
Proceedings of COLING 2016, the 26th International Conference on Computational Linguistics: Technical Papers,
pages 171–180, Osaka, Japan, December 11-17 2016.

Label Embedding for Zero-shot Fine-grained Named Entity Typing

Yukun Ma1,2, Erik Cambria1,2, Sa Gao1,2

1School of Computer Science and Engineering, Nanyang Technological University, Singapore
2Rolls-Royce@NTU Corporate Lab, Nanyang Technological University, Singapore

mayu0010@e.ntu.edu.sg, cambria@ntu.edu.sg, gaos0011@e.ntu.edu.sg

Abstract

Named entity typing is the task of detecting the types of a named entity in context. For instance,
given “Eric is giving a presentation”, our goal is to infer that ‘Eric’ is a speaker or a presenter and
a person. Existing approaches to named entity typing cannot work with a growing type set and
fails to recognize entity mentions of unseen types. In this paper, we present a label embedding
method that incorporates prototypical and hierarchical information to learn pre-trained label em-
beddings. In addition, we adapt a zero-shot framework that can predict both seen and previously
unseen entity types. We perform evaluation on three benchmark datasets with two settings: 1)
few-shots recognition where all types are covered by the training set; and 2) zero-shot recog-
nition where fine-grained types are assumed absent from training set. Results show that prior
knowledge encoded using our label embedding methods can significantly boost the performance
of classification for both cases.

1 Introduction

Named entity typing (NET) is the task of inferring types of named entity mentions in text. NET is a
useful pre-processing step for many natural language processing (NLP) tasks, e.g., auto-categorization
and sentiment analysis. Named entity linking, for instance, can use NET to refine entity candidates of
a given mention (Ling and Weld, 2012). Besides, NET is capable of supporting applications based on a
deeper understanding of natural language, e.g., knowledge completion (Dong et al., 2014) and question
answering (Lin et al., 2012; Fader et al., 2014). Standard NET approaches or sometime known as named
entity recognition (Chinchor and Robinson, 1997; Tjong Kim Sang and De Meulder, 2003; Doddington
et al., 2004) are concerned with coarse-grained types (e.g, person, location, organization) that are flat
in structure. In comparison, fine-grained named entity typing (FNET) (Ling and Weld, 2012), which
has been studied as an extension of standard NET task, uses a tree-structured taxonomy including not
only coarse-grained types but also fine-grained types of named entities. For instance, given “[Intel] said
that over the past decade”, standard NET only classifies Intel as organization, whereas FNET further
classifies it as organization/corporation.

FNET is faced with two major challenges: growing type set and label noises. Since the type hierarchy
of entities is typically built from knowledge bases such as DBpedia, which is regularly updated with new
types (especially fine-grained types) and entities, it is natural to assume that the type hierarchy is growing
rather than fixed over time. However, current FNET systems are impeded from handling a growing type
set for that information learned from training set cannot be transferred to unseen types. Another problem
with FNET is that the weakly supervised tagging process used for automatically generating labeled
data inevitably introduces label noises. Current solutions rely on heuristic rules (Gillick et al., 2014) or
embedding method (Ren et al., 2016) to remove noises prior to training the multi-label classifier. In order
to address these two problems at the same time, we propose a simple yet effective method for learning
prototype-driven label embeddings that works for both seen and unseen types and is robust to the label
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noises. Another contribution of this work is that we combine prototypical and hierarchical information
for learning label embeddings.

The remainder of this paper is organized as follows: Section 2 proposes a survey of prior works related
to FNET; Section 3 introduces the embedding-based FNET method and its zero-shot extension; Section 4
describes our label embedding method; Section 5 illustrates experiments and analysis for both few-shot
and zero-shot settings; finally, Section 6 concludes the paper and discusses future work.

2 Related Work

There is little related work specifically on zero-shot FNET but several research lines are considered
related to this work: fine-grained named entity recognition, prototype-driven learning, and multi-label
classification models based on embeddings. As FNET works with a much larger type set as compared
with standard NET, it becomes difficult to have a sufficient training set for every type when relying
on manual annotation. Instead, training data can be automatically generated from semi-structural data
such as Wikipedia pages (Ling and Weld, 2012). Consequently, a single supervised classifier (Ling and
Weld, 2012; Yogatama et al., 2015) or a series of classifiers (Yosef et al., 2012) are trained on this auto-
annotated training set. This auto-annotating practice has been followed by later works on FNET (Yosef
et al., 2012; Yogatama et al., 2015; Ren et al., 2016). However, since the automated tagging process is
not accurate all the time, a number of noisy labels are then propagated to supervised training and affect
the performance negatively.

The starting point of this work is the embedding method, WSABIE (Weston et al., 2011), adapted
by (Yogatama et al., 2015) to FNET. WSABIE maps input features and labels to a joint space, where
information is shared among correlated labels. However, the joint embedding method still suffers from
label noises which have negative impacts on the learning of joint embeddings. In addition, since the
labeled training set is the only source used for learning label embeddings, WSABIE cannot learn label
embeddings for unseen types. DeViSE (Frome et al., 2013) is proposed for annotating image with words
or phrases. As in such case, labels are natural words, e.g., fruit, that can be found in textual data, Skip-
gram word embeddings (Mikolov et al., 2013) learned from a large text corpus are directly used for
representing labels. In addition to label itself, prior works have also tried to learn label embeddings from
side information such as attributes (Akata et al., 2013), manually-written descriptions (Larochelle et al.,
2008), taxonomy of types (Weinberger and Chapelle, 2009; Akata et al., 2013; Akata et al., 2015), and
so on.

Another related line of research is prototype-driven learning. (Haghighi and Klein, 2006) presented
a sequence labeling model using prototypes as features and has tested the model on NLP tasks such as
part-of-speech (POS) tagging. Prototype-based features (Guo et al., 2014) are then adapted for coarse-
grained named entity recognition task. Even though we select prototypes in the same way as (Guo et al.,
2014), we use prototypes in a very different manner: we consider prototypes as the basis for representing
labels, whereas prototypes are mainly used as additional features in prior works (Haghighi and Klein,
2006; Guo et al., 2014). In other words, prototypes are previously used on the input side, while we use
them on the label side.

3 Embedding Methods for FNET

In this section, we introduce the embedding method for FNET proposed by (Yogatama et al., 2015) and
its extension to zero-shot entity typing.

3.1 Joint Embedding Model

Each entity mention m is represented as a feature vector x ∈ RV ; and each label y ∈ Y is a one-hot
vector, where Y is the set of true labels associated with x. Ȳ denotes the set of false labels of the given
entity mention. The bi-linear scoring function for a given pair of x and y is defined as follows:

f(x, y,W ) = x′Wy,
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where W ∈ RM×N matrix with M the dimension of feature vector and N the number of types.

Instead of using a single compatibility matrix, WSABIE (Weston et al., 2011; Yogatama et al., 2015)
considers an alternate low-rank decomposition of W , i.e., W = A>B, in order to reduce the number of
parameters. WSABIE rewrites the scoring function as

f(x, y,A,B) = φ(x,A) · θ(y,B) = x′A>By,

which maps feature vector x and label vector y to a joint space. Note that it actually defines feature
embeddings and label embeddings as

φ(x,A) : x→ Ax,

θ(y,B) : y → By,

where A ∈ RD×M and B ∈ RD×N are matrices corresponding to lookup tables of feature embed-
dings and label embeddings, respectively. The embedding matrices A and B are the only parameters to
be learned from supervised training process. In (Weston et al., 2011), the learning is formulated as a
learning-to-rank problem using weighted approximate-rank pairwise (WARP) loss,∑

y∈Y

∑
y′∈Ȳ

L(rank(x, y)) max(1− f(x, y,A,B) + f(x, y′, A,B), 0),

where the ranking function rank(x, y) =
∑

y′∈Ȳ I(1 + f(x, y′, A,B) > f(x, y,A,B)), and L(k) =∑k
i=1

1
i which maps the ranking to a floating-point weight.

3.2 Zero-shot FNET Extension
A zero-shot extension of above WSABIE method can be done by introducing pre-trained label embed-
dings into the framework. The pre-trained label embeddings are learned from additional resources, e.g.,
text corpora, to encode semantic relation and dependency between labels. Similar to (Akata et al., 2013),
we use two different methods for incorporating pre-trained label embeddings. The first one is to fully
trust pre-trained label embeddings. Namely, we fixB as the pre-trained B̃ and only learnA in an iterative
process. The second method is to use pre-trained label embedding as prior knowledge while adjusting
both A and B according to the labeled data, i.e., adding a regularizer to the WARP loss function,∑

y∈Y

∑
y′∈Ȳ

L(rank(x, y)) max(1− f(x, y,A,B) + f(x, y′, A,B), 0) + λ||B − B̃||2F ,

where || · ||F is the Frobenius norm, and λ is the trade-off parameter.

4 Methods

4.1 Prototype-driven Label Embedding
Joint embedding methods such as WSABIE learn label embeddings from the whole training set including
noisy labeled instances resulting from weak supervision. It is inevitable that the resulting label embed-
dings are affected by noisy labels and fail to accurately capture the semantic correlation between types.
Another issue is that zero-shot frameworks such as DeViSE are not directly applicable to FNET as con-
ceptually complex types, e.g, GPE (Geo-political Entity) cannot be simply mapped to a single natural
word or phrase.

To address this issue, we propose a simple yet effective solution which is referred to as prototype-
driven label embedding (ProtoLE), and henceforth we use B̃P to denote the label embedding matrix
learned by ProtoLE. The first step is to learn a set of prototypes for each type in the type set. ProtoLE
does not fully rely on training data to generate label embeddings. Instead, it selects a subset of entity
mentions as the prototypes of each type. These prototypes are less ambiguous and noisy compared to the
rest of the full set.
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Even though it is already far less labor-intensive to manually select prototypes than annotating entity
mentions one by one, we consider an alternative automated process using Normalized Point-wise Mutual
Information (NPMI) as the particular criterion for prototype selection. The NPMI between a label and
an entity mention is computed as:

NPMI(y,m) =
PMI(y,m)
− ln p(y,m)

,

where NPMI(·, ·) is the point-wise mutual information computed as follows:

PMI(y,m) = log
p(y,m)
p(y)p(m)

,

where p(y), p(m) and p(y,m) are the probability of entity mention m, label y and their joint proba-
bility. For each label, NPMI is computed for all the entity mentions and only a list of top k mentions are
selected as prototypes. Note that NPMI is not applicable to unseen labels. In such case, it is necessary to
combine manual selection and NPMI.

Word embeddings methods such as Skip-gram model (Mikolov et al., 2013) are shown capable of
learning distributional semantics of words from unlabeled text corpora. To further avoid affected by la-
bel noises, we use pre-trained word embeddings as the source to compute prototype-driven label embed-
dings. For each label yi, we compute its label embedding as the average of pre-trained word embeddings
of the head words of prototypes, i.e.,

B̃P
i =

1
k

k∑
j=1

vmik
,

where vmik
denotes the word embedding of kth word in the prototype list of label yi. In the case of

using phrase embeddings, the full strings of multi-word prototypes could be used directly.

4.2 Hierarchical Label Embedding

Another side information that is available for generating label embeddings is the label hierarchy. We
adapt the Hierarchical Label Embeddings (HLE) (Akata et al., 2013) to FNET task. Unlike (Akata et al.,
2013), which uses the WordNet hierarchy, FNET systems typically have direct access to predefined tree
hierarchy of type set. We denote the label embedding matrix resulting from label hierarchy as B̃H . Each
row in B̃H corresponds to a binary label embedding and has a dimension equal to the size of label set.
For each label, the sets B̃H

ij to 1 when yj is the parent of yi or i = j, and 0 to the remainder,

B̃H
ij =

{
1 if i = j or yj ∈ Parent(yi)
0 otherwise

.

HLE explicitly encodes the hierarchical dependency between labels by scoring a type yi given m using
not only yi but also its parent type Parent(yi). The underlying intuition is that recognition of a child
type should be also based on the recognition of its parent.

4.3 Prototype-driven Hierarchical Label Embedding

One shortcoming of HLE is that it is too sparse. A natural solution is combining HLE with ProtoLE,
which is denoted as Proto-HLE. Since B̃H ∈ RN×N and B̃P ∈ RD×N , the combined embedding matrix
B̃HP can be obtained by simply multiplying B̃H by B̃P , i.e.,

B̃HP = B̃P B̃H>.

Note that B̃HP has the same shape as B̃P , and it is actually representing the child label as a linear
combination of the ProtoLE vectors of its parent and itself.
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4.4 Type Inference
Having computed the scoring function for each label given a feature vector of the mention, we conduct
type inference to refine the top k type candidates. In the setting of few-shots FNET, k is typically set to
the maximum depth of type hierarchy, while different values for k may be used for a better prediction of
unseen labels in zero-shot typing. For top k type candidates, we greedily remove the labels that conflict
with others. However, unlike (Yogatama et al., 2015), we use a relative threshold t to decide whether
the selected type should remain in the final results, which is more consistent with the margin-infused
objective function than a global threshold. Namely, a type candidate will be passed to type inference
only if the difference of score from the 1-best is less than a threshold.

5 Experiments

5.1 Experiment Setup
Our method uses feature templates similar to what have been used by state-of-the-art FNET meth-
ods (Ling and Weld, 2012; Gillick et al., 2014; Yogatama et al., 2015; Xiang Ren, 2015). Table 1
illustrates the full set of feature templates used in this work. We evaluate the performance of our meth-
ods on three benchmark datasets that have been used for the FNET task: BBN dataset (Weischedel and
Brunstein, 2005), OntoNotes dataset (Weischedel et al., 2011) and Wikipedia dataset (Ling and Weld,
2012). (Xiang Ren, 2015) has pre-processed the training sets of BBN and OntoNotes using DBpedia
Spotlight1 . Entity mentions in the training set are automatically linked to a named entity in Freebase and
assigned with the Freebase types of induced named entity. As shown in Table 2, BBN dataset contains
2.3K news articles of Wall Street Journal, which includes 109K entity mentions belonging to 47 types.
OntoNotes contains 13.1K news articles and 223.3K entity mentions belonging to 89 entity types. The
size of Wikipedia dataset is much larger than the other two with 2.69M entity mentions of 113 types
extracted from 780.5K Wikipedia articles. Each data set has a test set that is manually annotated for
purpose of evaluation. To tune parameters such as the type inference threshold t and trade-off parameter
λ, we randomly sample 10% instances from each testing set as the development sets and use the rest as
evaluation sets.

Feature Description Example
Tokens Unigram words in the mentions “White”, “House”
Head Head word of the mention “House”
Cluster Brown Cluster IDs of the head word “4 1111”, .. ,“8 11111101”
POS Tag POS tag of the mention “NNP”
Character Lower-cased character trigrams in the head word “hou”,“ous”,“use”
Word Shape The word shape of words in the mention “Aa”,“Aa”
Context Unigram/bigram words in context of the mention “Bennett”,“the”, “Bennett the”
Dependency Dependency relations involving the head word “gov nn director”

Table 1: Features extracted for context “William Bennet, the [White House] drug-policy director....”

Dataset Types Documents Sentences Mentions

BBN
train

47
2.3K 48.8K 109K

test 459 6.4K 13.8K

OntoNotes
train

89
13.1K 147.7K 223.3K

test 76 1.3K 9.6K

Wikipedia
train

113
780.5K 1.15M 2.69M

test - 434 563

Table 2: Statistics of datasets

1http://github.com/dbpedia-spotlight/dbpedia-spotlight
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Figure 1: t-SNE visualization of the prototype-driven label embeddings for BBN dataset

Following prior works (Ling and Weld, 2012), we evaluate our methods and baseline systems using
both loose and strict metrics, i.e., Macro-F1, Micro-F1, and strict Accuracy (Acc.). Given the evaluation
set D, we denote Ym as the ground truth types for entity mention m ∈ D and Ŷm as the predicted
labels. Strict accuracy (Acc) can be computed as:Acc= 1

D

∑
m∈D σ(Ym = Ŷm), where σ(·) is an

indicator function. Macro-F1 is based on Macro-Precision (Ma-P) and Micro-Recall (Ma-R), where Ma-
P = 1

|D|
∑

m∈D
|Ym∩Ŷm|

Ym
, and Ma-R= 1

|D|
∑

m∈D
|Ym∩Ŷm|

Ym
. And Micro-F1 is based on Micro-Precision

(Mi-P) and Micro-Recall (Mi-R), where Mi-P=
∑

m∈D |Ym∩Ŷm|∑
m∈D Ŷm

, and Mi-R=
∑

m∈D |Ym∩Ŷm|∑
m∈D Ym

.

5.2 Generating ProtoLE

Our ProtoLE embeddings use Continuous-Bag-of-Words (CBOW) word embedding model (Mikolov
et al., 2013) trained on Wikipedia dump using a window of 2 words to both directions. We use 300
dimensions for all embedding methods except HLE. Table 3 illustrates examples of prototypes learned
for types in BBN dataset. It can be observed that most of the top ranked mentions are correctly linked to
types, even though there are still some noises, e.g., north american for /LOCATION/CONTINENT. It
also shows that prototypes of related types such as /LOCATION and /GPE are also semantically related.
Figure1 visualizes the prototype-driven label embeddings for BBN dataset using -Distributed Stochastic
Neighbor Embedding (t-SNE)(Maaten and Hinton, 2008). It can be easily observed that semantic related
types are close to each other in the new space, which proves that prototype-driven label embeddings can
capture the semantic correlation between labels.

Figure 2 shows the Micro-F1 score of FNET with regard to the number of PMI prototypes used by
ProtoLE. It shows that the Micro-F1 score does not change significantly on BBN and Wikipedia dataset,
whereas using fewer prototypes per type (≤ 40) results in a drop of Micro-F1. Since the definitions
of several types, especially the coarse-grained types, are actually very general, it may introduce bias
into the label embeddings if using too few prototypes. We use K = 60 for all our experiments for that
it achieves decent performance on all three datasets. Our pre-trained label embeddings and manually-
selected prototypes (zero-shot typing) are available for download2 .

2http://github.com/fnet-coling/ner-zero/tree/master/label_embedding
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Type Prototypes
/LOCATION areas connaught earth lane brooklyn
/LOCATION/CONTINENT north america europe africa north american asia
/LOCATION/LAKE SEA OCEAN big bear lake erie champ lake geneva fujisawa
/LOCATION/RIVER hudson thompson mississippi river james river tana
/GPE soviet edisto canada china france
/GPE/STATE PROVINCE california texas ohio arizona jersey

Table 3: Example prototypes learned by PMI for types in BBN dataset

(a) BNN Dataset (b) OntoNotes Dataset

(c) OntoNotes Dataset

Figure 2: Performance changes on the development set with regard to the sizes of prototype list

5.3 Few-shots Fine-grained Entity Typing

In this section, we compare performances of FNET methods in the setting of few-shots FNET where the
training set covers all types. Methods compared in this section are trained using the entire type set. We
use evaluation metrics for our experiments: macro-F1, micro-F1 and accuracy. As in section 3.2, we
train our label embeddings in two different ways: 1) non-adaptive training where label embeddings are
fixed during training; and 2) adaptive training where label embeddings are also updated. Table 4 shows
the comparison with state-of-the-art FNET methods: FIGER(Ling and Weld, 2012), HYENA(Yosef et
al., 2012) and WSABIE (Yogatama et al., 2015). We make several findings from the results.

Firstly, embedding methods with WARP loss function consistently outperform non-embedding meth-
ods (i.e., FIGER and HYENA) on all three datasets. The performance gaps are huge for BBN and
OntoNotes, where the best embedding method achieves 10%-20% absolute improvement over the best
non-embedding method (FIGER). However, the gap is much smaller on Wikipedia dataset whose size is
significantly larger than the other two.

Secondly, non-adaptive embedding methods always outperform their adaptive versions except HLE
on Wikipedia dataset. Performance of adaptive label embeddings are all close to WSABIE, which
suggests that adaptive label embeddings might suffer from same label noise problem as WSABIE does.
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Thirdly, our ProtoLE and its combination with HLE consistently outperform both non-embedding and
embedding baselines. Using the prototype information and non-adaptive framework results in absolute
3%-5% improvement with both loose and strict evaluation metrics. Non-adaptive HLE performs poorer
than other embedding methods, which is most likely due to its sparsity in representing labels. However,
Proto-HLE performs very close to ProtoLE on BBN and Wiki, while it improves all three measures by
another absolute ≈2.5% on OntoNotes .

Method Adapt
BBN OntoNotes Wiki

Ma-F1 Mi-F1 Acc. Ma-F1 Mi-F1 Acc. Ma-F1 Mi-F1 Acc.
FIGER NA 67.28 60.70 46.92 58.77 52.37 38.01 68.28 64.71 47.37

HYENA NA 51.38 52.85 45.01 47.65 43.97 26.56 45.51 43.80 30.67
WSABIE NA 71.28 72.08 66.22 62.03 55.83 43.61 67.97 64.49 48.28

HLE
Y 70.84 71.61 65.74 61.54 49.16 43.25 67.09 65.65 47.01
N 68.86 70.00 63.32 59.52 54.01 41.60 65.29 62.53 45.19

ProtoLE
Y 72.67 73.54 67.58 60.90 54.68 42.82 66.96 65.78 49.18
N 75.78 76.50 70.43 65.91 59.08 46.94 68.06 66.53 53.54

Proto-HLE
Y 71.97 72.89 67.05 62.71 56.64 44.81 67.85 65.74 50.27
N 74.54 74.38 69.46 68.23 61.27 49.30 66.61 65.29 50.45

Table 4: Performance of FNET in a few-shots learning on 3 benchmark datasets

5.4 Zero-shot Fine-grained Entity Typing

In this section, we evaluate our method’s capability recognizing mentions of unseen fine-grained types.
We assume that the training set contains only coarse-grained types (i.e., Level-1), and Level-2 types
are unseen types to be removed from the training set. Table 5 shows the Micro-Precision for Level-1
and Level-2 types using top k type candidates for type inference. NPMI is computed for Level-1 types.
We manually build prototype lists for unseen types by choosing from a randomly sampled list of entity
mentions. Level-3 types are ignored for OntoNotes as Level-3 types never show in top-10 list produced
by all methods. As the prediction for coarse-grained types are the same with regard to k, we only list the
results using k = 3.

One interesting finding on all three datasets is that combining hierarchical and prototypical infor-
mation results in better classification of coarse-grained types. It suggests that embeddings of unseen
fine-grained types contains information complementary to the embeddings of coarse-grained types.
Since HLE actually produces random prediction on Level-2 types due to its sparse representation, HLE
perform poorly on Level-2 types.

Data Set Method
Micro-Precision @k Micro-Precision @k

Level 1 Level 2
3 3 5 10

BBN
ProtoLE 76.71 42.95 36.61 42.34

HLE 70.44 13.08 13.16 12.82
Proto-HLE 76.89 42.35 35.18 30.16

OntoNotes
ProtoLE 73.26 21.01 13.72 12.22

HLE 66.96 7.13 6.14 6.23
Proto-HLE 76.33 7.09 11.43 9.91

Wiki
ProtoLE 65.52 12.50 21.28 17.91

HLE 65.13 0.00 8.82 8.99
Proto-HLE 67.41 20.01 31.25 24.24

Table 5: Performance of zero-shot entity typing
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ProtoLE outperforms HLE by 100%-300% in terms of Micro-Precision. However, again the combina-
tion of prototypes and hierarchy achieves similar or better results than ProtoLE on BBN and Wikipedia
dataset. The drop of precision of Proto-HLE on OntoNotes is likely due to a different nature of anno-
tation. It is more prevalent in test set of OntoNotes that one entity mention is annotated with multiple
Level-1 types, and the presence of fine-grained types are less constrained by the label hierarchy. In such
case, hierarchical constrains enforced by Proto-HLE might have negative impacts on type inference.

6 Conclusion

In this paper, we presented a prototype-driven label embedding method for fine-grained named entity
typing (FNET). It shows that our method outperforms state-of-the-art embedding-based FNET methods
in both few-shots and zero-shots settings. It also shows that combining prototype-driven label embed-
dings and type hierarchy can improve the prediction on coarse-grained types. In the near future, we plan
to integrate our method with other types of side information such as definition sentences as well as label
noise reduction framework (Ren et al., 2016) to further boost the robustness of FNET.
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