic instinct’. Nominal categories, adverbs, adjectives and most closed-class
categories, except for subordinating conjunction words and wh- holders, tend to project over local words
only. And for other categories, we do not stipulate, but leave it as a variant in our experiments.

Given a projective tree, projections of heads can be expressed in brackets, e.g. Example 2.3 in Figure
1. At this stage, we are only interested in projections that are headed by words that fall in long-distance
projecting POS categories. Given such a head word of tag ’X’, for the sake of expressive convenience,
we tag the corresponding bracket covering all its descendants as ’XC’. This simple rule could transform
a dependency treebank to brackets of long-distance projections with no ambiguities. Any constituent-
based parser that doesn’t impose fixed head rules, can be trained over this type of structures, instead of a
conventional Treebank. However, if this stage is as slow as a full constituent parsing process, the whole
pipeline is of no practical use. As will be shown in Section 5.3, with pruned input and coarse grammar,
the constituent parsing stage is no longer a painful bottleneck for parsing speed.

2.3 The second dependency parsing stage
For a bracket, e.g. (VBC (VB vote) (INC (IN on) (DT the) (NN proposal))(RB early) (JJ next) (NN year))
in Example 2.3 of Figure 1 , we carve all its embedded brackets out, but leaving head words to hold
the space. This transformation gives ’carved’ sequences such as ”vote on early next year”. As long as
long-distance dependencies do not cross, this simple rule can transform long-distance constituent parsing
outputs to ’carved’ sequences of the original input without ambiguities. For each oracle sequence, all of
its words are guaranteed to be dependant of some word in the same range except for one head word. For
example, in Figure 1 brackets in Example 2.3 are transformed to sequences in Example 2.2 by this rule.

Dependency parsing over these carved sequences is much easier, in the sense that both performance
and efficiency are dramatically improved. If the first-stage constituent parsing offers reliable 1-best
output, we can combine subtrees over these sequences by substituting each word, r, with the subtree
rooted at r, if any. For example, in Figure 3-c, a squared node indicates that a subtree is substituted here.
We borrow the term ’substitution’ from TAG formalism (Joshi and Schabes, 1997). However, when k-
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best constituent parsing outputs are kept for reducing error propagation, further search strategy for an
optimal subset of these redundant subtrees will be discussed in Section 3.

3 Combination of subtrees

At the first k-best constituent parsing stage, we generate ”carved” sequences to be parsed at the second
dependency parsing stage. At the third stage, dependency parsing is reduced to the search of an optimal
subset to form a legal tree over the original whole input. In this section, we show how to formulate this
search as an Integer linear Programming problem, and alternative approaches for scoring subtrees.

3.1 Formulated as an ILP problem
Given a set of subtrees, searching for its optimal subset over the original input can be straightforwardly
formulated as an Integer Linear Programming (ILP) problem, which is similar to a set cover problem.
The only practical concern is whether it can be solved efficiently by a general ILP decoder. As will be
shown with experiments in Section 5.3, the search space of this stage is well-constrained by outputs from
the previous stages, therefore this succinct idea nicely works out in the proposed pipeline.

Because subtree outputs from the second stage already satisfy tree requirements, we only need to
impose the globally single-root and single-headed constraints on a compatible subset, but not to worry
about the non-cyclic requirement. We introduce a designated root $ for the final dependency tree. For
each candidate subtree, add a dummy subtree that includes only a single arc from the designated root
$ to the subtree’s root node. Suppose there are n words in the original input sentence, N = 1...n, not
including the designated root node. Let T be a set of subtrees, T =t1...ts. Our goal is to find an optimal

solution x = x1...xs that maximizes
s∑

i=1

score(ti) · xi, and subjects to

(1)
∑

i:n∈tias non-root node

xi = 1, ∀n ∈ N ; (2) xi ∈ {0, 1}, 1 ≤ i ≤ s

The boolean value of xi, as guaranteed by constraint (2), indicates whether ti is selected in the combina-
tion solution or not. Constraint (1) requires every node has one and only one head, and the introduction
of the dummy root trees guarantees single-root.

3.2 Scoring of subtrees
A dependency tree y is commonly factored into smaller parts, which can be scored in isolation. At
the third stage of our parsing pipeline, an overall dependency tree is computed by the combination of a
compatible set of subtrees, thus tree score sums over subtree scores. In this sense, our parsing model is
subtree-factored. We consider two alternatives for scoring subtrees:
(1) further factor subtrees into smaller parts; or
(2) Dependency-based Convolutional Neural Networks to model dependency chains in trees.

3.3 Factor subtrees to smaller parts
A ’first-order’ parser decomposes dependency trees into arcs; and for second-order and third-order fac-
torizations, parts of consecutive siblings, grandchild, grand-sibling and tri-sibling, have been widely
studied in literature, e.g. (Eisner, 2000; McDonald and Pereira, 2006; Koo and Collins, 2010). Since
our parsing model is subtree-factored, there is no limitation on high-order features for us to consider.
However, in practice, we follow the second-order and third-order notations.

3.4 DCNN for scoring subtrees
Dependency-based Convolutional Neural Networks were originally proposed for sentence embedding
(Ma et al., 2015) and evaluated for sentiment analysis and question classification tasks. We adopt this
model for scoring subtrees since it captures dependency chains in trees including ancestor paths and
siblings. Given parsed subtrees from the second stage, an oracle combination computes subtree scores
as the number of gold arcs it contains. For any input sentence, if a subtree is selected into the oracle
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combination, it is considered as a ’legal’ subtree otherwise ’illegal’. A subtree classifier, e.g. DCNN, is
trained to tell legal subtrees apart from illegal subtrees. This is not a structured learning schema as we are
familiar with for parsing tasks, since DCNN is not designed to capture specific structural factorization of
dependency trees, such as arcs or RCNN units as defined in (Zhu et al., 2015).

4 Related work

Klein and Manning (2003) proposed to factor parsing model into a phrase-structure tree and a depen-
dency tree, even before dependency parsing was well-studied later in literature. The idea of combining
the merits of constituents and dependency parsing is not new, but our proposed factorization is novel.

Since k-best constituent parsing outputs are used, this work resembles the re-ranking works. How-
ever, we do not perform k-best list re-ranking, e.g. (Charniak and Johnson, 2005; Hall, 2007; Qian
and Liu, 2015). Neither forest reranking (cube pruning), e.g. (Huang, 2008; Zhang and McDonald,
2012; Hayashi et al., 2011). Our search space is factored into pieces of subtrees, thus represents more
combinatory candidates than a k-best list of whole dependency trees. This decomposition distinguishes
our work from (Le and Zuidema, 2014) and (Zhu et al., 2015) which use NN-based models to re-rank
whole dependency trees. These models could also be evaluated in our parsing pipeline. Furthermore, our
work concerns very different aspects with (Ren et al., 2013), which uses dependency model for forest
reranking of constituent-based parsing. Our dependency parsing process deals with local dependencies
only, a complementary task to the constituent parsing process. The third combination stage performs
a global search, neither as a simple reranking. It is more accurate to describe our pipeline as impos-
ing constituent-based structural constraints to dependency parsing. Even though imposing constraints
practically performs similarly as pruning, it provokes interesting work, e.g. recent work on approximate
Linear Programming decoders for parsing, (Koo et al., 2010; Martins et al., 2011). In this work, we also
formulate the search of optimal combination of subtrees as an ILP problem, and due to our efforts on
constraining the search space in previous stages, it can be efficiently solved by exact decoding.

Furthermore, works on Vine parsing, e.g. (Dreyer et al., 2006; Rush and Petrov, 2012), especially
relate to ours. This line of work pays special attention to lengths of arcs and consider it as an import
factor to constrain the search. Instead of pruning arcs by distance like Vine parsing, we decompose
parsing of long-distance projections and localized dependencies, which is characterized by pattern in
word categories but not absolute distance. There is also a more recent related work, (Fernandez-Gonzalez
et al., 2016), that also pays attention to length of arcs. In their work, they use simple criteria based on
the length and position of dependency arcs to determine how to combine the outputs of an left-to right
transition-based parser and its ”mirrored” version.

5 Experiments

Our main experiments are performed on dependency trees extracted from English WSJ Treebank (Mar-
cus et al., 1993). We use Yamada and Matsumoto (2003)’s head rules to convert phrase structures to
dependency structures, considering the productivity assumption. Following the conventional split, we
use sections 02-21 for training, section 22 for development and section 23 for testing. Dependency
parsing is evaluated by unlabeled attachment score (UAS), which is the percentage of words that cor-
rectly identified their heads. Chinese experiments are performed on CTB5 with the conventional splits
described in (Zhu et al., 2015).

For both English and Chinese experiments, the BLLIP parser (Charniak and Johnson, 2005) is used for
the first-stage constituent parsing. Because the BLLIP parser doesn’t require POS tag input, we do not
impose gold POS tags or use an automatic POS tagger. We use 10-fold cross-validation training data at
the third combination stage, since the subtree classifier needs to cope with noisy input from the previous
stages. More specifically, we divide training corpus into 10 folds and train a coarse constituent-based
parser for each divide, then combine all parsing outputs from each divide into a whole training corpus
containing k-best constituent parsing outputs.

Oracle parsing is performed by the oracle combination of oracle-parsed subtrees transformed from
k-best constituent parsing outputs. We have defined oracle combination in Section 3.4. Given a carved
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constituents
recall

200-best

dependency
UAS

gold subtrees

oracle
combination

avg.>= 5 98.34 96.21 95.24
avg.>= 10 97.97 92.19 91.75

Table 1: The threshold of averaged length for long-distance
projecting POS categories affects constituent parsing and de-
pendency parsing.

avg.
>= 5

constituents
k-best recall

avg. number
of subtrees

oracle
parsing

k= 200 98.34% 59.7 99.46
k= 500 98.41% 72.75 99.51
k= 1000 98.43% 80.75 99.52

Table 2: The choice of k in k-best constituent parsing.

sequence of input, each word’s oracle head is either its gold head, or the root of this sequence when the
word’s gold head is not seen in the same sequence. Oracle-parsed subtrees are not used for training, but
only for tuning parameters on development sets.

5.1 The first-stage constituent parsing

As discussed in section 2.2, there are two distinct jumps in the distribution over averaged lengths of
projections headed by each POS category. We select the set of POS tags that are considered as long-
distance projecting by tuning a threshold on the development set. As shown in Table 1, a proper setting
of this threshold matters for all parsing stages. For following experiments on English (also Chinese
and German), we consider a POS category as long-distance projecting, if the averaged distance of its
projections is more than or equal to 5. For English, this setting gives us all verbal categories, wh-
holders, and prepositions. For Chinese, it gives long-distance projecting categories of ’VA’, ’DEC’, ’P’,
’CS’, ’SP’, ’VV’, ’VE’, ’LB’, ’BA’ and ’VC’, whose meanings are referred to (Xia et al., 2000).

The choice of k defines k-best constituent parsing outputs that will be transformed to carved sequences
in the following dependency parsing stage. As shown in Table 2, a larger k doesn’t introduces sharply
more subtrees per sentence, because most brackets in the top k-best constituent parsing outputs are the
same. This observation shows a great advantage of our factorization and distinguishes our pipeline from
k-best list reranking of whole trees. We can make use of a relatively large k to achieve higher recall,
which is set to be 500 in the following experiments on English and Chinese.

5.2 Dependency Parsing Results

baseline
parsing models

directly parse
whole trees
to compare

parsing
subtrees

in pipeline

oracle
combination of
parsed subtrees

combination by
subtree scores of

order-1 ptron

combination by
subtree scores of

order-2 ptron

combination by
subtree scores of

DCNN
NNDep 91.59 97.05 96.13 92.52 92.87(+1.28) 92.79
Mst-1 91.39 96.93 95.90 92.38 92.60 (+1.21) 92.45
Mst-2 92.13 97.05 96.05 92.51 92.88 (+0.75) 92.57

Turbo-standard 93.11 97.34 96.31 92.85 93.17 (+0.06) 92.88
Turbo-full 93.43 97.35 96.36 92.91 93.24 (-0.19) 92.93

merged N/A N/A 97.31 93.25 93.57 93.26

Table 3: Performance (UAS) of parsing by the combination of subtrees. The order-1/2 perceptron-based subtree classifier
and DCNN are three alternative combination strategies. The highest increase of UAS for each baseline model is given in
parentheses. A merge of the subtrees from all baseline models can be used to improve the second dependency parsing stage.

We could pick any dependency model for subtree dependency parsing, especially the following:

• An NN-based transition-based model, NNDep, (Chen and Manning, 2014).

• A first- (second-) order graph-based model, MST-1(2), (McDonald and Pereira, 2006).

• A third-order(and beyond) approximate model, Turbo-standard(full), (Martins et al., 2011).

For scoring subtrees, we experiment with a feature-based perceptron classifier of first/second- order
MST features, as well as the DCNN model described in Section 3.4. Given the well-known over-fitting
problem for re-ranking models, we adopt the same mixture strategies as both (Le and Zuidema, 2014)
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Figure 4: The range (min, max, average) of the num-
ber of subtrees (primary y-axis) and the averaged number
of long-distance projecting heads (secondary y-axis) with
respect to the length of input sentences as computed from
500-best constituent parsing outputs.

Figure 5: The trade-off between performance (UAS
on the promary y-axis) and speed (tokens/seconds on the
secondary y-axis).

and (Zhu et al., 2015) with arc scores by a standard Turbo parser. The classifiers are trained with merged
dependency parsing outputs, since to do 10-fold cross-validation training for every baseline model is
overloading. For a given set of carved sequences transformed from constituent parsing outputs, the
merged dependency parsing model covers the subtrees from all baseline models, thus increasing the
oracle-combination score by 0.95 even compared to Turbo-full, the best baseline model. More specif-
ically, the feature-based classifiers are trained with online perceptron-based learning (Collins, 2002).
DCNN is trained off-line with the same settings as (Ma et al., 2015). And oracle combination as de-
scribed in Section 3.4 is used to guide training.

As shown in Table 3, with the merged dependency parsing model, our parsing system performs better
than Turbo-full, by 0.14 (UAS). However, this is not what we push for in this work. We are more
encouraged by the results that, with no algorithmic change to transition-based or first-order models,
an increase of 1.28/1.21 (UAS) can be achieved solely due to a factorization of input. It is worth to
notice that, on full dependency parsing, Turbo-full performs better than the transition-based and first-
order models by nearly 2 (UAS). However, all baseline models achieve the same level of performance
for subtree dependency parsing, no bigger difference than 0.5 (UAS). This is enough to show that the
proposed factorization works. The use of DCNN doesn’t introduce special gain in performance, however,
we observe the same advantage as described in (Chen and Manning, 2014), i.e. the NN-based model is
nearly 40 times faster than the feature-based discriminative classifier.

5.3 Efficiency

The efficiency of solving the ILP problem at the third combination stage depends on the number of pos-
sible subtrees generated at the second stage. As shown in Figure 4, the averaged number of long-distance
projecting heads is linearly dependent on the input length, which suggests that the number of subtrees
increases at most linearly. Furthermore, since we only keep k-best constituent parsing outputs, the av-
eraged number of subtrees stays below a constant. When k is set as large as 500, the averaged number
of subtrees still stays below 100, as shown in Figure 4. Therefore a general ILP decoder, e.g. cplex, is
efficient enough. This efficient combination clearly shows the strength of the proposed factorization.

As shown in Table 3, all baseline models achieve comparable performance for subtree dependency
parsing. In this sense, we can now make use of the fastest dependency parsing model for subtree parsing,
without concerns in performance loss.

It turns out that the k-best constituent parsing stage is the efficiency bottleneck. Therefore, we propose
to prune the input to this stage. As a first try, we tag all head words with ’H’, any beginning or end
words of some bracket with ’B’, and other words with ’I’. Then those words of tag ’I’ can be pruned for
constituent parsing. However, this classification pattern cannot be acquired. This failure is worth special
notice, it reminds us that the success of a classification task not only depends on powerful machine
learning techniques but also crucially on appropriate representations. We then keep all punctuations, all
words before head words and all words before punctuational bracket endings , i.e. tag them with label
’B’. This tagging task can be performed with a precision above 93%, with a perceptron tagger. However,
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grammar
size

input
avg./max

words
per sec.

oracle
parsing

full 69630 24/99 681 99.51
pruned 57256 18/76 912 99.50

Table 4: Compare full and pruned input to constituent pars-
ing. Grammar size is the number of unlexicalized rewrite rules.

(UAS) baseline subtree
oracle

combination
order-2
ptron

MST-1 80.48 96.61 88.54 84.11
(+3.63)

Turbo-full 84.74 97.08 89.07 84.35
(-0.39)

Table 5: Results on CTB5, the same terms of Table 3.

high recall of ’B’ and ’H’ is more crucial for our task, i.e. relevant input are not wrongly pruned. For
decoding, we set b = 20 for tag ’B’ and ’H’, and 0 for tag ’I’, achieving 98.4% recall of tag ’B’ and
’H’, still pruning 27.5% of the original input. As shown in Table 4, by feeding pruned input to the coarse
constituent parsing, we can process about 25% words more per second at this stage.

In Figure 5, we show that the proposed pipeline provides a better trade-off between parsing per-
formance and parsing efficiency. Merged-ptron achieves comparable performance (93.57 UAS) with
Turbo-full (93.24 UAS) but 5 times faster. Even though NNDep (92.87 UAS) is about 6 times faster than
merged-ptron, there is a loss of 1.3 (UAS) in performance.

6 Experiments on Chinese

It is well-known that, Chinese parsing performance is much lower than English, for example, with MST-
1 and Turbo-full, it is only 80.48 and 84.74 (UAS) respectively for full dependency parsing. Thus it is
a surprise for us to see in Table 5 that, for subtree dependency parsing, MST-1 and Turbo-full achieve
the same level of parsing performance on Chinese as on English, 96.61 and 97.08 (UAS) respectively.
It is the first constituent parsing stage that reveals the difficulty in parsing Chinese. With 500-best c-
parsing over full input, the recall is merely 88.63%, and even with the proposed pruned input, the recall
is improved by 1% only. However, if we prune the input for constituent parsing with oracle ’H’, ’B’, ’I’
tags, a recall as high as 97% can be achieved. This big gap in results leaves a huge space for future work
to explore. The proposed factorization intriguingly discovers the bottleneck in Chinese parsing.

For non-projective parsing, we take the German case as an example. There are about 3 percent of
arcs are crossing in the TIGER corpus (Brants et al., 2002). Recall that the projective assumption is
only essential to the first constituent parsing stage. If these crossing arcs are local, our pipeline still
works. However, 98% of the crossing arcs involve long-distance projecting heads. We can employ
techniques such as super-tagging instead of constituent parsing to deal with non-projective long-distance
dependencies .

7 Conclusion and Discussion

We propose a novel factorization of parsing task that explicitly utilizes the distinction between long-
distance projections and localized dependencies. This intuitive idea works out given that this factor-
ization can be characterized by POS categories of each projection’s head word. The first and second
stages, which cope with long-distance projections and localized dependencies separately, are fed with
complementary input instead of full input, thus taking great advantage of the constrained search space to
perform better and faster.

In this work, the proposed factorization is realized in a parsing pipeline of three stages. At the sec-
ond stage, any dependency parsing model can be used for subtree parsing, so ’baseline’ models in our
work are not only used for comparison, but to show how much increase in parsing performance can be
introduced solely by the proposed factorization, with no change in parsing algorithms or learning strate-
gies to baseline models. On the final stage, dependency parsing is subtree-factored, thus any high-order
feature-based model and even continuous representation of dependency chains can be used for subtree
scoring. Moreover, dependency parsing over carved sequences of the original input especially suits for
parallel computing. Therefore, the proposed factorization provides a better trade-off in parsing speed
and performance. In future work, we would like to experiment with end-to-end learning framework for
future reducing error propagation.
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