
Proceedings of COLING 2016, the 26th International Conference on Computational Linguistics: Technical Papers,
pages 387–396, Osaka, Japan, December 11-17 2016.

Frustratingly Easy Neural Domain Adaptation

Young-Bum Kim
Microsoft

Redmond, WA
ybkim@microsoft.com

Karl Stratos∗
Bloomberg L. P.
New York, NY

me@karlstratos.com

Ruhi Sarikaya†
Amazon

Seattle, WA
rsarikay@amazon.com

Abstract

Popular techniques for domain adaptation such as the feature augmentation method of Daumé III
(2009) have mostly been considered for sparse binary-valued features, but not for dense real-
valued features such as those used in neural networks. In this paper, we describe simple neural
extensions of these techniques. First, we propose a natural generalization of the feature augmen-
tation method that uses K + 1 LSTMs where one model captures global patterns across all K
domains and the remaining K models capture domain-specific information. Second, we propose
a novel application of the framework for learning shared structures by Ando and Zhang (2005)
to domain adaptation, and also provide a neural extension of their approach. In experiments on
slot tagging over 17 domains, our methods give clear performance improvement over Daumé III
(2009) applied on feature-rich CRFs.

1 Introduction

There are often multiple types of data that share common characteristics. For example, in this work we
are interested in slot tagging of user queries under as many as 17 different domains. Correctly labeling
a given query requires the knowledge of the domain that the query is in. A word such as “home” can
be labeled as either contact name under the COMMUNICATION domain, place type under the
PLACES domain, or home screen under the XBOXENTERTAINMENTSEARCH domain. On the other
hand, a function word such as “the” is labeled as others across all domains.

Ideally, we would like to train on all sources of data in order to learn about words that are shared
across domains, but naively combining these sources for training does not work well since this ignores
label inconsistencies across domains. The other extreme is to only use data only from the domain of
interest, but it misses out opportunities to learn global patterns shared by multiple domains. The goal of
domain adaptation is precisely to address this conundrum: how can we learn from multiple sources of
data but retain the integrity of individual domains?

There has been much progress in domain adaptation. A notable example is the feature augmentation
method of Daumé III (2009), whose key insight is that if we partition the model parameters to those
that handle common patterns and those that handle domain-specific patterns, the model is forced to
learn from all domains yet preserve domain-specific knowledge. The method of Daumé III (2009) is
usually considered for sparse binary-valued features which underlie conventional NLP systems. With
such features, the parameter partitioning can be achieved with trivial data preprocessing: by conjoining
feature types with domain indicators and using them alongside the original feature types. But it is not
clear how this approach can be extended to dense real-valued feature values, which are used in many
recent NLP systems based on neural networks.

In this paper, we describe natural generalizations of such domain adaptation techniques to neural
networks. First, we propose a neural extension of the feature augmentation method of Daumé III (2009)

∗Work done while at Columbia University.
†Work done while at Microsoft.
This work is licensed under a Creative Commons Attribution 4.0 International Licence. Page numbers and proceedings

footer are added by the organisers. Licence details: http://creativecommons.org/licenses/by/4.0/

387

in which we achieve the effect of model partitioning by having a global LSTM used across all domains
and independent LSTMs used within individual domains, and then combining their outputs in the top
layer. Second, we propose using the framework for learning predictive structures by Ando and Zhang
(2005) for domain adaptation which has not previously been considered for this task (the original work
only considers multi-tasking in the context of semi-supervised learning): we likewise consider a neural
extension of this framework.

We perform slot tagging experiments on 17 different personal digital assistant domains that Cortana
handles (Tur, 2006; Anastasakos et al., 2014; Kim et al., 2015a; Kim et al., 2015c; Kim et al., 2015b; Kim
et al., 2016a; Kim et al., 2016b). Our methods give clear performance improvement over naive baselines
such as training K independent models on individual domains or training one model on the union of
all domains. Our methods also significantly outperform the feature augmentation method of Daumé III
(2009) with standard sparse binary features implemented with conditional random fields (CRFs).

The rest of the paper is organized as follows. In Section 2, we discuss related works. In Section 3,
we provide background information on domain adaptation and sequence modeling. First, we review the
feature augmentation method of Daumé III (2009) (Section 3.1). Then we review the framework for
learning predictive structures by Ando and Zhang (2005) and observe how it can be naturally considered
for domain adaptation (Section 3.2). We also give a brief introduction to neural networks for sequence
modeling (Section 3.3). In Section 4, we present a neural extension of the feature augmentation method.
In Section 5, we present a neural extension of the framework of Ando and Zhang (2005). In Section 6,
we give experimental results.

2 Related Works

Domain adaptation and multi-taking with neural networks have been an active research area. We discuss
some examples of previous works and how our work differs.

Many past approaches to domain adaptation simply augment the network with a parameter that acti-
vates on the current domain. For instance, Alumäe (2013) and Tilk and Alumäe (2014) tackle multi-
domain neural language modeling, with both feedforward and recurrent networks, by introducing a
domain-indicator parameter. Similarly, Ammar et al. (2016) address multi-lingual dependency pars-
ing with the stack LSTM by introducing a language-indicator parameter that exploits various resources
for the given language such as the language identity and WALS typological properties.

Our work is distinguished from these works in that we use a global (K + 1)-th model that captures
general patterns across K domains, rather than just K models augmented with domain indicators. This
explicit modeling of domain-independent patterns is more in the spirit of the original feature augmenta-
tion method of Daumé III (2009). The problem of adapting a general network to particular task has been
studied in the context of speech recognition acoustic models (Yao et al., 2012; Mirsamadi and Hansen,
2015).

A task closely related to domain adaptation is multi-tasking: training a single model to perform differ-
ent tasks (not just different domains) in hope to exploit common properties across tasks. Multi-tasking
has also been investigated extensively in the NLP neural network community, notably the “NLP from
scratch” work by Collobert et al. (2011) in which various sequence labeling tasks are tackled by a single
network with convolution and CRF layers, and its numerous followup studies such as Yang et al. (2016).

3 Background

3.1 Domain Adaptation by Feature Augmentation

Daumé III (2009) propose the following simple approach to domain adaptation. Suppose there are K
distinct domains, and let d denote the total number of feature types. The usual setting in NLP is that these
features are high-dimensional, sparse, and binary-valued. For example in a CRF, a feature type may ask
if the current word is “apple” and the previous word is “company”: it takes value 1 if the answer is yes
and 0 otherwise. Thus without distinguishing domains, a feature vector takes the form x ∈ {0, 1}d for
any domain k ∈ {1 . . .K}.

388

Now, consider learning a naive model f : {0, 1}d → Ω over all K domains where Ω denotes an
output space. Without domain adaptation, the model f receives a feature vector x ∈ {0, 1}d and simply
outputs the value f(x) ∈ Ω no matter which domain x corresponds to. The proposal of Daumé III
(2009) is that we train a model faug : {0, 1}(K+1)d → Ω that instead uses an augmented feature vector
xaug ∈ {0, 1}(K+1)d defined as

xaug = (x, 0, . . . , xk, . . . , 0)

where xk ∈ {0, 1}d is a feature representation of x under the k-th domain. In other words, we expand
the feature space by K + 1 times by duplicating the original feature x for K times: then given an input
from the k-th domain, we only use the original x and the corresponding domain representation xk.

Note that this essentially partitions the model parameters to those that handle the representation x used
across all domains and those that handle xk for individual domains k ∈ {1 . . .K}. In the sparse binary
feature regime, this can be achieved by conjoining the original feature types with a domain indicator. For
example, the i-th feature value of xk can look like

xk
i =

1 if the current word is “apple”

AND the previous word is “company”
AND the domain is k

0 otherwise

This can be also thought of as data preprocessing in which we duplicate the data in each domain and
mark one copy with the domain identity.

3.2 Shared Structure Learning Framework

Ando and Zhang (2005) propose learning a shared structure across multiple related classification tasks.
Specifically, they consider K binary classification tasks each of which has its own linear classifier fk :
Rd → R mapping a d-dimensional feature vector x ∈ Rd to a classification score

fk(x) := (uk + Θvk)>x = u>k x+ v>k Θ>x

Here, uk ∈ Rd and vk ∈ Rm are task-specific parameters but Θ ∈ Rd×m is a global parameter shared by
all classifiers f1 . . . fK . In particular, if Θ is zero then each classifier is an independent linear function
u>k x. The predicted label is the sign of the classification score fk(x).

The parameter sharing makes the estimation problem challenging, but Ando and Zhang (2005) develop
an effective alternating loss minimization algorithm using a variational property of singular value de-
composition (SVD). The original work applied this framework to semi-supervised learning and achieved
strong empirical results. But note that it can be viewed as domain adaptation where the K classification
tasks are different “domains” and we aim to learn a global parameter Θ shared across the domains.

3.3 Neural Networks for Sequence Modeling

Recently, there has been much success in tackling sequence modeling problems using neural networks.
By far the most popular network for sequence modeling is long short-term memory (LSTM) (Hochreiter
and Schmidhuber, 1997), which is a special case of more general recurrent neural network (RNN) archi-
tecture. An RNN extends a traditional feedforward network by recursively receiving inputs generated
by the model itself. This essentially defines a feedforward network in which the same set of parame-
ters are used multiple times and is well-suited for sequential data. But a simple RNN suffers from the
vanishing gradient problem and does not model long-term dependency very well (Pascanu et al., 2013).
An LSTM addresses this issue by introducing a memory cell in RNN architecture that can control how
much past information to retain or to forget. This modification has been shown to be crucial in practice.
Many recent works in NLP have achieved state-of-the-art results using variants of LSTM, for example
in dependency parsing (Dyer et al., 2015) and machine translation (Bahdanau et al., 2014).

389

4 A Neural Extension of the Feature Augmentation Method

We now describe a neural extension of the feature augmentation method for domain adaptation
(Daumé III, 2009). Our model consists of K + 1 LSTMs: one LSTM θ is used on all domains, and
the remaining K LSTMs θ1 . . . θK are used only for the corresponding domains. More specifically, we
predict one of L labels at the t-th time step in a given user query in domain k ∈ {1 . . .K} as follows.
The common LSTM θ produces an output vector ht ∈ Rd and the domain-specific LSTM θk produces an
output vector hk

t ∈ Rd. The output dimension d of these LSTMs is empirically chosen. The model has
parameters W ∈ RL×d and W k ∈ RL×d at the top layer and combines the LSTM outputs as zk

t ∈ RL

where

zk
t = [W W k]

[
ht

hk
t

]
= Wht +W khk

t (1)

which is a direct analogue of the feature augmentation method with sparse binary-valued features:

xaug = (x, 0, . . . , xk, . . . , 0)

This combined representation (1) is put through a softmax function to produce a distribution over L
labels. Figure 1 (a) provides an illustration of the proposed architecture The model can be trained by
maximizing the log likelihood of correct predictions in the training data:

J(W,W 1 . . .W k, θ, θ1 . . . θk) =
∑

t

log

(
exp [zt]ans(t)∑L

l=1 exp [zt]l

)
(2)

where ans(t) ∈ {1 . . . L} is the ground-truth label for the t-th training example. Note that we do not con-
sider the sentence-level log likelihood (which requires an additional CRF layer for global normalization)
for simplicity.

5 A Neural Extension of the Shared Structure Learning Framework

We describe a neural extension of the shared structure learning framework of Ando and Zhang (2005).
Recall that Ando and Zhang (2005) consider K binary classifiers fk : Rd → R with a global parameter
Θ ∈ Rd×m:

fk(x) = u>k x+ v>k Θ>x (3)

The model can be seen as combining the given input x (the first term) and a transformed input Θ>x (the
second term) where the transformation is learned across K tasks.

We extend this framework with the following model. The model consists of K LSTMs θ1 . . . θK

corresponding to K domains. At the t-th time step in a given user query in domain k ∈ {1 . . .K}, we
compute a direct analogue of (3) by adding the output vector of the k-th LSTM θk on the input vector
(word embedding) xt to the original input vector to create

zk
t = Wxt +W kθk(xt)

where θk(xt) ∈ Rd denotes the output vector of the k-th LSTM on input xt.
Figure 1 (b) provides an illustration of the proposed architecture This combined representation is

put through a softmax function to produce a distribution over L labels. The model can be trained by
maximizing the log likelihood of correct predictions in the training data similarly in (2).

Note that the proposed extensions of Daumé III (2009) and Ando and Zhang (2005) only differ in how
the domain-independent information is derived. In particular, the extension of Ando and Zhang (2005)
can be seen as a weaker version of the extension of Daumé III (2009) since the domain-independent
information is used as is (i.e., xt) in the former while first transformed by a domain specific LSTM in the
latter (i.e., ht).

390

(a) Feature augmentation method (b) Shared structure learning framework

Figure 1: Illustration of the proposed neural extensions of Daumé III (2009) and Ando and Zhang (2005).

6 Experiments

In this section, we turn to experimental findings to provide empirical support for our proposed methods.
First, we note that our experimental settings are rather different from previously considered settings for
domain adaptation in many aspects:

• Sufficient target data: In a typical setting for domain adaptation, one generally assumes that the
source domain has a sufficient amount of labeled data but the target domain has an insufficient
amount of labeled data. However, we have sufficient amounts of labeled data for all domains: our
goal is to effectively utilize all of them.

• Variant output: In a typical setting for domain adaptation, the label space is invariant across all
domains. Here, the label space can be different in different domains, which is a more challenging
setting. See Kim et al. (2015d) for details of this setting.

• Multiple source domains: In most previous works, only a pair of domains (source vs. target) have
been considered, although they can be easily generalized to K > 2. Here, we experiment with
K = 17 domains.

To test the effectiveness of our approach, we apply it to the slot sequence tagging task in a suite of 17
personal assistant domains. The goal is to find the correct semantic tagging of the words in a given user
utterance. For example, a user could say “reserve a table at joeys grill for thursday at seven pm for five
people”; then the model needs to tag “joeys grill” with restaurants, “thursday” with date, “seven
pm” with time, and “five” with numberpeople. The data statistics and the short descriptions of the
domains are shown in Table 1. As the table indicates, the domains have very different attributes. We
have 131 unique labels across these domains (a different subset of these labels is used in each domain).
The total numbers of training, development and test queries across domains are 2640K, 129K and 64K,
respectively.

6.1 Setting
In all our experiments, we train our models using stochastic gradient descent (SGD) with Adam (Kingma
and Ba, 2015)—an adaptive learning rate algorithm. We use the initial learning rate of 2×10−4 and leave
all the other hyperparameters as suggested in Kingma and Ba (2015). Each SGD update is computed
using a minibatch of size 128. We use the dropout regularization (Srivastava et al., 2014) with the keep
probability of 0.5. The dimension of the hidden layer is d = 100. For simplicity, we use simple forward-
directional LSTMs rather than bi-direction LSTMs, as we observed that they yielded similar results on

391

of labels #train #test #dev #vocab Description
Alarm 8 157K 13K 7K 3504 Set alarms

Calendar 20 130K 12K 7K 11077 Set appointments and meeting in calendar
Comm. 21 750K 60K 26K 69414 Make a call and sent messages

Entertain. 15 150K 8K 3.7K 17239 Find songs and movies
Events 6 7K 1.5K 1K 691 Find events and book a ticket
Hotel 17 4.5K 2.6K 1.8K 8022 Book hotel

Mediactrl 10 126K 11K 6K 12589 Set up a music player
Mvtickets 7 4K 1.2K 1K 2235 Find movie theater and book a ticket
Mystuff 18 3.9K 1.8K 1K 8711 Find and open a document

Note 3 6.7K 1.2K 0.6K 4269 Edit and create note
Ondevice 6 228K 2.5K 1.5K 5332 Set up a phone
Orderfood 11 7K 1.4k 0.6K 3686 Order food using app

Places 32 479K 4.5K 2.5K 51424 Find location and direction
Reminder 16 307K 2.7K 1.2K 27510 Remind appointment and to-do list

Reservations 12 2.4K 1K 0.6K 1269 Make a restaurant reservations
Taxi 10 6.3K 2K 1.2K 4391 Find and book a cab

Weather 9 281K 2.5K 1.5K 11878 Ask weather
Overall 131 2640K 129K 64K 139310

Table 1: Data sets used in the experiments. For each domain, the number of unique labels, the number
of quires in the training, development, and test sets, input vocabulary size of the training set, and short
description about domain.

the development set in preliminary experiments. To initialize word embedding, we used word embedding
trained on 6 billion tokens (6B-200d) from Wikipedia 2014 plus Gigaword 5 (Pennington et al., 2014).
These configurations were selected by observing the models performance on held-out development set.

We compare the following methods for the slot tagging tasks:

• NoAdapt: train a feature-rich CRF only on target training data.

• Union: train a feature-rich CRF on the union of source and target training data.

• Daume: train a feature-rich CRF with the discrete feature duplication method of Daumé III (2009).

• 1D&E: train a domain specific LSTM with a generic embedding on all domain training data, shown
on the right in Figure 2.

• 1D&L: train a domain specific LSTM with a generic LSTM on all domain training data, shown on
the left in Figure 2.

• KD&E: train domain specific K LSTMs with a generic embedding on all domain training data,
shown on the right in Figure 1.

• KD&L: train domain specific K LSTMs with a generic LSTM on all domain training data, shown
on the left in Figure 1.

The methods 1D&E and 1D&L are slight variants of the main proposed neural networks KD&E and
KD&L in Figure 1. These only use a single LSTM for K domains in addition to a common LSTM: it is
mostly presented for comparison purposes. Note that we have a single model to tag all domains (except
for NoAdapt with which we have K models).

392

(a) 1 domain specific LSTM + generic LSTM (b) 1 domain specific LSTM + generic embedding

Figure 2: Illustration of slight variants of the proposed neural extensions of Daumé III (2009) and Ando
and Zhang (2005) in which we have 2 instead of K + 1 LSTMs: one is used for individual domains, one
is shared across all domains.

Domain Noadapt Union Daumé III (2009)
Alarm 95.89 89.24 97.36

Calendar 91.03 82.09 94.4
Comm. 94.94 81.79 96.6

Entertain. 93.83 89.91 92.61
Events 87.84 58.74 89.34
Hotel 91.75 84.54 92.76

Mediactrl 90.39 77.76 92.3
Mvtickets 92.75 79.21 94.43
Mystuff 90.92 79.87 89.95

Note 87.9 63.21 90.86
Ondevice 93.59 89.48 96.44
Orderfood 93.52 85.71 95.78

Places 92.75 87.46 94.13
Reminder 91.81 84.25 94.02

Reservations 92.68 74.45 94.43
Taxi 90.27 79.22 94.75

Weather 97.27 91.27 98.44
Average 92.30 81.07 94.04

Table 2: F1 scores across seventeen personal assistant domains for Noadapt, Union and Daumé III (2009)
in a setting with sparse binary-valued features.

6.2 Results

For non-neural models, we use conditional random fields (CRFs) (Lafferty et al., 2001) with a rich set
of binary-valued features such as lexical features, gazetteers, Brown clusters (Brown et al., 1992) and
context words. For parameter estimation, we used L-BFGS (Liu and Nocedal, 1989) with 100 as the
maximum iteration count and 1.0 for the L2 regularization parameter.

Their results are shown in Table 2. A few observations: the model without domain adaptation (Noad-
apt) is already very competitive because we have sufficient training data. However, simply training a
single model with aggregated queries across all domains significantly degrades performance (Union).
This is because in many cases the same query is labeled differently depending on the domain and the

393

context. This is also because the amounts of training data are widely different across different domains.
For example, slots (e.g. app name) in other domains are overwhelmed by slots in PLACES domain
such as place name since our PLACES domain is the largest in terms of number of slot types and 2nd
largest in terms of dataset size. Finally, the feature augmentation method of Daumé III (2009) dramati-
cally improves performance across all domains, achieving the average F1 score of 94.04.

Daumé III (2009) Domain NoAdapt 1D&E 1D&L KD&E KD&L
97.36 Alarm 94.64 97.23 97.26 97.46 97.5
94.4 Calendar 93.49 95.03 95.06 95.14 96.67
96.6 Comm. 95.36 96.82 96.83 96.96 97.08
92.61 Entertain. 94.73 94.34 94.28 94.61 94.59
89.34 Events 87.12 90.33 92.82 90.92 92.65
92.76 Hotel 92.28 94.78 96.11 96.4 97.71
92.3 Mediactrl 91.91 90.85 92.23 92.22 93.49
94.43 Mvtickets 92.75 94.98 96.76 96.41 97.55
89.95 Mystuff 89.34 88.42 88.23 88.68 90.71
90.86 Note 89.89 91.77 94.29 91.38 94.61
96.44 Ondevice 96.65 97.29 97.31 97.52 97.64
95.78 Orderfood 93.28 95.23 96.65 96.45 96.26
94.13 Places 94.47 95.85 96.52 96.52 96.64
94.02 Reminder 91.53 92.96 93.14 93.27 93.37
94.43 Reservations 92.82 94.43 95.45 95.76 96.09
94.75 Taxi 88.32 91.7 91.94 91.51 92.07
98.44 Weather 98.07 98.69 98.46 98.45 98.8
94.04 Average 92.74 94.16 94.90 94.69 95.50

Table 3: F1 scores for Daumé III (2009) and LSTM model variants across seventeen personal assistant
domains.

The results with our proposed LSTM domain adaptation models are also shown in Table 3. For easy
comparison, the results with Daumé III (2009) applied on feature-rich CRFs are duplicated at the leftmost
column.

The NoAdapt yields 92.74% average F1-measure which is higher than the performance of CRFs with-
out the rich hand-crafted features. We consistently and significantly improve performance by using
adaptation techniques. First, the 1D&E improves F1 performance to 94.16%. Using not generic embed-
ding, but generic LSTM (1D&L) boosts the performance up to 94.9%. Also, having K domain specific
LSTMs with generic embeddings (KD&E) which is very close to Ando and Zhang (2005) achieves per-
formance gain from 1D&E, but fail to provide any improvement from 1D&L. Finally, KD&L, which is
directly inspired by Daumé III (2009), achieves the best performance of 95.5%, indicating that having K
different domain specific LSTMs and a generic LSTM yields significant gains on most of the domains.

7 Conclusion

In this work, we described novel neural approaches to domain adaptation. Adding to the rich history of
works in domain adaptation and multi-tasking with neural networks, we proposed a neural analogue of
the well-established feature augmentation method of Daumé III (2009) and the shared structure learning
framework of Ando and Zhang (2005). Our extensions are natural and simple. In experiments on slot
tagging over 17 domains, we demonstrated the effectiveness of our methods by delivering clear perfor-
mance gains over both naive and strong baselines.

Acknowledgements

We thank Minjoon Seo and anonymous reviewers for their constructive feedback.

394

References
Tanel Alumäe. 2013. Multi-domain neural network language model. In INTERSPEECH, pages 2182–2186.

Citeseer.

Waleed Ammar, George Mulcaire, Miguel Ballesteros, Chris Dyer, and Noah A Smith. 2016. Many languages,
one parser. CoRR, abs/1602.01595.

Tasos Anastasakos, Young-Bum Kim, and Anoop Deoras. 2014. Task specific continuous word representations
for mono and multi-lingual spoken language understanding. In ICASSP, pages 3246–3250. IEEE.

Rie Kubota Ando and Tong Zhang. 2005. A framework for learning predictive structures from multiple tasks and
unlabeled data. Journal of Machine Learning Research, 6(Nov):1817–1853.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. 2014. Neural machine translation by jointly learning to
align and translate. arXiv preprint arXiv:1409.0473.

Peter F Brown, Peter V Desouza, Robert L Mercer, Vincent J Della Pietra, and Jenifer C Lai. 1992. Class-based
n-gram models of natural language. Computational linguistics, 18(4):467–479.

Ronan Collobert, Jason Weston, Léon Bottou, Michael Karlen, Koray Kavukcuoglu, and Pavel Kuksa. 2011.
Natural language processing (almost) from scratch. Journal of Machine Learning Research, 12(Aug):2493–
2537.

Hal Daumé III. 2009. Frustratingly easy domain adaptation. arXiv preprint arXiv:0907.1815.

Chris Dyer, Miguel Ballesteros, Wang Ling, Austin Matthews, and Noah A Smith. 2015. Transition-based depen-
dency parsing with stack long short-term memory. arXiv preprint arXiv:1505.08075.

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long short-term memory. Neural computation, 9(8):1735–1780.

Young-Bum Kim, Minwoo Jeong, Karl Stratos, and Ruhi Sarikaya. 2015a. Weakly supervised slot tagging with
partially labeled sequences from web search click logs. In Proceedings of the NAACL. Association for Compu-
tational Linguistics.

Young-Bum Kim, Karl Stratos, Xiaohu Liu, and Ruhi Sarikaya. 2015b. Compact lexicon selection with spectral
methods. In Proc. of Annual Meeting of the Association for Computational Linguistics: Human Language
Technologies.

Young-Bum Kim, Karl Stratos, and Ruhi Sarikaya. 2015c. Pre-training of hidden-unit crfs. In Proc. of Annual
Meeting of the Association for Computational Linguistics: Human Language Technologies, pages 192–198.

Young-Bum Kim, Karl Stratos, Ruhi Sarikaya, and Minwoo Jeong. 2015d. New transfer learning techniques for
disparate label sets. ACL. Association for Computational Linguistics.

Young-Bum Kim, Alexandre Rochette, and Ruhi Sarikaya. 2016a. Natural language model re-usability for scaling
to different domains. In Proceedings of the Empiricial Methods in Natural Language Processing (EMNLP).
Association for Computational Linguistics.

Young-Bum Kim, Karl Stratos, and Ruhi Sarikaya. 2016b. Scalable semi-supervised query classification us-
ing matrix sketching. In Proc. of Annual Meeting of the Association for Computational Linguistics: Human
Language Technologies. Association for Computational Linguistics.

Diederik Kingma and Jimmy Ba. 2015. Adam: A method for stochastic optimization. The International Confer-
ence on Learning Representations (ICLR).

John Lafferty, Andrew McCallum, and Fernando CN Pereira. 2001. Conditional random fields: Probabilistic
models for segmenting and labeling sequence data. In ICML, pages 282–289.

Dong C Liu and Jorge Nocedal. 1989. On the limited memory bfgs method for large scale optimization. Mathe-
matical programming, 45(1-3):503–528.

Seyedmahdad Mirsamadi and John HL Hansen. 2015. A study on deep neural network acoustic model adaptation
for robust far-field speech recognition. In Proceedings of Interspeech, pages 2430–2434.

Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio. 2013. On the difficulty of training recurrent neural net-
works. ICML (3), 28:1310–1318.

395

Jeffrey Pennington, Richard Socher, and Christopher D Manning. 2014. Glove: Global vectors for word represen-
tation. Proceedings of the Empiricial Methods in Natural Language Processing (EMNLP 2014), 12:1532–1543.

Nitish Srivastava, Geoffrey E Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov. 2014. Dropout:
a simple way to prevent neural networks from overfitting. Journal of Machine Learning Research, 15(1):1929–
1958.

Ottokar Tilk and Tanel Alumäe. 2014. Multi-domain recurrent neural network language model for medical speech
recognition. In Baltic HLT, pages 149–152.

Gokhan Tur. 2006. Multitask learning for spoken language understanding. In In Proceedings of the ICASSP,
Toulouse, France.

Zhilin Yang, Ruslan Salakhutdinov, and William Cohen. 2016. Multi-task cross-lingual sequence tagging from
scratch. arXiv preprint arXiv:1603.06270.

Kaisheng Yao, Dong Yu, Frank Seide, Hang Su, Li Deng, and Yifan Gong. 2012. Adaptation of context-dependent
deep neural networks for automatic speech recognition. In Spoken Language Technology Workshop (SLT), 2012
IEEE, pages 366–369. IEEE.

396

