
Proceedings of COLING 2016, the 26th International Conference on Computational Linguistics: Technical Papers,
pages 181–191, Osaka, Japan, December 11-17 2016.

The Role of Context in Neural Morphological Disambiguation

Qinlan Shen, Daniel Clothiaux, Emily Tagtow, Patrick Littell, Chris Dyer
Carnegie Mellon University

{qinlans, dclothia, etagtow, plittell, cdyer}@cs.cmu.edu

Abstract

Languages with rich morphology often introduce sparsity in language processing tasks. While
morphological analyzers can reduce this sparsity by providing morpheme-level analyses for
words, they will often introduce ambiguity by returning multiple analyses for the same surface
form. The problem of disambiguating between these morphological parses is further compli-
cated by the fact that a correct parse for a word is not only dependent on the surface form
but also on other words in its context. In this paper, we present a language-agnostic approach
to morphological disambiguation. We address the problem of using context in morphological
disambiguation by presenting several LSTM-based neural architectures that encode long-range
surface-level and analysis-level contextual dependencies. We applied our approach to Turkish,
Russian, and Arabic to compare effectiveness across languages, matching state-of-the-art in two
of the three languages. Our results also demonstrate that while context plays a role in learning
how to disambiguate, the type and amount of context needed varies between languages based on
their morphological and syntactic properties.

1 Introduction

Morphologically rich languages introduce sparsity in language processing tasks, as different surface
variants over the same root are often taken as independent entities. Using a morphological analyzer
can decompose inflected words into known tags that encode syntactic and semantic information about
the word. However, finding the correct morphological parse is a non-trivial task. Functionally different
morphemes may have similar forms, and long strings of potentially ambiguous morphemes compound
the problem of ambiguity. As a result, analyzers for morphologically complex languages often return
several parses for the same surface word. Table 1, for example, shows the resulting candidate parses for
the surface form “alın” returned by Oflazer’s (1994) morphological analyzer for Turkish.

alın+Noun+A3sg+Pnon+Nom (forehead)
al+AdjˆDB+Noun+Zero+A3sg+P2sg+Nom (your red)
al+AdjˆDB+Noun+Zero+A3sg+Pnon+Gen (of red)
al+Verb+Pos+Imp+A2pl ((you) take)
al+VerbˆDB+Verb+Pass+Pos+Imp+A2sg ((you) be taken)
alın+Verb+Pos+Imp+A2sg ((you) be offended)

Table 1: Possible morphological parses for surface form “alın”

The surrounding context of the word being disambiguated plays a major part in determining the role
of a word in a sentence and thus its correct morphological parse. For example, the surface form “evi”
in Turkish can be interpreted as either accusative or third-person singular possessive, as shown in Table
2 (Yildiz et al., 2016); this determination cannot reliably be made without further context. Moreover,
the disambiguation of a word can in turn disambiguate other words; if we have determined that “evi” is

This work is licensed under a Creative Commons Attribution 4.0 International Licence. Licence details:
http://creativecommons.org/licenses/by/4.0/

181



accusative, we can infer that a transitive verb must follow and that other ambiguous forms in a sentence
are not accusative.

Sentence and translation Analysis of evi
Evi bulabildiniz mi? – Did ev+Noun+3sg
you find the house? +Pnon+Acc
Evi gerçekten güzelmiş. – ev+Noun+3sg
His/Her house is really +P3sg+Nom
beautiful

Table 2: Possible interpretations for “evi” based on context

The problem of disambiguating over the candidate morphological parses generated by a morphological
analyzer has been tackled in many languages and with different strategies. These systems primarily rely
on methods for capturing the structure of a target word and its candidate tag sequences (Yuret and Türe,
2006; Habash and Rambow, 2005; Daybelge and Cicekli, 2007; Daoud, 2009) and/or the surrounding
context of a target word (Hakkani-Tür et al., 2002; Smith et al., 2005; Sak et al., 2008; Lee et al.,
2011) to choose the best candidate analysis. Despite the breadth of work on this problem, there is little
work on disambiguation using neural network models. Based on previous work, it is not clear whether
neural models are able to disambiguate only using surface forms or how context plays a role in a neural
disambugation model. Models that disambiguate jointly over tokens incorporate more information about
the surrounding context of a word, but models that make decisions at the word level are often simpler to
train.

In this paper, we present a language-agnostic LSTM-based approach for morphological disambigua-
tion that takes into account both the structure of a word, including its candidate tag sequences, and the
surrounding context of a target word. We propose a neural architecture for generating vector embeddings
of the candidate analyses of a target word using character-based LSTMs to generate representations for
the stems and surface forms, as well as an LSTM over the tag sequences to embed analyses.

We then describe several model architectures that operate over these vector representations, differing
according to the window of context used and whether the context tokens have themselves been disam-
biguated. Because our architecture relies on character- and tag-level embeddings, the models can be
adapted into other languages and handle unknown words at test time. Experiments on Turkish, Russian,
and Arabic show that different languages benefit from different types and windows of context.

2 Models

The problem of morphological disambiguation involves selecting among a list of possible parses returned
by an analyzer. Given the output of a morphological analyzer for tokens in a sentence, we use several
LSTM architectures to predict the correct analysis for a word based on its context. These architectures
vary based on the amount and type of context taken into account when choosing the best analysis.

Our approach to disambiguation relies on two embeddings: vector representations for each possible
analysis for a word (expressed as matrix R), which encode the stem and all of the morpheme tags for each
analysis, and a vector embedding h of the relevant context of the target word. Using these embeddings,
we can define a compatibility function between the representation of each candidate analysis and the
representation of the context by taking the product of R and h. Taking the softmax of this compatibility
function will give us a probability distribution over possible parses given the relevant context.

p(yt = a|x) = softmax(Rxt × ht) (1)

We describe a general architecture for embedding the possible parses of a target word, as well as the
different architectural and objective variants for different models of context.

182



2.1 Analysis Embeddings
Given a morphological analysis of the form

stemi + tagi,1 + tagi,2 + ... + tagi,L

where stemi = (stemi,1, stemi,2...stemi,K) is the K character long stem of the i-th parse and each
tagi,j is the j-th tag in the i-th parse (containing L tags), we use a bidirectional character-based LSTM to
embed the stem, and a separate bidirectional LSTM over tags to embed the morphemes. A bidirectional
LSTM creates a representation gx of an input sequence x = (x1, x2, ..., xT ) by computing a forward
sequence −→g and a reverse sequence ←−g over the input sequence, concatenating the results of the two
sequences, and applying a rectified linear unit (ReLU) activation

−→g t = f(xt,
−→g t−1) (2)

←−g t = f(xt,
←−g t+1) (3)

g = ReLU([−→g T ,←−g 0]) (4)

where f(x, y) is the output of an LSTM unit with inputs x and y.

Figure 1: Neural architecture for analysis embedding

Thus, we create a representation of the stem by taking the characters of (stemi,1, stemi,2, ..., stemi,K)
as the input sequence for a “stem” LSTM and a representation of the tags by taking
(tagi,1, tagi,2, ..., tagi,L) as the input sequence for a separate “tag” LSTM. We then add these two repre-
sentations and apply a tanh nonlinearity to create an embedding, ri, for the i-th potential analysis a of
the word (Figure 1).

ri = tanh(gstemi + gtagi) (5)

These vectors of parse options ri are concatenated to form matrix R for a word with N analyses, where
each row in the matrix corresponds to a possible parse for a given word.

R = [r1; r2; ...; rN ] (6)

As a baseline model, we use matrix R without leveraging any of the surrounding context of the target
word. To obtain the probability distribution of the possible parses from R, we take the softmax of the
product of R and a learned parameter vector h. We then take the analysis a with the highest probability
as the predicted analysis for the word.

p(yt = a|xt) = softmax(Rxt × h) (7)

2.2 Surface Model
One method of integrating the context around a target word for morphological disambiguation is to
leverage the surface forms of the words surrounding the target word. To capture the surface-level context
of a target word, we first use another bidirectional character LSTM to embed the surface forms of each
word xi surrounding the current target word, creating a vector representation for each surrounding word.

183



We then use the embeddings for the relevant context words to the left of the target word as input to a left-
to-right LSTM and the embeddings of the relevant context words to the right as input to a right-to-left
LSTM over words to create vectors representing the left (−→c t) and right (←−c t) contexts of the target word
at position t.

−→c t = f(xt,
−→c t−1) (8)

←−c t = f(xt,
←−c t+1) (9)

We add the left and right context vectors, then apply a tanh non-linearity to get ht representing the
surrounding surface context of the target word at position t.

ht = tanh(−→c t +←−c t) (10)

To combine this surface context representation with the possible parse embeddings matrix R, we take
a softmax over the product of R and ht to return a probability distribution over possible parses given
surface-level context.

p(yt = a|x) = softmax(Rxt × ht) (11)

We compare two models that leverage the surface context of a word. The full context model uses all
the words to the left of the target word and all the words to the right of the target word to build context
vector ht (Figure 2). The local context model uses a one word window to the left and right of its target
word to build context vector ht.

Figure 2: Neural architecture for full surface context embedding

2.3 Left-To-Right Analysis

A further question regarding the use of context in morphological disambiguation is whether the contex-
tual tokens themselves need to be disambiguated, or whether their surface forms alone suffice to guide
further disambiguation. For example, in a language like Russian with subject-verb agreement, having
disambiguated a word as being third-person singular in the nominative case can help us predict that the
verb should have third-person agreement.

To explore this question, we also consider models that take previously-disambiguated tokens as con-
text. A simple way of leveraging information about the parses of surrounding words is to disambiguate
the words in the sentence sequentially and use the previously selected parses to inform our decision at
the current position. We use an LSTM over the selected parses of previously disambiguated words to
create mt, a representation of the decisions that were made up until position t. To build mt, we take
the representation of chosen parse r̃t from Rxt , and feed it into the LSTM encoding the sequence of
previously chosen parses.

mt = f(r̃t
i , mt−1) (12)

Then, when choosing the next parse at position t + 1, we also add mt to the stem and morpheme
representations gt+1

stemi
and gt+1

tagi
and apply a tanh nonlinearity when creating parse embeddings rt+1

i .

rt+1
i = tanh(gt+1

stemi
+ gt+1

tagi
+ mt) (13)

184



Rxt+1 = [rt+1
1 ; rt+1

2 ; ...; rt+1
N ] (14)

Intuitively, the goal of this operation is to learn interactions between the previous parses and each can-
didate parse at the current position. We can then calculate a probability distribution over the candidates
given both surface context and the previous parses in a manner similar to the process in Section 2.2.

p(yt = a|x, y1, y2, ..., yt−1) = softmax(Rxt × ht) (15)

When decoding, we use a greedy approach to select the parse to add to the previous parse LSTM.
Thus, our objective is to predict the output sequence

ŷ = argmaxỹ∈YX

T∏
i=1

p(ỹt|x, ỹ1, ỹ2, ..., ỹt−1) (16)

2.4 Conditional Random Field Joint Decoding

Locally normalized models suffer from the label bias problem (Andor et al., 2016), meaning that they
have little to no ability to revise previous decisions. Conditional Random Fields (CRFs) have been shown
to be effective at modeling sequences in tasks like part of speech tagging and named entity recognition
(Lample et al., 2016). In this approach, we attempt to find the best sequence of parses that takes the
entire sentence into account.

The CRF model is built on top of our full-context surface model, using the same process for embedding
the parses and the surface context. Rather than taking the softmax over the combined representation of
the surface context vector and the parse matrix, we use the product directly as a vector ut of emission
scores between each word xt and its possible parses.

ut = Rxt × ht (17)

To model the transition scores between the j-th parse of word at position p and the i-th analysis of the
previous word, we concatenate the embeddings of the two analyses and input the resulting vector to a
feed-forward layer to give a transition score between the two parses, v(rt−1

i , rt
j).

v(rt−1
i , rt

j) = tanh(Wtrans[rt−1
i , rt

j ]) (18)

We can then produce a trellis of possible parses for each word and their transitions to use for picking the
best parse sequence for a given sentence x of length N . We score sequences using the function

S(x, y) =
N∑

i=1

v(yi−1, yi) + uyi
i (19)

To find the best parse sequence, we predict the output sequence

ŷ = argmaxỹ∈YX
S(x, ỹ) (20)

We learned the parameters of the CRF as part of our neural architecture, then decode using the Viterbi
algorithm to compute the best analysis sequence.

3 Experimental Setup

To demonstrate the language-agnostic nature of our disambiguation model, we applied our approach to
Turkish, Russian, and Arabic, three morphologically-complex but typologically-distinct languages with
well-established morphological analyzers (Oflazer, 1994; Korobov, 2015; Maamouri et al., 2010).

185



Turkish Russian Arabic
Ambiguous All Ambiguous All Ambiguous All

Training 332,457 783,209 830,055 1,815,414 253,058 318,821
Development 16,327 38,744 22,344 49,773 13,915 17,387
Annotated Test 379 946 16,340 50,083 14,231 18,021
Generated Test 18,022 42,000 - - - -

Table 3: Token counts for data sets

3.1 Turkish

We used the same dataset for Turkish as in Sak et al. (2007) and Yildiz et al. (2016). The datasets were
extracted from a corpus of approximately 1 million words of semi-automatically disambiguated Turkish
(Yuret and Türe, 2006), which were split into training, development, and test sets. To limit the effect of
noise from using semi-automatically disambiguated data in our training and evaluation, we also evaluated
over the small test set of human disambiguated tokens in context that was provided with the data.

Preliminary analysis of the training set found that the average number of parses per word was 1.60
(std=1.304, max=24) for all tokens and 2.81 (std=1.208) for only ambiguous tokens. The average length
of a Turkish sentence within our training set was 16 tokens (std=20.231).

3.2 Russian

Data for Russian was extracted from OpenCorpora, a freely available treebank for Russian (Bocharov
et al., 2011). OpenCorpora provides a large corpus of approximately 1.7 million tokens, as well as
a strict, manually disambiguated subset of approximately 50,000 tokens. Due to the relatively small
amount of manually disambiguated data for training, we used the parse scores returned by the pymorphy2
morphological analyzer (Korobov, 2015) to semi-automatically disambiguate the full corpus, sampling
the “gold” parse based on its parse score. One previous work in Russian morphology (Muzychka et al.,
2014) used the SynTagRus dataset. However, this dataset used a different tagset than the pymorphy2
analyzer (Oflazer, 1994), which is based on OpenCorpora data.

The average number of parses per word in the training set was 3.10 (std=5.329, max=69) for all tokens
and 5.81 (std=6.961) for only ambiguous tokens. The average length of a Russian sentence within our
training set was 19.87 tokens (std=22.974).

We took the manually disambiguated data as our test set and randomly split the remaining data from
the full corpus into a training set and development set.

3.3 Arabic

Data for Arabic was extracted from the Arabic Penn Treebank (ATB) part 3 version 3.2 (catalog num-
ber LDC2010T08) (Maamouri et al., 2004), a corpus containing approximately 370,000 annotated to-
kens. Analyses for the tokens were generated using the Buckwalter Morphological Analyzer Version
1.0 (Buckwalter, 2002), with human annotators selecting the correct parse. Previous approaches used
different versions and subsets of the ATB. Here, we used a comparable subset to previous work, split
into training, development, and test sets.

Each token had 9.11 possible parses (std=8.5932, max=86) on average, with each ambiguous token
having 11.31 possible parses (std=8.301). The average length of a sentence was 26.13 (std=30.78) tokens.

3.4 Training

We considered each sentence to be a minibatch for training. The objective function used for training
was the total cross-entropy loss between the selected parse and the correct parse for every token in the
sentence. Stochastic gradient descent and backpropagation were used to adjust the parameters for our
model. To prevent overfitting on the training set, we used validation-based early-stopping, saving the
model parameters based on a periodic accuracy evaluation step over the development set. All LSTMs in

186



our models were trained with a single hidden layer. We used a hidden dimension size of 100 for the tag,
stem, and surface form LSTMs and 200 for the context and previous parse LSTMs.

4 Discussion

4.1 Results

In all cases, using some contextual information improved accuracy over the no-context baseline, but
there is noticeable variation between languages regarding what kinds of context were most valuable. We
report accuracy over ambiguous tokens, as well as all tokens for sake of comparison with other systems.

Ambiguous Tokens All Tokens
Annotated Test Generated Test Annotated Test Generated Test

No Context 88.65 90.72 95.45 96.08
Local Context 89.18 92.65 95.67 96.90
Full Context 91.03 93.46 96.41 97.24
Left-to-Right 90.50 93.42 96.19 97.23
CRF 90.24 93.06 96.09 97.07

Table 4: Disambiguation results for Turkish

Table 4 shows the performance of all models in Turkish on a hand-annotated test set, as well as the
generated test set. We see that each of the models with some form of context is able to beat the no
context baseline. The best-performing model on both the generated and annotated datasets is the full
surface context model, followed closely by the left-to-right and CRF models. This shows that some form
of long-range contextual information is useful for disambiguation for Turkish. Our full context model
is comparable to the previous state of the art of 96.28% on annotated test and 96.80% on generated test
established in Sak et al. (2007).

As we will see below, of the languages considered here, Turkish is the only one in which the full
surface context model approached (and slightly exceeded) other models, which may stem from the ty-
pological character of Turkish. Turkish is a strongly head-final subject-object-verb (SOV) language, and
so the best disambiguating evidence for a token often follows it. For example, in disambiguating “evi”
(cf. Table 2), the best evidence for its case (nominative or accusative) will lie in whether a transitive
or intransitive verb follows, and in a verb-final language the verb can follow at some distance from its
arguments. Meanwhile, as seen in Section 3.1, Turkish is the least ambiguous of these languages (with
a mean of 1.60 parses per word compared to 3.10 for Russian and 9.11 for Arabic), so surface context
is not much less informative than disambiguated context. In other words, Turkish combines the greatest
need for full context with higher relative informativeness of the surface context.

Ambiguous Tokens All Tokens
No Context 64.97 88.58
Local Context 71.56 90.72
Full Context 69.49 90.05
Left-to-Right 68.55 89.75
CRF 72.78 91.13

Table 5: Disambiguation results for Russian

The results for Russian are detailed in Table 5. Again, each of the contextual models perform much
better than the no context baseline. However, we see an interesting pattern when comparing the four
contextual models; unlike in Turkish, the CRF model performs the best. Many words in Russian are
required to agree in gender, case, and number to their heads. We argue that a model that takes the parse
information of neighboring words into account is more suited to capturing agreement than one that only
uses the surface form information. The CRF model over parse sequences would be able to capture this

187



phenomenon, whereas the left-to-right decoding model, which also operates over neighboring parses,
may fail due to making locally but not globally optimal decisions near the beginning of the sentence.

Muzychka et al. (2014) reported an accuracy of 91.06% in their CRF-based disambiguation model. In
comparison, our neural CRF-based model achieves a similar accuracy of 91.13%.

Ambiguous Tokens All Tokens
No Context 72.22 78.06
Local Context 80.10 84.29
Full Context 86.45 88.95
Left-to-Right 89.30 91.27

Table 6: Disambiguation results for Arabic

We see a different pattern in Table 6 for Arabic. Like in Turkish and Russian, there is a large gap
between the no context baseline and the local context model. The left-to-right model performs the best
on Arabic. Habash et al. (2005) report an accuracy of 96.2% on all parses, while Smith et al. (2005)
achieves an accuracy of 95.4% on different subsets of the ATB.

We can also note that surface-context models performed relatively poorly in Arabic. This is likely
because of the greater ambiguity of Arabic (9.11 parses per word), which stems in part from the absence
of vowels in Arabic writing. Manual inspection of the Arabic output suggested that the surface-context
models were frequently making the same mistakes as the no-context model (Table 7), which did not tend
to occur in the Turkish output. So, in contrast to the Turkish systems, in which having only surface
context was as good as having disambiguated context, in the Arabic systems having only surface context
was more similar to having no context at all, emphasizing the need for disambiguated context in more
highly ambiguous languages.1

Input: ... dwl kvyrp HAlAt SEbp wnsbp Alnmw mtdnyp ...
Gold: SaEob 1+ADJ+NSUFF FEM SG+CASE INDEF ACC
No Context: SaEob 1+ADJ+NSUFF FEM SG+CASE INDEF GEN
Low Context: SaEob 1+ADJ+NSUFF FEM SG+CASE INDEF NOM
Full Context: SaEob 1+ADJ+NSUFF FEM SG+CASE INDEF GEN
Left-to-Right: SaEob 1+ADJ+NSUFF FEM SG+CASE INDEF ACC

Input: ... bAlAntSAr kmA nHyy AlAntfADp fy flsTyn mlyn An ...
Gold: {inotifADap 1+DET+NOUN+NSUFF FEM SG+CASE DEF ACC
No Context: {inotifADap 1+DET+NOUN+NSUFF FEM SG+CASE DEF GEN
Low Context: {inotifADap 2+DET+NOUN+NSUFF FEM SG+CASE DEF GEN
Full Context: {inotifADap 1+DET+NOUN+NSUFF FEM SG+CASE DEF GEN
Left-to-Right: {inotifADap 1+DET+NOUN+NSUFF FEM SG+CASE DEF ACC

Table 7: Example outputs for Arabic for targets “SEbp” and “AlAntfADp”

Within our experiments, context clearly does play a role in learning to disambiguate possible morpho-
logical analyses. The type and extent of the context needed, however, appears to vary based on features of
the language, such as the word order or the degree of morphological ambiguity. This raises the possibil-
ity of a future system that can choose the best disambiguation context based on a language’s typological
properties.

1Following this hypothesis, we would expect the CRF architecture to perform well on Arabic. However, the much higher
ratio of parses-per-word in Arabic made our neural CRF model computationally impractical.

188



4.2 Future Work

As mentioned in Section 2.4, a disadvantage of using greedy decoding with our left-to-right analysis
model is the label-bias problem. Because decisions depend on the previously selected parses, an incorrect
decision made early on can propagate through the sentence. Thus, a natural extension to the left-to-right
model is to use beam search for decoding instead of our greedy approach. The advantage of using beam
search is that it allows the model to explore multiple previous parse paths. This partially gives the model
the ability to recover from making a decision that appears locally optimal in the short-term but leads to
greater losses in the long-term.

Another model of context inspired by recent advances in machine translation (Bahdanau et al., 2015)
and caption generation (Xu et al., 2015) is using an attentional mechanism to define the important context
for a target word. For the full surface context model, rather than using separate LSTMs over the left and
right contexts of the word, an attentional context model can learn to attend to different parts of the
surrounding context of a target word based on its sentence position and candidate parse representations.
This model will potentially allow us to capture longer-range surface dependencies without decay.

5 Related Work

A common early approach to morphological disambiguation is to rely purely on hand-crafted rules to
select the correct parse out of a set of candidate analyses (Daybelge and Cicekli, 2007; Daoud, 2009).
These rule-based methods primarily try to capture the relationship between a target word and its candi-
date analyses. Other approaches used a blend of rules and statistical methods. For example, Oflazer and
Tür (1996) used a set of linguistically motivated rules and corpus-dependent statistics to either choose
or delete possible parses in Turkish. The model also learned rules based on unambiguous words that
appear in unambiguous contexts within the corpus. Similarly, Hajič et al. (2007) built upon the same
type of deletion disambiguation, using the output from a choose-delete rule-based system to first reduce
the number of possible parses before running a statistical part of speech tagger in Czech.

Yuret and Türe (2006) used the Greedy Prepend Algorithm to learn rules for Turkish disambiguation.
For every tag in their dataset, a decision list of patterns was created to determine whether the tag is
contained in the best analysis. A heuristic search that added new attributes to patterns already in the
decision list was used to generate more candidate patterns for a tag.

Other statistical approaches to morphological disambiguation tried to directly model the context of a
target word. Hakkani-Tür et al. (2002) proposed a statistical approach for Turkish disambiguation using
a language model trained on disambiguated data. They trained trigram language models under different
root and inflectional group independence assumptions and used the resulting language models to select
the best candidate parses. Smith et al. (2005) used a conditional random field to learn to disambiguate
over sentence by modeling local contexts. Sak et al. (2007) and (2008) used the perceptron algorithm on
a set of 23 handcrafted features, including bigrams and trigrams at the word and inflectional group level.

There is relatively little work on designing neural models specifically for morphological disambigua-
tion. Yildiz et al. (2016) proposed a convolutional architecture that creates a representation for the
surface form of a word from a root and a set of morpheme features. They then trained their model to
predict the correct analysis of a word given the ground truth annotations for the previous words within
a window of the target. Their model was able to achieve an accuracy of 84% over ambiguous tokens in
Turkish. In contrast, our proposed model uses long short-term memory (LSTM)-based architectures to
capture longer range dependencies between a target word and its surrounding context. Additionally, we
consider the context of a target word at both the surface-form and analysis level, providing additional
information to our models.

6 Conclusion

In this paper, we present several LSTM-based neural network architecture for disambiguating morpho-
logical parses using varying amounts of surrounding context. We demonstrate using these architectures
that the type and amount of context needed for disambiguation varies between languages based on the

189



linguistic features of a particular language. For a language like Turkish, where most of the morphologi-
cal information is apparent based on the surrounding context, a model that uses the surface context can
capture long-range information to make disambiguation decisions. Other languages, where the surface
representation is less informative, such as Arabic, greatly benefit from using representations of the sur-
rounding parse candidates in addition to the surface forms of the surrounding words. We also show that,
while this system is language agnostic and can be applied to typologically different languages, the best
architecture for a language depends on its morphological and syntactic properties.

Acknowledgements

This work was sponsored in part by the Defense Advanced Research Projects Agency Information In-
novation Office (I2O) Program under the Low Resource Languages for Emergent Incidents (LORELEI)
program issued by DARPA/I2O under Contract No. HR0011-15-C-0114. We would like to thank Gra-
ham Neubig, Yulia Tsvetkov, Michael Miller Yoder, and the anonymous reviewers for their helpful com-
ments and feedback.

References
Daniel Andor, Chris Alberti, David Weiss, Aliaksei Severyn, Alessandro Presta, Kuzman Ganchev, Slav Petrov,

and Michael Collins. 2016. Globally normalized transition-based neural networks. ArXiv preprint.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. 2015. Neural machine translation by jointly learning to
align and translate. Proceedings of the International Conference on Learning Representations.

Victor Bocharov, Svetlana Bichineva, Dmitry Granovsky, Natalia Ostapuk, and Maria Stepanova. 2011. Quality
assurance tools in the OpenCorpora project. In Computational Linguistics and Intelligent Technology: Proceed-
ing of the International Conference Dialog, pages 10–17.

Tim Buckwalter. 2002. Buckwalter {Arabic} morphological analyzer version 1.0.

Daoud Daoud. 2009. Synchronized morphological and syntactic disambiguation for Arabic. Advances in Compu-
tational Linguistics, pages 73–86.

Turhan Daybelge and Ilyas Cicekli. 2007. A rule-based morphological disambiguator for Turkish. In Proceedings
of Recent Advances in Natural Language Processing, pages 145–149.

Nizar Habash and Owen Rambow. 2005. Arabic tokenization, part-of-speech tagging and morphological disam-
biguation in one fell swoop. In Proceedings of the 43rd Annual Meeting on Association for Computational
Linguistics, pages 573–580.

Jan Hajič, Jan Votrubec, Pavel Krbec, Pavel Květoň, et al. 2007. The best of two worlds: Cooperation of statis-
tical and rule-based taggers for czech. In Proceedings of the Workshop on Balto-Slavonic Natural Language
Processing: Information Extraction and Enabling Technologies, pages 67–74.

Dilek Z. Hakkani-Tür, Kemal Oflazer, and Gökhan Tür. 2002. Statistical morphological disambiguation for
agglutinative languages. Computers and the Humanities, (4):381–410.

Mikhail Korobov. 2015. Morphological Analyzer and Generator for Russian and Ukrainian Languages. pages
320–332.

Guillaume Lample, Miguel Ballesteros, Sandeep Subramanian, Kazuya Kawakami, and Chris Dyer. 2016. Neural
architectures for named entity recognition. Proceedings of the main conference on Human Language Technol-
ogy Conference of the North American Chapter of the Association of Computational Linguistics.

John Lee, Jason Naradowsky, and David A. Smith. 2011. A discriminative model for joint morphological disam-
biguation and dependency parsing. In Proceedings of the 49th Annual Meeting of the Association for Computa-
tional Linguistics: Human Language Technologies, pages 885–894.

Mohamed Maamouri, Ann Bies, Tim Buckwalter, and Wigdan Mekki. 2004. The Penn Arabic Treebank: Building
a Large-Scale Annotated Arabic Corpus. In NEMLAR conference on Arabic language resources and tools, pages
466–467.

190



Mohamed Maamouri, Dave Graff, Basma Bouziri, Sondos Krouna, Ann Bies, and Seth Kulick. 2010. Standard
Arabic morphological analyzer (SAMA) version 3.1. Linguistic Data Consortium, Catalog No.: LDC2010L01.

S Muzychka, A Romanenko, and I Piontkovskaja. 2014. Conditional random field for morphological disambigua-
tion in russian. In Conference Dialog-2014, Bekasovo.

Kemal Oflazer and Gokhan Tür. 1996. Combining hand-crafted rules and unsupervised learning in constraint-
based morphological disambiguation. Proceedings of the ACL-SIGDAT Conference on Empirical Methods in
Natural Language Processing.

Kemal Oflazer. 1994. Two-level description of Turkish morphology. Literary and linguistic computing, (2):137–
148.

Haşim Sak, Tunga Güngör, and Murat Saraçlar. 2007. Morphological disambiguation of Turkish text with percep-
tron algorithm. pages 107–118.

Haşim Sak, Tunga Güngör, and Murat Saraçlar. 2008. Turkish language resources: Morphological parser, mor-
phological disambiguator and web corpus. pages 417–427.

Noah A. Smith, David A. Smith, and Roy W. Tromble. 2005. Context-based morphological disambiguation with
random fields. In Proceedings of the conference on Human Language Technology and Empirical Methods in
Natural Language Processing, pages 475–482.

Kelvin Xu, Jimmy Ba, Ryan Kiros, Aaron Courville, Ruslan Salakhutdinov, Richard Zemel, and Yoshua Bengio.
2015. Show, attend and tell: Neural image caption generation with visual attention. International Conference
on Machine Learning.

Eray Yildiz, Caglar Tirkaz, H. Bahadir Sahin, Mustafa Tolga Eren, and Ozan Sonmez. 2016. A Morphology-
Aware Network for Morphological Disambiguation. Proceedings of the Thirtieth AAAI Conference on Artificial
Intelligence.

Deniz Yuret and Ferhan Türe. 2006. Learning morphological disambiguation rules for Turkish. In Proceedings
of the main conference on Human Language Technology Conference of the North American Chapter of the
Association of Computational Linguistics, pages 328–334.

191


