
Proceedings of COLING 2016, the 26th International Conference on Computational Linguistics: Technical Papers,
pages 309–318, Osaka, Japan, December 11-17 2016.

Attending to Characters in Neural Sequence Labeling Models

Marek Rei
The ALTA Institute

Computer Laboratory
University of Cambridge

United Kingdom
marek.rei@cl.cam.ac.uk

Gamal K.O. Crichton Sampo Pyysalo
Language Technology Lab

Dept. of Theoretical & Applied Linguistics
University of Cambridge

United Kingdom
{gkoc2,smp66}@cam.ac.uk

Abstract

Sequence labeling architectures use word embeddings for capturing similarity, but suffer when
handling previously unseen or rare words. We investigate character-level extensions to such
models and propose a novel architecture for combining alternative word representations. By
using an attention mechanism, the model is able to dynamically decide how much information to
use from a word- or character-level component. We evaluated different architectures on a range of
sequence labeling datasets, and character-level extensions were found to improve performance
on every benchmark. In addition, the proposed attention-based architecture delivered the best
results even with a smaller number of trainable parameters.

1 Introduction

Many NLP tasks, including named entity recognition (NER), part-of-speech (POS) tagging and shal-
low parsing can be framed as types of sequence labeling. The development of accurate and efficient
sequence labeling models is thereby useful for a wide range of downstream applications. Work in this
area has traditionally involved task-specific feature engineering – for example, integrating gazetteers for
named entity recognition, or using features from a morphological analyser in POS-tagging. Recent de-
velopments in neural architectures and representation learning have opened the door to models that can
discover useful features automatically from the data. Such sequence labeling systems are applicable to
many tasks, using only the surface text as input, yet are able to achieve competitive results (Collobert et
al., 2011; Irsoy and Cardie, 2014).

Current neural models generally make use of word embeddings, which allow them to learn similar
representations for semantically or functionally similar words. While this is an important improvement
over count-based models, they still have weaknesses that should be addressed. The most obvious problem
arises when dealing with out-of-vocabulary (OOV) words – if a token has never been seen before, then
it does not have an embedding and the model needs to back-off to a generic OOV representation. Words
that have been seen very infrequently have embeddings, but they will likely have low quality due to
lack of training data. The approach can also be sub-optimal in terms of parameter usage – for example,
certain suffixes indicate more likely POS tags for these words, but this information gets encoded into
each individual embedding as opposed to being shared between the whole vocabulary.

In this paper, we construct a task-independent neural network architecture for sequence labeling, and
then extend it with two different approaches for integrating character-level information. By operating
on individual characters, the model is able to infer representations for previously unseen words and
share information about morpheme-level regularities. We propose a novel architecture for combining
character-level representations with word embeddings using a gating mechanism, also referred to as at-
tention, which allows the model to dynamically decide which source of information to use for each word.
In addition, we describe a new objective for model training where the character-level representations are
optimised to mimic the current state of word embeddings.

This work is licenced under a Creative Commons Attribution 4.0 International Licence.
Licence details: http://creativecommons.org/licenses/by/4.0/

309

We evaluate the neural models on 8 datasets from the fields of NER, POS-tagging, chunking and
error detection in learner texts. Our experiments show that including a character-based component in
the sequence labeling model provides substantial performance improvements on all the benchmarks. In
addition, the attention-based architecture achieves the best results on all evaluations, while requiring a
smaller number of parameters.

2 Bidirectional LSTM for sequence labeling

We first describe a basic word-level neural network for sequence labeling, following the models described
by Lample et al. (2016) and Rei and Yannakoudakis (2016), and then propose two alternative methods
for incorporating character-level information.

Figure 1 shows the general architecture of the sequence labeling network. The model receives a se-
quence of tokens (w1, ..., wT) as input, and predicts a label corresponding to each of the input tokens.
The tokens are first mapped to a distributed vector space, resulting in a sequence of word embeddings
(x1, ..., xT). Next, the embeddings are given as input to two LSTM (Hochreiter and Schmidhuber, 1997)
components moving in opposite directions through the text, creating context-specific representations.
The respective forward- and backward-conditioned representations are concatenated for each word posi-
tion, resulting in representations that are conditioned on the whole sequence:

−→
ht = LSTM(xt,

−−→
ht−1)

←−
ht = LSTM(xt,

←−−
ht+1) ht = [

−→
ht ;
←−
ht] (1)

We include an extra narrow hidden layer on top of the LSTM, which proved to be a useful modification
based on development experiments. An additional hidden layer allows the model to detect higher-level
feature combinations, while constraining it to be small forces it to focus on more generalisable patterns:

dt = tanh(Wdht) (2)

where Wd is a weight matrix between the layers, and the size of dt is intentionally kept small.
Finally, to produce label predictions, we use either a softmax layer or a conditional random field (CRF,

Lafferty et al. (2001)). The softmax calculates a normalised probability distribution over all the possible
labels for each word:

P (yt = k|dt) =
eWo,kdt∑

k̃∈K eWo,k̃dt
(3)

where P (yt = k|dt) is the probability of the label of the t-th word (yt) being k, K is the set of all
possible labels, and Wo,k is the k-th row of output weight matrix Wo. To optimise this model, we
minimise categorical crossentropy, which is equivalent to minimising the negative log-probability of the
correct labels:

E = −
T∑

t=1

log(P (yt|dt)) (4)

Following Huang et al. (2015), we can also use a CRF as the output layer, which conditions each
prediction on the previously predicted label. In this architecture, the last hidden layer is used to predict
confidence scores for the word having each of the possible labels. A separate weight matrix is used
to learn transition probabilities between different labels, and the Viterbi algorithm is used to find an
optimal sequence of weights. Given that y is a sequence of labels [y1, ..., yT], then the CRF score for this
sequence can be calculated as:

s(y) =
T∑

t=1

At,yt +
T∑

t=0

Byt,yt+1 (5)

At,yt = Wo,ytdt (6)

310

Figure 1: Neural sequence labeling model. Word embeddings are given as input; a bidirectional LSTM
produces context-dependent representations; the information is passed through a hidden layer and the
output layer. The outputs are either probability distributions for softmax, or confidence scores for CRF.

where At,yt shows how confident the network is that the label on the t-th word is yt. Byt,yt+1 shows the
likelihood of transitioning from label yt to label yt+1, and these values are optimised during training.
The output from the model is the sequence of labels with the largest score s(y), which can be found
efficiently using the Viterbi algorithm. In order to optimise the CRF model, the loss function maximises
the score for the correct label sequence, while minimising the scores for all other sequences:

E = −s(y) + log
∑
ỹ∈Ỹ

es(ỹ) (7)

where Ỹ is the set of all possible label sequences.

3 Character-level sequence labeling

Distributed embeddings map words into a space where semantically similar words have similar vector
representations, allowing the models to generalise better. However, they still treat words as atomic units
and ignore any surface- or morphological similarities between different words. By constructing models
that operate over individual characters in each word, we can take advantage of these regularities. This can
be particularly useful for handling unseen words – for example, if we have never seen the word cabinets
before, a character-level model could still infer a representation for this word if it has previously seen the
word cabinet and other words with the suffix -s. In contrast, a word-level model can only represent this
word with a generic out-of-vocabulary representation, which is shared between all other unseen words.

Research into character-level models is still in fairly early stages, and models that operate exclusively
on characters are not yet competitive to word-level models on most tasks. However, instead of fully
replacing word embeddings, we are interested in combining the two approaches, thereby allowing the
model to take advantage of information at both granularity levels. The general outline of our approach
is shown in Figure 2. Each word is broken down into individual characters, these are then mapped to a
sequence of character embeddings (c1, ..., cR), which are passed through a bidirectional LSTM:

−→
h∗i = LSTM(ci,

−−→
h∗i−1)

←−
h∗i = LSTM(ci,

←−−
h∗i+1) (8)

We then use the last hidden vectors from each of the LSTM components, concatenate them together,
and pass the result through a separate non-linear layer.

h∗ = [
−→
h∗R;
←−
h∗1] m = tanh(Wmh

∗) (9)

where Wm is a weight matrix mapping the concatenated hidden vectors from both LSTMs into a joint
word representation m, built from individual characters.

We now have two alternative feature representations for each word – xt from Section 2 is an embedding
learned on the word level, and m(t) is a representation dynamically built from individual characters in

311

Figure 2: Left: concatenation-based character architecture. Right: attention-based character architecture.
The dotted lines indicate vector concatenation.

the t-th word of the input text. Following Lample et al. (2016), one possible approach is to concatenate
the two vectors and use this as the new word-level representation for the sequence labeling model:

x̃ = [x;m] (10)

This approach, also illustrated in Figure 2, assumes that the word-level and character-level components
learn somewhat disjoint information, and it is beneficial to give them separately as input to the sequence
labeler.

4 Attention over character features

Alternatively, we can have the word embedding and the character-level component learn the same se-
mantic features for each word. Instead of concatenating them as alternative feature sets, we specifically
construct the network so that they would learn the same representations, and then allow the model to
decide how to combine the information for each specific word.

We first construct the word representation from characters using the same architecture – a bidirectional
LSTM operates over characters, and the last hidden states are used to create vector m for the input word.
Instead of concatenating this with the word embedding, the two vectors are added together using a
weighted sum, where the weights are predicted by a two-layer network:

z = σ(W (3)
z tanh(W (1)

z x+W (2)
z m)) x̃ = z · x+ (1− z) ·m (11)

where W (1)
z , W (2)

z and W (3)
z are weight matrices for calculating z, and σ() is the logistic function with

values in the range [0, 1]. The vector z has the same dimensions as x or m, acting as the weight between
the two vectors. It allows the model to dynamically decide how much information to use from the
character-level component or from the word embedding. This decision is done for each feature separately,
which adds extra flexiblity – for example, words with regular suffixes can share some character-level
features, whereas irregular words can store exceptions into word embeddings. Furthermore, previously
unknown words are able to use character-level regularities whenever possible, and are still able to revert
to using the generic OOV token when necessary.

The main benefits of character-level modeling are expected to come from improved handling of rare
and unseen words, whereas frequent words are likely able to learn high-quality word-level embeddings
directly. We would like to take advantage of this, and train the character component to predict these word
embeddings. Our attention-based architecture requires the learned features in both word representations
to align, and we can add in an extra constraint to encourage this. During training, we add a term to the
loss function that optimises the vector m to be similar to the word embedding x:

312

Name Task # labels # train tokens # dev tokens # test tokens

CoNLL00 Chunking 22 158,795 52,932 47,377
CoNLL03 NER 8 203,621 51,362 46,435
PTB-POS POS 48 912,344 131,768 129,654
FCEPUBLIC Error det 2 452,833 34,599 41,477
BC2GM NER 3 355,405 71,042 143,465
CHEMDNER NER 3 891,948 886,324 766,033
JNLPBA NER 11 445,090 47,461 101,039
GENIA-POS POS 42 397,690 52,697 50,556

Table 1: Details for each of the evaluation datasets.

Ẽ = E +
T∑

t=1

gt(1− cos(m(t), xt)) gt =

{
0, if wt = OOV

1, otherwise
(12)

Equation 12 maximises the cosine similarity between m(t) and xt. Importantly, this is done only for
words that are not out-of-vocabulary – we want the character-level component to learn from the word
embeddings, but this should exclude the OOV embedding, as it is shared between many words. We use
gt to set this cost component to 0 for any OOV tokens.

While the character component learns general regularities that are shared between all the words, indi-
vidual word embeddings provide a way for the model to store word-specific information and any excep-
tions. Therefore, while we want the character-based model to shift towards predicting high-quality word
embeddings, it is not desireable to optimise the word embeddings towards the character-level represen-
tations. This can be achieved by making sure that the optimisation is performed only in one direction; in
Theano (Bergstra et al., 2010), the disconnected grad function gives the desired effect.

5 Datasets

We evaluate the sequence labeling models and character architectures on 8 different datasets. Table 1
contains information about the number of labels and dataset sizes for each of them.

• CoNLL00: The CoNLL-2000 dataset (Tjong Kim Sang and Buchholz, 2000) is a frequently used
benchmark for the task of chunking. Wall Street Journal Sections 15-18 from the Penn Treebank
are used for training, and Section 20 as the test data. As there is no official development set, we
separated some of the training set for this purpose.

• CoNLL03: The CoNLL-2003 corpus (Tjong Kim Sang and De Meulder, 2003) was created for the
shared task on language-independent NER. We use the English section of the dataset, containing
news stories from the Reuters Corpus1.

• PTB-POS: The Penn Treebank POS-tag corpus (Marcus et al., 1993) contains texts from the Wall
Street Journal, annotated for part-of-speech tags. The PTB label set includes 36 main tags and an
additional 12 tags covering items such as punctuation.

• FCEPUBLIC: The publicly released subset of the First Certificate in English (FCE) dataset
contains short essays written by language learners and manual corrections by examiners (Yan-
nakoudakis et al., 2011). We use a version of this corpus converted into a binary error detection
task, where each token is labeled as being correct or incorrect in the given context.

• BC2GM: The BioCreative II Gene Mention corpus (Smith et al., 2008) consists of 20,000 sentences
from biomedical publication abstracts and is annotated for mentions of the names of genes, proteins
and related entities using a single NE class.

1http://about.reuters.com/researchandstandards/corpus/

313

CoNLL00 CoNLL03 PTB-POS FCEPUBLIC
DEV TEST DEV TEST DEV TEST DEV TEST

Word-based 91.48 91.23 86.89 79.86 96.29 96.42 46.58 41.24
Char concat 92.57 92.35 89.81 83.37 97.20 97.22 46.44 41.27

Char attention 92.92 92.67 89.91 84.09 97.22 97.27 47.17 41.88

BC2GM CHEMDNER JNLPBA GENIA-POS
DEV TEST DEV TEST DEV TEST DEV TEST

Word-based 84.07 84.21 78.63 79.74 75.46 70.75 97.55 97.39
Char concat 87.54 87.75 82.80 83.56 76.82 72.24 98.59 98.49

Char attention 87.98 87.99 83.75 84.53 77.38 72.70 98.67 98.60

Table 2: Comparison of word-based and character-based sequence labeling architectures on 8 datasets.
The evaluation measure used for each dataset is specified in Section 6.

• CHEMDNER: The BioCreative IV Chemical and Drug (Krallinger et al., 2015) NER corpus con-
sists of 10,000 abstracts annotated for mentions of chemical and drug names using a single class.
We make use of the official splits provided by the shared task organizers.

• JNLPBA: The JNLPBA corpus (Kim et al., 2004) consists of 2,404 biomedical abstracts and is
annotated for mentions of five entity types: CELL LINE, CELL TYPE, DNA, RNA, and PROTEIN. The
corpus was derived from GENIA corpus entity annotations for use in the shared task organized in
conjuction with the BioNLP 2004 workshop.

• GENIA-POS: The GENIA corpus (Ohta et al., 2002) is one of the most widely used resources
for biomedical NLP and has a rich set of annotations including parts of speech, phrase structure
syntax, entity mentions, and events. Here, we make use of the GENIA POS annotations, which
cover 2,000 PubMed abstracts (approx. 20,000 sentences). We use the same 210-document test set
as Tsuruoka et al. (2005), and additionally split off a sample of 210 from the remaining documents
as a development set.

6 Experiment settings

For data prepocessing, all digits were replaced with the character ’0’. Any words that occurred only
once in the training data were replaced by the generic OOV token for word embeddings, but were still
used in the character-level components. The word embeddings were initialised with publicly available
pretrained vectors, created using word2vec (Mikolov et al., 2013), and then fine-tuned during model
training. For the general-domain datasets we used 300-dimensional vectors trained on Google News2;
for the biomedical datasets we used 200-dimensional vectors trained on PubMed and PMC3. The em-
beddings for characters were set to length 50 and initialised randomly.

The LSTM layer size was set to 200 in each direction for both word- and character-level components.
The hidden layer d has size 50, and the combined representation m has the same length as the word
embeddings. CRF was used as the output layer for all the experiments – we found that this gave most
benefits to tasks with larger numbers of possible labels. Parameters were optimised using AdaDelta
(Zeiler, 2012) with default learning rate 1.0 and sentences were grouped into batches of size 64. Perfor-
mance on the development set was measured at every epoch and training was stopped if performance had
not improved for 7 epochs; the best-performing model on the development set was then used for evalua-

2https://code.google.com/archive/p/word2vec/
3http://bio.nlplab.org/

314

Figure 3: Visualisation of attention values for two words, trained on the PTB-POS dataset. Darker blue
indicates features with higher weights for the character-level representation. Restructuring was present
in the vocabulary, while bankrupting is an OOV.

tion on the test set. In order to avoid any outlier results due to randomness in the model initialisation, we
trained each configuration with 10 different random seeds and present here the averaged results.

When evaluating on each dataset, we report the measures established in previous work. Token-level
accuracy is used for PTB-POS and GENIA-POS; F0.5 score over the erroneous words for FCEPUBLIC;
the official evaluation script for BC2GM which allows for alternative correct entity spans; and microav-
eraged mention-level F1 score for the remaining datasets.

7 Results

While optimising the hyperparameters for each dataset separately would likely improve individual per-
formance, we conduct more controlled experiments on a task-independent model. Therefore, we use the
same hyperparameters from Section 6 on all datasets, and the development set is only used for the stop-
ping condition. With these experiments, we wish to determine 1) on which sequence labeling tasks do
character-based models offer an advantange, and 2) which character-based architecture performs better.

Results for the different model architectures on all 8 datasets are shown in Table 2. As can be seen,
including a character-based component in the sequence labeling architecture improves performance on
every benchmark. The NER datasets have the largest absolute improvement – the model is able to learn
character-level patterns for names, and also improve the handling of any previously unseen tokens.

Compared to concatenating the word- and character-level representations, the attention-based char-
acter model outperforms the former on all evaluations. The mechanism for dynamically deciding how
much character-level information to use allows the model to better handle individual word representa-
tions, giving it an advantage in the experiments. Visualisation of the attention values in Figure 3 shows
that the model is actively using character-based features, and the attention areas vary between different
words.

The results of this general tagging architecture are competitive, even when compared to previous
work using hand-crafted features. The network achieves 97.27% on PTB-POS compared to 97.55% by
Huang et al. (2015), and 72.70% on JNLPBA compared to 72.55% by Zhou and Su (2004). In some
cases, we are also able to beat the previous best results – 87.99% on BC2GM compared to 87.48%
by Campos et al. (2015), and 41.88% on FCEPUBLIC compared to 41.1% by Rei and Yannakoudakis
(2016). Lample et al. (2016) report a considerably higher result of 90.94% on CoNLL03, indicating that
the chosen hyperparameters for the baseline system are suboptimal for this specific task. Compared to
the experiments presented here, their model used the IOBES tagging scheme instead of the original IOB,
and embeddings pretrained with a more specialised method that accounts for word order.

It is important to also compare the parameter counts of alternative neural architectures, as this shows
their learning capacity and indicates their time requirements in practice. Table 3 contains the param-
eter counts on three representative datasets. While keeping the model hyperparameters constant, the
character-level models require additional parameters for the character composition and character em-
beddings. However, the attention-based model uses fewer parameters compared to the concatenation ap-
proach. When the two representations are concatenated, the overall word representation size is increased,
which in turn increases the number of parameters required for the word-level bidirectional LSTM. There-
fore, the attention-based character architecture achieves improved results even with a smaller parameter
footprint.

315

CoNLL03 FCEPUBLIC CHEMDNER
total # noemb # total # noemb # total # noemb

Word-based 4,507,658 1,230,158 2,972,052 1,230,252 5,862,878 1,070,278
Char concat 4,987,658 1,710,158 3,452,052 1,710,252 6,182,878 1,390,278

Char attention 4,687,958 1,410,458 3,152,352 1,410,552 5,943,078 1,150,478

Table 3: Comparison of trainable parameters in each of the neural model architectures. # total shows the
total number of parameters; # noemb shows the parameter count excluding word embeddings, as only a
small fraction of the embeddings are utilised at every iteration.

8 Related work

There is a wide range of previous work on constructing and optimising neural architectures applicable
to sequence labeling. Collobert et al. (2011) described one of the first task-independent neural tagging
models using convolutional neural networks. They were able to achieve good results on POS tagging,
chunking, NER and semantic role labeling, without relying on hand-engineered features. Irsoy and
Cardie (2014) experimented with multi-layer bidirectional Elman-style recurrent networks, and found
that the deep models outperformed conditional random fields on the task of opinion mining. Huang et al.
(2015) described a bidirectional LSTM model with a CRF layer, which included hand-crafted features
specialised for the task of named entity recognition. Rei and Yannakoudakis (2016) evaluated a range
of neural architectures, including convolutional and recurrent networks, on the task of error detection in
learner writing. The word-level sequence labeling model described in this paper follows the previous
work, combining useful design choices from each of them. In addition, we extended the model with two
alternative character-level architectures, and evaluated its performance on 8 different datasets.

Character-level models have the potential of capturing morpheme patterns, thereby improving gener-
alisation on both frequent and unseen words. In recent years, there has been an increase in research into
these models, resulting in several interesting applications. Ling et al. (2015b) described a character-level
neural model for machine translation, performing both encoding and decoding on individual characters.
Kim et al. (2016) implemented a language model where encoding is performed by a convolutional net-
work and LSTM over characters, whereas predictions are given on the word-level. Cao and Rei (2016)
proposed a method for learning both word embeddings and morphological segmentation with a bidirec-
tional recurrent network over characters. There is also research on performing parsing (Ballesteros et al.,
2015) and text classification (Zhang et al., 2015) with character-level neural models. Ling et al. (2015a)
proposed a neural architecture that replaces word embeddings with dynamically-constructed character-
based representations. We applied a similar method for operating over characters, but combined them
with word embeddings instead of replacing them, as this allows the model to benefit from both ap-
proaches. Lample et al. (2016) described a model where the character-level representation is combined
with word embeddings through concatenation. In this work, we proposed an alternative architecture,
where the representations are combined using an attention mechanism, and evaluated both approaches
on a range of tasks and datasets. Recently, Miyamoto and Cho (2016) have also described a related
method for the task of language modelling, combining characters and word embeddings using gating.

9 Conclusion

Developments in neural network research allow for model architectures that work well on a wide range of
sequence labeling datasets without requiring hand-crafted data. While word-level representation learning
is a powerful tool for automatically discovering useful features, these models still come with certain
weaknesses – rare words have low-quality representations, previously unseen words cannot be modeled
at all, and morpheme-level information is not shared with the whole vocabulary.

In this paper, we investigated character-level model components for a sequence labeling architecture,
which allow the system to learn useful patterns from sub-word units. In addition to a bidirectional LSTM
operating over words, a separate bidirectional LSTM is used to construct word representations from

316

individual characters. We proposed a novel architecture for combining the character-based representation
with the word embedding by using an attention mechanism, allowing the model to dynamically choose
which information to use from each information source. In addition, the character-level composition
function is augmented with a novel training objective, optimising it to predict representations that are
similar to the word embeddings in the model.

The evaluation was performed on 8 different sequence labeling datasets, covering a range of tasks and
domains. We found that incorporating character-level information into the model improved performance
on every benchmark, indicating that capturing features regarding characters and morphmes is indeed
useful in a general-purpose tagging system. In addition, the attention-based model for combining char-
acter representations outperformed the concatenation method used in previous work in all evaluations.
Even though the proposed method requires fewer parameters, the added ability of controlling how much
character-level information is used for each word has led to improved performance on a range of different
tasks.

References
Miguel Ballesteros, Chris Dyer, and Noah A. Smith. 2015. Improved Transition-Based Parsing by Modeling Char-

acters instead of Words with LSTMs. Proceedings of the 2015 Conference on Empirical Methods in Natural
Language Processing (EMNLP).

James Bergstra, Olivier Breuleux, Frederic Frédéric Bastien, Pascal Lamblin, Razvan Pascanu, Guillaume Des-
jardins, Joseph Turian, David Warde-Farley, and Yoshua Bengio. 2010. Theano: a CPU and GPU math com-
piler in Python. Proceedings of the Python for Scientific Computing Conference (SciPy).

David Campos, Sergio Matos, and Jose L. Oliveira. 2015. A document processing pipeline for annotating chemical
entities in scientific documents. Journal of Cheminformatics, 7.

Kris Cao and Marek Rei. 2016. A Joint Model for Word Embedding and Word Morphology. In Proceedings of
the 1st Workshop on Representation Learning for NLP (RepL4NLP-2016).

Ronan Collobert, Jason Weston, Léon Bottou, Michael Karlen, Koray Kavukcuoglu, and Pavel Kuksa. 2011.
Natural Language Processing (Almost) from Scratch. Journal of Machine Learning Research, 12.

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long Short-term Memory. Neural Computation, 9.

Zhiheng Huang, Wei Xu, and Kai Yu. 2015. Bidirectional LSTM-CRF Models for Sequence Tagging.
arXiv:1508.01991.

Ozan Irsoy and Claire Cardie. 2014. Opinion Mining with Deep Recurrent Neural Networks. In Proceedings of
the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP).

Jin-Dong Kim, Tomoko Ohta, Yoshimasa Tsuruoka, Yuka Tateisi, and Nigel Collier. 2004. Introduction to the
Bio-entity Recognition Task at JNLPBA. Proceedings of the International Joint Workshop on Natural Language
Processing in Biomedicine and Its Applications.

Yoon Kim, Yacine Jernite, David Sontag, and Alexander M. Rush. 2016. Character-Aware Neural Language
Models. In Proceedings of the 30th AAAI Conference on Artificial Intelligence (AAAI16).

Martin Krallinger, Florian Leitner, Obdulia Rabal, Miguel Vazquez, Julen Oyarzabal, and Alfonso Valencia. 2015.
CHEMDNER: The drugs and chemical names extraction challenge. Journal of Cheminformatics, 7(Suppl 1).

John Lafferty, Andrew McCallum, and Fernando Pereira. 2001. Conditional random fields: Probabilistic models
for segmenting and labeling sequence data. In Proceedings of the 18th International Conference on Machine
Learning.

Guillaume Lample, Miguel Ballesteros, Sandeep Subramanian, Kazuya Kawakami, and Chris Dyer. 2016. Neural
Architectures for Named Entity Recognition. In Proceedings of NAACL-HLT 2016.

Wang Ling, Tiago Luı́s, Luı́s Marujo, Ramón Fernandez Astudillo, Silvio Amir, Chris Dyer, Alan W. Black, and Is-
abel Trancoso. 2015a. Finding Function in Form: Compositional Character Models for Open Vocabulary Word
Representation. Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing.

317

Wang Ling, Isabel Trancoso, Chris Dyer, and Alan W Black. 2015b. Character-based Neural Machine Translation.
arXiv preprint arXiv:1511.04586.

Mitchell P. Marcus, Beatrice Santorini, and Mary Ann Marcinkiewicz. 1993. Building a large annotated corpus of
English: The Penn Treebank. Computational Linguistics, 19.

Tomáš Mikolov, Greg Corrado, Kai Chen, and Jeffrey Dean. 2013. Efficient Estimation of Word Representations
in Vector Space. Proceedings of the International Conference on Learning Representations (ICLR 2013).

Yasumasa Miyamoto and Kyunghyun Cho. 2016. Gated Word-Character Recurrent Language Model. arXiv
preprint arXiv:1606.01700.

Tomoko Ohta, Yuka Tateisi, and Jin-Dong Kim. 2002. The GENIA corpus: An annotated research abstract
corpus in molecular biology domain. Proceedings of the second international conference on Human Language
Technology Research.

Marek Rei and Helen Yannakoudakis. 2016. Compositional Sequence Labeling Models for Error Detection in
Learner Writing. In Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics.

Larry Smith, Lorraine K Tanabe, Rie Johnson nee Ando, Cheng-Ju Kuo, I-Fang Chung, Chun-Nan Hsu, Yu-Shi
Lin, Roman Klinger, Christoph M Friedrich, Kuzman Ganchev, Manabu Torii, Hongfang Liu, Barry Haddow,
Craig A Struble, Richard J Povinelli, Andreas Vlachos, William A Baumgartner, Lawrence Hunter, Bob Car-
penter, Richard Tzong-Han Tsai, Hong-Jie Dai, Feng Liu, Yifei Chen, Chengjie Sun, Sophia Katrenko, Pieter
Adriaans, Christian Blaschke, Rafael Torres, Mariana Neves, Preslav Nakov, Anna Divoli, Manuel Maña-López,
Jacinto Mata, and W John Wilbur. 2008. Overview of BioCreative II gene mention recognition. Genome biol-
ogy, 9 Suppl 2.

Erik F. Tjong Kim Sang and Sabine Buchholz. 2000. Introduction to the CoNLL-2000 shared task: Chunking.
Proceedings of the 2nd Workshop on Learning Language in Logic and the 4th Conference on Computational
Natural Language Learning, 7.

Erik F. Tjong Kim Sang and Fien De Meulder. 2003. Introduction to the CoNLL-2003 Shared Task: Language-
Independent Named Entity Recognition. In Proceedings of the seventh conference on Natural language learning
at HLT-NAACL 2003.

Yoshimasa Tsuruoka, Yuka Tateishi, Jin Dong Kim, Tomoko Ohta, John McNaught, Sophia Ananiadou, and
Jun’ichi Tsujii. 2005. Developing a robust part-of-speech tagger for biomedical text. In Proceedings of Pan-
hellenic Conference on Informatics.

Helen Yannakoudakis, Ted Briscoe, and Ben Medlock. 2011. A New Dataset and Method for Automatically Grad-
ing ESOL Texts. In Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics:
Human Language Technologies.

Matthew D. Zeiler. 2012. ADADELTA: An Adaptive Learning Rate Method. arXiv preprint arXiv:1212.5701.

Xiang Zhang, Junbo Zhao, and Yann LeCun. 2015. Character-level Convolutional Networks for Text Classifica-
tion. In Advances in Neural Information Processing Systems.

GuoDong Zhou and Jian Su. 2004. Exploring Deep Knowledge Resources in Biomedical Name Recognition.
Workshop on Natural Language Processing in Biomedicine and Its Applications at COLING.

318

