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Abstract

Existing asynchronous parallel learning methods are only for the sparse feature models, and they
face new challenges for the dense feature models like neural networks (e.g., LSTM, RNN). The
problem for dense features is that asynchronous parallel learning brings gradient errors derived
from overwrite actions. We show that gradient errors are very common and inevitable. Never-
theless, our theoretical analysis shows that the learning process with gradient errors can still be
convergent towards the optimum of objective functions for many practical applications. Thus,
we propose a simple method AsynGrad for asynchronous parallel learning with gradient error.
Base on various dense feature models (LSTM, dense-CRF) and various NLP tasks, experiments
show that AsynGrad achieves substantial improvement on training speed, and without any loss
on accuracy.

1 Introduction

Stochastic learning methods can accelerate the training speed compared with traditional batch training
methods. A widely used stochastic learning method is the stochastic gradient descent method (SGD)
(Bertsekas, 1999; Bottou and Bousquet, 2008; Shalev-Shwartz and Srebro, 2008; Sun et al., 2012; Sun
et al., 2014). For large-scale datasets, the SGD training methods can be much faster than batch training
methods. For further improve the training speed over multi-core machines and clusters, a variety of
asynchronous (lock-free) parallel learning methods has been developed based on stochastic learning
(Niu et al., 2011; Mcmahan and Streeter, 2014). Those asynchronous methods have shown to be more
efficient than the synchronous (locked) parallel learning versions (Langford et al., 2009; Gimpel et al.,
2010). Other related work on parallel stochastic learning also includes (Zinkevich et al., 2010; Dekel et
al., 2012; Recht and Re, 2013; Dean et al., 2012).

Existing asynchronous parallel learning methods are mainly for the sparse feature models, and feature
sparseness is a major assumption for those parallel learning methods (Niu et al., 2011; Mcmahan and
Streeter, 2014). For example, Niu et al. (2011) proposed an interesting asynchronous parallel learning
method HogWild for strict sparse machine learning problems with sparse separable cost functions (e.g.,
sparse SVM, low-rank matrix completion). Niu et al. (2011) stated that the key idea that underlies their
lock-free approach is that the targeted machine learning problems are sparse. More recently, Mcmahan
and Streeter (2014) proposed a delay-tolerant asynchronous parallel learning method, which is an ex-
tension of the method of Niu et al. (2011). This asynchronous parallel learning method proposed by
Mcmahan and Streeter (2014) also strictly requires the sparseness of the features.

The situation is different for the dense feature models like neural networks (e.g., LSTM, RNN). Since
the existing asynchronous parallel learning methods are strictly for sparse feature models, it is no longer
reasonable to apply those methods for the dense feature models like neural networks. To our knowledge,
there is very limited study on developing asynchronous parallel learning methods for neural networks.
In most cases only synchronous versions of parallel learning are applied to neural networks, such as
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Figure 1: Illustrations of the simple case (left), the gradient delay case (middle), and the gradient error
case (right) based on stochastic parallel learning. G means the gradient-computing action. R means the
read action of shared memory. W means the write action.

GPU-based and mini-batch-based parallel learning methods. For GPU-based parallel learning, a matrix
is computed in a synchronously parallelized way by using GPU units. For mini-batch-based parallel
learning, the gradient of a mini-batch of samples are calculated in a synchronously parallelized way as
well.

The major problem for applying asynchronous parallel learning to dense feature models is from the
gradient errors. We show that gradient errors are very common and inevitable in applying asynchronous
parallel learning to dense feature models. Suppose a dense feature model with 10 features/parameters,
and we apply asynchronous (lock-free) parallel learning. When one thread is computing gradient, it
needs to read the parameters from the shared memory. It is possible that 5 parameters are overwritten by
another thread, which makes the computed gradient wrong. Not only there can be read-overwrite errors,
but also there can be write-overwrite errors, as shown in Figure 1 (right).

Figure 1 illustrates the simple case (left), the gradient delay case (middle), and the gradient error
case (right) for stochastic parallel learning. The simple case is normally from the synchronous parallel
learning setting. The gradient delay case is considered for asynchronous parallel learning over sparse
feature models (Niu et al., 2011; Mcmahan and Streeter, 2014). Essentially, the gradient delay problem
is a simplification of the asynchronous parallel learning problem, and the simplification is from the
feature sparseness. For the dense feature models like neural networks, it is unreasonable to use this
simplification, and it goes to the gradient error case. As we can see from Figure 1 (right), there are
both read-overwrite and write-overwrite problems between the two threads, and this created the gradient
error. The gradient error problem is more complex than the gradient delay problem, and it requires new
analysis and solutions. We will give more detailed analysis in Section 2.

Although the gradient error problem is more complex, it does not mean that the asynchronous parallel
learning is doomed for the dense feature models. We give theoretical analysis to show that the learning
process with the gradient error problem can still achieve the optimum given certain conditions, and those
conditions are usually valid for the final convergence region of real-world applications.

Based on the analysis, we propose a simple asynchronous parallel learning method for dense feature
models including neural networks and other structured models, and it works well in real-world NLP
tasks in spite of gradient errors. Base on various dense feature models (LSTM, dense-CRF) and various
NLP tasks, experiments show that our method achieves substantial improvement on training speed, and
without any loss on accuracy.

2 AsynGrad: Asynchronous Parallel Learning with Gradient Error

As we can see from Figure 1, the gradient delay case is mostly considered for sparse feature models (Niu
et al., 2011; Mcmahan and Streeter, 2014). Here the read and write of parameters for each sample is fast
because the only a very small portion of the features are used for each sample. In this case, the read and
write actions are considered being almost atomic actions, and the major concern goes to the “delay” of
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Algorithm 1 AsynGrad: Asynchronous Parallel Learning with Gradient Error
Input: model weights www, training set S of m samples
Run k threads in parallel with share memory, and procedure of each thread is as follows:
repeat

Get a sample zzz uniformly at random from S
Get the update term ssszzz(www), which is computed as ∇fzzz(www) but usually contains error
Update www such that www ← www − γssszzz(www)

until Convergence
return www

the gradients (Niu et al., 2011; Mcmahan and Streeter, 2014). In Figure 1 (middle), thread-1’s gradient
is delayed by thread-2, because the former is expected to write to the memory before thread-2’s write
action. The HogWild method (Niu et al., 2011) and the delay-tolerant method (Mcmahan and Streeter,
2014) mainly cast/simplify the asynchronous parallel learning problem as the gradient delay problem,
and they give solutions accordingly — they show that asynchronous parallel learning can achieve the
optimum when dealing with the gradient delay problem.

The gradient delay problem is a simplification of the asynchronous parallel learning problem, and the
simplification is from the feature sparseness. For the dense feature models like neural networks, it is
no longer reasonable to use the simplification. The major problem for applying asynchronous parallel
learning to dense feature models is the gradient errors.

As shown in Figure 1 (right), for dense feature models the read action is together with the gradient-
computing action. When the feature is dense, it is not efficient to read all the parameters into a thread
before computing the gradient. Also, when the feature is dense, the write action is no longer a fast action.
As we can see from Figure 1 (right), there are both read-overwrite and write-overwrite problems, which
create gradient errors. The gradient error problem is more complex than the gradient delay problem, and
it requires new analysis and solutions.

2.1 AsynGrad Algorithm
Let f(www) be the objective function of dense feature model and www ∈ W is the weight vector. Recall that
the SGD update with learning rate γ has a form like this:

wwwt+1 ← wwwt − γ∇fzzzt(wwwt) (1)

where t represents a time stamp, and ∇fzzz(wwwt) is the stochastic estimation of the gradient based on zzz,
which is randomly drawn from the training set S.

Then, we assume a shared memory machine with multiple processors, and a vector of variables www in
the shared memory is accessible to all processors. Each processor can read and update www.

Based on the multicore computing machine, the proposed method creates k parallel threads, and www is
shared among the k threads. For each thread, it gets a sample zzz uniformly at random from the training
set S. Then, it tries to compute the update term ssszzz(www) as follows:

ssszzz(www)←≈ ∇fzzz(www) (2)

where ←≈ means the ssszzz(www) is computed as the gradient ∇fzzz(www) in a single thread, but the shared
weights www may be partially or completely overwritten by other threads when computing the gradient,
which leads to gradient errors of ∇fzzz(www). Hence, ssszzz(www) is an approximation of the gradient ∇fzzz(www)
with potential errors.

Then, the thread updates the shared weights www based on the update term ssszzz(www), such that

www ← www − γssszzz(www) (3)

For each thread, it repeats this process until it reaches convergence — later we will show that this
process can reach convergence by given certain conditions.
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To summarize, the proposed parallel learning algorithm called AsynGrad is shown in Algorithm 1.
Although the implementation of AsynGrad is simple, the method AsynGrad itself is not that straight-

forward, because people may think it is wrong to use a method like AsynGrad. There is not much existing
theoretical analysis and empirical evidence supporting the design of AsynGrad. In this paper, we show
that it is actually reasonable and promising to use a method like AsynGrad. We give theoretical justifica-
tion of the convergence of AsynGrad based on certain conditions, and we show experimental results that
AsynGrad indeed works well in practice.

2.2 Theoretical Analysis of AsynGrad

Although AsynGrad does the weight update in parallel from different threads, from the viewpoint of www it
simply receives a sequence of gradient updates (but with potential errors, which is the major difference
from non-parallel SGD learning). In other words, the AsynGrad learning problem can be casted as a
traditional SGD learning problem, and the only difference compared with traditional SGD is that the
gradients are with errors. To state our convergence analysis results, we need several assumptions.

We assume f is strongly convex with modulus c, that is, ∀www,www′ ∈ W ,

f(www′) ≥ f(www) + (www′ −www)T∇f(www) +
c

2
||www′ −www||2 (4)

where || · || means 2-norm || · ||2 by default in this work. For some dense feature models like dense-CRF,
this assumption is suitable for the objective function. For some other dense feature models like neural
networks, this assumption is a bit too strong because we know that the objective function of neural
networks is non-convex. Nevertheless, even when the objective function is non-convex, the assumption
usually holds within the final convergence region because the cost function is locally convex in many
practical applications.

We also assume Lipschitz continuous differentiability of∇f with the constant q, that is, ∀www,www′ ∈ W ,

||∇f(www′)−∇f(www)|| ≤ q||www′ −www|| (5)

Also, let the norm of ssszzz(www) is bounded by κ ∈ R+:

||ssszzz(www)|| ≤ κ (6)

Moreover, it is reasonable to assume
γc < 1 (7)

because even the ordinary gradient descent methods will diverge if γc > 1 (Niu et al., 2011).
Based on the conditions, we show that AsynGrad converges closely towards the minimum (optimum)

www∗ of f(www) with a small distance expressed by ϵ, and the convergence rate is given as follows.

Theorem 1 (AsynGrad convergence and convergence rate). With the conditions (4), (5), (6), (7), let ϵ > 0
be a target distance of convergence (i.e., the closeness of the convergence point to the real optimum). Let
τ denote the bound to describe the severeness of gradient errors, such that

[∇f(www)− sss(www)]T (www −www∗) ≤ τ (8)

where www is the weight vector during AsynGrad training, and sss(www) is expected ssszzz(www) over zzz such that
sss(www) = Ezzz[ssszzz(www)]. Let γ be a learning rate as

γ =
cϵ− 2τq

βqκ2
(9)

where we can set β as any value as far as β ≥ 1. Let t be the number of updates as follows

t
.=

βqκ2 log (qa0/ϵ)
c(cϵ− 2τq)

(10)
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Table 1: Some major experimental results on dense-CRF. Time means time cost per iteration.

Method
POS-Tag Chunking MSR-WordSeg

Acc (%) Time (s) F-score (%) Time (s) F-score (%) Time (s)
SGD 97.18 466.08 94.55 1.92 97.13 64.94

AsynGrad(10-thread) 97.18 108.38 94.59 0.25 97.15 8.11
AsynGrad(10-thread)+SR 97.35 25.99 94.60 0.21 97.22 6.59

where .= means ceil-rounding of a real value to an integer, and a0 is the initial distance such that a0 =
||www0−www∗||2. Then, after t updates of www, AsynGrad converges towards the optimum such that E[f(wwwt)−
f(www∗)] ≤ ϵ, as far as the gradient errors are bounded such that

τ ≤ cϵ

2q
(11)

The proof is in Section 4.
This theorem shows that AsynGrad is also convergent towards the optimum of the objective function,

as far as the gradient errors are bounded such that Eq.(11) holds. For real-world applications, those
assumptions and conditions usually hold at the final convergence region. In the final convergence region,
www is not far away from the optimum www∗, and both ||∇f(www)|| and ||sss(www)|| are supposed to be small. Thus,
[∇f(www)− sss(www)]T (www −www∗) is supposed to be small. This makes the bound τ to be small, which makes
Eq.(11) valid in the final convergence region.

Moreover, the convergence rate is given in the theorem — AsynGrad is guaranteed to converge with t
updates, and the value of t is given by Eq.(10).

The theoretical analysis can be concluded as follows. First, it shows that AsynGrad is convergent with
gradient errors by given certain assumptions and conditions. Second, those assumptions and conditions
are usually valid in the final convergence region of practical applications. Third, the convergence speed
is given.

3 Experiments

We conduct experiments on natural language processing tasks as follows. Experiments are performed on
a computer based on Intel(R) Xeon(R) 3.0GHz CPU of 12 cores, and with 128G memory.

Part-of-Speech Tagging (POS-Tag): We use the standard benchmark dataset in prior work (Collins,
2002), which is derived from PennTreeBank corpus and uses sections 0 to 18 of the Wall Street Journal
(WSJ) for training (38,219 samples), and sections 22-24 for testing (5,462 samples). The evaluation
metric is per-word accuracy.

Text Chunking (Chunking): The phrase chunking data is extracted from the data of the CoNLL-
2000 shallow-parsing shared task (Sang and Buchholz, 2000; Sun et al., 2008). The training set consists
of 8,936 sentences, and the test set consists of 2,012 sentences. The evaluation metric for this task is
balanced F-score.

Word Segmentation (WordSeg). For the LSTM model, we use the social media word segmentation
data (Weibo-WordSeg) provided by the NLPCC 2016 Shared Task.The training set contains around 60%
of the data set, with 12,081 sentences. The test set contains around 40% of the data set, with 8,055 sen-
tences. However, this data set is relatively new and we do not have good feature templates to implement
the dense-CRF model. To deal with this problem, we use the MSR word segmentation data set (MSR-
WordSeg) for the experiments on dense-CRF. The MSR-WordSeg data set is provided by SIGHAN-2004
contest (Gao et al., 2007). There are 86,918 training samples and 3,985 test samples. For this data set,
we have standard feature templates, which are similar to (Sun et al., 2014). The evaluation metric is
balanced F-score.

3.1 Experiments on Dense-CRF (Moderately Dense Case)
The dense-CRF is a moderately dense version of CRF by adding rich edge features, which usually has
much better accuracy than traditional CRF for NLP tasks (Sun et al., 2012; Sun et al., 2014). For
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Figure 2: Experimental results on dense-CRF. For the 1st row, 1 to 10 denote the 10 threads of AsynGrad.
For the 2nd row, AsynGrad denotes AsynGrad with 10 threads.

traditional implementation of CRF, usually the edges features contain only tag transitions with the form
(yi−1, yi). In dense-CRF, we incorporate local tokens of xxx into the edge features, which is called rich
edge features (Sun et al., 2012; Sun et al., 2014). For example, a rich edge feature can be (xi, yi−1, yi)
or even (xi−1, xi, yi−1, yi). A simple way to automatically create massive rich edge features is to extend
each node feature (x, yi) to the rich edge feature (x, yi−1, yi), where x means the tokens of a local
window. Usually a naive way to do this will cause feature explosion. However, it is easy to solve
this problem — only extend high frequency node features (e.g., frequency larger than 10) to rich edge
features. In many real-world tasks we find this type of dense-CRF works much better than traditional
CRF, and without feature explosion problem even for tasks with many tags (e.g., the POS tagging task).

The standard SGD learning method (Bertsekas, 1999; Bottou and Bousquet, 2008; Shalev-Shwartz
and Srebro, 2008) is chosen as the baseline. Based on tuning, the initial learning rate of SGD is set as
0.02, 0.05, 0.1 for the POS-Tag, Chunking, and MSR-WordSeg tasks, respectively. To control overfitting,
we use the L2 regularizer, i.e., a Gaussian prior. The L2 regularization strength (i.e., the term λ) is set as
1, 0.5, 1 for the three tasks, respectively.

The experimental results are shown in Figure 2. The 1st row shows the percentage of gradient errors
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Figure 3: Experimental results on LSTM. For the 1st row, 1 to 10 denote the 10 threads of AsynGrad.
For the 2nd row, AsynGrad denotes AsynGrad with 10 threads.

Table 2: Some major experimental results on LSTM. Time means time cost per iteration.

Method
POS-Tag Chunking Weibo-WordSeg

Acc (%) Time (s) F-score (%) Time (s) F-score (%) Time (s)
Adam 96.40 2972.13 95.40 1750.68 91.79 2198.45

AsynGrad(10-thread) 96.77 793.40 95.45 465.95 91.93 607.22

among total gradients. For example, if a thread used 100 gradients and 5 gradients are with errors in this
iteration, its gradient error rate is 5%. As we can see, the gradient errors are not rare in asynchronous
parallel learning.

The 2nd row shows the accuracy/F-score curves. As we can see, when facing the gradient errors, the
proposed asynchronous parallel learning method AsynGrad has no loss at all on the accuracy/F-score,
compared with traditional SGD (single thread).

The 3rd row shows the speed acceleration of AsynGrad, compared with synchronous parallel learning
method (Langford et al., 2009). As we can see, when adding more threads for parallel learning, AsynGrad
achieves substantially better acceleration on the training speed than the synchronous parallel learning
method.

The 4th row shows the accuracy/F-score curves by combining AsynGrad with structure regularization
(SR) (Sun, 2014). SR is a simple method to prevent overfitting by splitting samples into mini-samples,
thus it reduces the complexity and sparsity of structures (Sun, 2014). As we can see, AsynGrad can
easily combine with SR to improve the accuracy/F-score on those tasks.

Some major experimental results are summarized in Table 1.
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3.2 Experiments on LSTM (Completely Dense Case)

Recently, long short term memory networks (LSTM) has widely applied to many tasks (Chen et al., 2015;
Hammerton, 2003; Cho et al., 2014). In this work, we use the bi-directional long short term memory
network (Bi-LSTM) as the implementation of LSTM, which has better accuracy than single-directional
LSTM in many practical tasks. The LSTM recurrent cell is controlled by three “gates”, namely input
gate, forget gate and output gate.

Adaptive learning versions of SGD are popular to train large neural networks, including the Adam
learning method (Kingma and Ba, 2014), the RMSProp learning method (Tieleman and Hinton, 2012),
and so on. The experiments on LSTM are based on the Adam learning method, with the hyper parameters
as follows: β1 = β2 = 0.95, ϵ = 1 × 10−4 (Kingma and Ba, 2014). The input/hidden dimension is
170, 280, and 220 for the POS-Tag, Chunking, and Weibo-WordSeg tasks, respectively. For the tasks
with LSTM, we find there is almost no difference on the results by adding L2 regularization or not.
Hence, we do not add L2 regularization for LSTM. All weight matrices, except for bias vectors and word
embeddings, are diagonal matrices and randomly initialized by normal distribution.

The experimental results are shown in Figure 3. The 1st row shows the percentage of gradient errors
among total gradients. As we can see, for neural networks like LSTM, the gradient errors are very
common (the rate is over 90%) in asynchronous parallel learning. The gradient error rate is much higher
than the dense-CRF case, this is because the LSTM is a much more dense model compared with dense-
CRF. In fact, LSTM can be seen as a completely dense model because there is totally no sparse feature
existing.

The 2nd row shows the accuracy/F-score curves. As we can see, when facing the intensive gradient
errors which are over 90% on very dense models like LSTM, AsynGrad has no loss at all on accuracy/F-
score.

The 3rd row shows the speed acceleration of AsynGrad, compared with synchronous parallel learning
method (Langford et al., 2009). As we can see, when adding more threads for parallel learning, AsynGrad
achieves substantially better acceleration on the training speed than the synchronous version.

The experiments shows that AsynGrad can substantially accelerate the training speed of LSTM, and
without any loss on accuracy. Some major experimental results are summarized in Table 2.

4 Proof

Here we give the proof of Theorem 1. First, the recursion formula is derived. Then, the bounds are
derived.

4.1 Recursion Formula

By subtracting www∗ from both sides and taking norms for (1), we have

||wwwt+1 −www∗||2 = ||wwwt − γssszzzt(wwwt)−www∗||2
= ||wwwt −www∗||2 − 2γ(wwwt −www∗)Tssszzzt(wwwt) + γ2||ssszzzt(wwwt)||2

(12)

Taking expectations and let at = E||wwwt −www∗||2, we have

at+1 = at − 2γE[(wwwt −www∗)Tssszzzt(wwwt)] + γ2E[||ssszzzt(wwwt)||2]
(based on (6) )

≤ at − 2γE[(wwwt −www∗)Tssszzzt(wwwt)] + γ2κ2

(since the random draw of zzzt is independent of wwwt)

= at − 2γE[(wwwt −www∗)T Ezzzt(ssszzzt(wwwt))] + γ2κ2

= at − 2γE[(wwwt −www∗)Tsss(wwwt)] + γ2κ2

(13)

We define
δ(www) = ∇f(www)− sss(www) (14)
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and insert it into (4), it goes to

f(www′) ≥ f(www) + (www′ −www)T [sss(www) + δ(www)] +
c

2
||www′ −www||2

= f(www) + (www′ −www)Tsss(www) +
c

2
||www′ −www||2 + (www′ −www)T δ(www)

(15)

By setting www′ = www∗, we further have

(www −www∗)Tsss(www) ≥ f(www)− f(www∗) +
c

2
||www −www∗||2 − (www −www∗)T δ(www)

≥ c

2
||www −www∗||2 − (www −www∗)T δ(www)

(16)

Combining (13) and (16), we have

at+1 ≤ at − 2γE
[ c

2
||wwwt −www∗||2 − (wwwt −www∗)T δ(wwwt)

]
+ γ2κ2

= (1− cγ)at + 2γE[(wwwt −www∗)T δ(wwwt)] + γ2κ2
(17)

Considering (8) and (14), it goes to

at+1 ≤ (1− cγ)at + 2γτ + γ2κ2 (18)

We can find a steady state a∞ by the formula a∞ = (1− cγ)a∞ + 2γτ + γ2κ2, which gives

a∞ =
2τ + γκ2

c
(19)

Defining the function A(x) = (1− cγ)x + 2γτ + γ2κ2, based on (18) we have

at+1 ≤ A(at)

(Taylor expansion of A(·) based on a∞, with ∇2A(·) being 0)

= A(a∞) +∇A(a∞)(at − a∞)
= A(a∞) + (1− cγ)(at − a∞)
= a∞ + (1− cγ)(at − a∞)

(20)

Thus, we have at+1 − a∞ ≤ (1− cγ)(at − a∞), and unwrapping it goes to

at ≤ (1− cγ)t(a0 − a∞) + a∞ (21)

4.2 Bounds
Since ∇f(www) is Lipschitz according to (5), we have

f(www) ≤ f(www′) +∇f(www′)T (www −www′) +
q

2
||www −www′||2

Setting www′ = www∗, it goes to f(www)− f(www∗) ≤ q
2 ||www −www∗||2, such that

E[f(wwwt)− f(www∗)] ≤ q

2
E||wwwt −www∗||2 =

q

2
at

In order to have E[f(wwwt)− f(www∗)] ≤ ϵ, it is required that q
2at ≤ ϵ, that is

at ≤ 2ϵ

q
(22)

Combining (21) and (22), it is required that

(1− cγ)t(a0 − a∞) + a∞ ≤ 2ϵ

q
(23)
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To meet this requirement, it is sufficient to set the learning rate γ such that both terms on the left side are
less than ϵ

q . For the requirement of the second term a∞ ≤ ϵ
q , recalling (19), it goes to γ ≤ cϵ−2τq

qκ2 . Thus,
introducing a real value β ≥ 1, we can set γ as

γ =
cϵ− 2τq

βqκ2
(24)

Note that, to make this formula meaningful, it is required that cϵ− 2τq ≥ 0. Thus, it is required that

τ ≤ cϵ

2q

which is solved by the condition of (11).
On the other hand, we analyze the requirement of the first term that (1 − cγ)t(a0 − a∞) ≤ ϵ

q . Since
a0 − a∞ ≤ a0, it holds by requiring (1− cγ)ta0 ≤ ϵ

q , which goes to

t ≥
log ϵ

qa0

log (1− cγ)
(25)

Since log (1− cγ) ≤ −cγ given (7), and that log ϵ
qa0

is a negative term, we have

log ϵ
qa0

log (1− cγ)
≤

log ϵ
qa0

−cγ

Thus, (25) holds by requiring

t ≥
log ϵ

qa0

−cγ
=

log (qa0/ϵ)
cγ

(26)

Combining (24) and (26), the problem can be addressed as far as

t ≥ βqκ2 log (qa0/ϵ)
c(cϵ− 2τq)

Thus, setting t
.= βqκ2 log (qa0/ϵ)

c(cϵ−2τq) can solve the problem. This completes the proof. ⊓⊔

5 Conclusions

In this paper we show that gradient errors are very common and inevitable in dense feature models.
Nevertheless, we show that the learning process with the gradient error problem can still approach the
optimum in many practical applications. We propose a simple method AsynGrad for asynchronous
stochastic parallel learning with gradient error. We show that AsynGrad works well for dense feature
models like neural networks and dense-CRF, in spite of gradient errors. Base on various NLP tasks, our
experiments show that AsynGrad can substantially accelerate the training speed of LSTM and dense-
CRF, and without any loss on accuracy.
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