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Abstract

This paper describes a Bayesian language model for predicting spontaneous utterances. People
sometimes say unexpected words, such as fillers or hesitations, that cause the miss-prediction of
words in normal N-gram models. Our proposed model considers mixtures of possible segmental
contexts, that is, a kind of context-word selection. It can reduce negative effects caused by un-
expected words because it represents conditional occurrence probabilities of a word as weighted
mixtures of possible segmental contexts. The tuning of mixture weights is the key issue in this ap-
proach as the segment patterns becomes numerous, thus we resolve it by using Bayesian model.
The generative process is achieved by combining the stick-breaking process and the process used
in the variable order Pitman-Yor language model. Experimental evaluations revealed that our
model outperformed contiguous N-gram models in terms of perplexity for noisy text including
hesitations.

1 Introduction

1.1 Background

Language models (LMs) are widely used for text analysis, word segmentation and word prediction in
automatic speech recognition (ASR). The basic LM is a conventional N -gram model that predicts a
word depending on the patterns of the previous N words (context). The probability of a word is usually
calculated by counting the words that match the context in text data as maximum likelihood estimation.
Therefore, the model easily predicts frequent words or set expressions but not rare words or phrases.

Various N -gram language models have been proposed to prevent the incorrect probability assignment
caused by the increase of the context length N . Since the number of combinations of N becomes O(V N )
for vocabulary size V , there are a lot of patterns that do not appear in training data (data sparseness). Us-
ing an N -gram model based on a Bayesian framework is a promising approach for data sparseness. Be-
cause it is based on a Bayesian framework, an LM based on hierarchical Pitman-Yor process (HPYLM)
has two main differences from previous language models (Teh, 2006), such as Witten-bell (WB) (Witten
and Bell, 1991) and Kneser-ney (KN) smoothing (Kneser and Ney, 1995): 1) a Bayesian model express-
ing conventional smoothing methods and 2) automatic tuning of parameters from data. Since HPYLM
is based on a Bayesian framework, we can integrate other probabilistic models theoretically for other
problems and apply optimization methods in accordance with a Bayesian framework. In contrast, other
smoothing methods has several parameters that need to be tuned manually.

Human utterances contain various fillers and hesitations (left in Fig. 1), and these cause the mis-
prediction of words because they rarely appear in the training data, that is, another type of sparsity. This
will affect 1) the word prediction accuracy in ASR and 2) the precision of word segmentation (Mochi-
hashi et al., 2009) or lexicon acquisition from speech signal (Elsner et al., 2013; Kamper et al., 2016;
Taniguchi et al., 2016), which are our main interest. Since such hesitations are usually not registered
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Figure 1: Problem caused by unexpected and inserted words

to an ASR vocabulary (out-of-vocabulary; OOV), they are recognized as the most similar and likely
word in the vocabulary set in terms of pronunciation and context (middle-right in Fig. 1). Moreover,
mis-recognized words may also affect the subsequent word prediction based on N -gram auto-regression.
Such mis-recognition is a kind of insertion error caused by fillers, hesitations and other noise signals,
such as coughs. For example, the hesitation “to-” is recognized as “too”, and the filler “umm” and hes-
itation “too” are used for the prediction of the next word if we use normal N -gram model (right upper
in Fig. 1). Note that hesitations are hard to eliminate by using only a filler-word list because their com-
plete patterns cannot be prepared in advance. As for word segmentation and lexicon acquisition, the
language model is trained from character/phoneme sequences or raw speech signal in an unsupervised
manner. The Bayesian nonparametrics is often applied to this problem because it enables us to control
the number of words/symbols dynamically according to the amount of data. Since the lexicon acquisi-
tion includes a kind of segmentation problem, fillers and hesitations may cause mis-segmentations. A
nonparametric generative model that can deal with hesitations and fillers will help to recognize words
sequence and segment words from phoneme sequence.

We propose using a Bayesian language model in which probability consists of a mixture of condi-
tioned probabilities of segmental contexts for the word prediction problem. Since the lexicon acquisition
from phonetic sequence or raw conversational speech signal is also our scope, Bayesian approach is nec-
essary in terms of scalability. Our model removes (ignores) some words, such as fillers and hesitations
in the ideal case, from the context in predicting words. For example, given the text “It’s fine umm too to-
day,” the probability p(today|It’s, fine, umm, too) is defined as a mixture of p̂(today|It’s, fine, umm, too),
p̂(today|fine, umm), p̂(today|It’s, fine) and so on (right lower Fig. 1). The risk of mis-prediction caused
by the unknown context is reduced by other differently conditioned probabilities. Since the given term
includes many patterns of segmental context, we constrain the pattern to one “contiguous” segment.
That is, the probabilities of a discontiguous segment, such as p(today|It’s, umm), are not included in the
mixture. Since the generative process can be expressed by combining the stick-breaking process (Sethu-
raman, 1994) and the process used in the variable order Pitman-Yor language model (VPYLM) (Mochi-
hashi and Sumita, 2007), the parameters can be estimated by Gibbs sampling (Christopher Michael
Bishop, 2006) the same as they are for VPYLM.

1.2 Related Work on Mixture Models

The main differences between our work and previous studies are 1) assumed context patterns in the
mixture and their purpose (text-level or utterance-level), and 2) whether the model is Bayesian or not. Our
proposed model is one of various mixture language models and there are several language mixture models
that consider word dependency. Again, we stochastically ignore some contiguous words in the context
in accordance with the appearance of fillers, hesitations and noises (right in Fig. 1) at the utterance-level.
Since other LM models correspond to the process for text generation in our framework, we can embed
them in our process as mixture components if necessary. As shown in the right half of Fig. 2, our current
model is based on the mixture of VPYLM which is based on the mixture of HPYLM. Note that VPYLM
and HPYLM have no mechanism to select words in the context for prediction.

Previous studies used all combinations or syntactic structure of N words in context, and their methods
are complex to deal with our filler/hesitation problems. The left half of Fig.2 shows a generalized lan-
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Figure 2: Language model structures: GLM (left), HPYLM/VPYLM (middle) and our model (right)

guage model (GLM) that mixes all probabilities of possible context patterns of N -grams hierarchically
(Pickhardt et al., 2014). At each context depth, a word is skipped in the context (skip N -gram (Goodman,
2001; Guthrie et al., 2006)), and the probability is smoothed by shallow contexts. The relative position
in the context remains, and the skipped word is denoted by the asterisk ∗. WB and KN use only the
contiguous contexts for smoothing as shown in the Figure. Wu and Matsumoto (2015) proposed a hier-
archical word sequence language model using directional information. The most frequently used word
in the sentence is selected for splitting a sentence into two substrings, and a binary-tree is constructed
by a recursive split. If a directional structure is assumed, the context patterns decrease in size and the
processing time is shortened.

Running a language model on a recurrent neural network (RNN) (Mikolov et al., 2010) is, of course,
a reasonable choice because of the good prediction performance for closed-vocabulary task. However,
a neural network LM usually does not include a generative process, so it is difficult to apply to unsu-
pervised training of a language model or lexicon acquisition from speech signals. In that sense, the LM
based on generative model is still important. Of course, the combination method of Bayesian model and
neural networks should be investigated for practical use.

Our work is the extension of VPYLM based on mixture of segmental contexts to deal with hesitations
and fillers. And our mixture pattern is designed for hesitation and fillers, and it is simpler than that of
others in terms of the number of context patterns.

2 Hierarchical Bayesian Language Model based on Pitman-Yor Process

This section explains the fundamental mechanism of a language model based on Bayesian nonparamet-
rics. HPYLM should predict words more accurately than KN-smoothing because KN-smoothing is an
approximation of this model.

2.1 Generative Model

The N -gram LM approximates the distribution over sentences wT , ..., w1 using the conditional distri-
bution of each word wt given a context h consisting of only the previous N − 1 words wt−1

N−1 =
{wt−1, ..., wt−N+1},

p(wT , ..., w1) =
T∏
t

p(wt|wt−1
N−1). (1)

The trigram model (N = 3) is typically used. Since the number of parameters increases exponentially
as N becomes larger, the maximum-likelihood estimation severely overfits the training data. Therefore,
smoothing methods are required if vocabulary V is large.

The probabilistic generative process of sentences based on HPY is explained by the Hierarchical Chi-
nese restaurant process (CRP). In the CRP, there are tree-structured restaurants with tables and customers
that are regarded as latent variables of words. When a customer enters the leaf restaurant h, which corre-
sponds to context, he/she sits down at an existing table or a new table depending on some probabilities.

163



If he/she selects a new table, an agent of the customer recursively enters the parent restaurant h′ as a new
customer. Here, we represent the depth of h as |h|, and there is the relationship |h′| = |h|−1. Given the
seating arrangement of customers s, the conditional probability of word w with the context h is defined
as follows

p(wt|s,h) =
chw − d|h|thw

ch∗ + θ|h|
+

θh + d|h|th∗
ch∗ + θ|h|

p(wt|s,h′), (2)

where chw is the count of word w at context h, and ch∗ =
∑

w chw is its sum. thw is the number of table
at context h, and th∗ is also its sum. θ|h| and d|h| are the common parameters of h with the same depth
|h|. The distribution over the current word given the empty context φ is assumed to be uniform over the
vocabulary w of V words. The variable order PYLM integrates out the context length (depth) N , thus
we need not determine the length in advance.

The predictive probability of word w is approximated by averaging Eq. (2) over sampled seating ar-
rangement sn(n = 1, ..., N).

p(w|h) =
1
N

∑
n

p(w|sn,h) (3)

2.2 Inference of Parameters

The latent variable s and other parameters d and θ are obtained through simulations on the basis of Gibbs
sampling given training text w̄i(i = 1, ..., Ntrain). The procedure for sampling a customer is as follows:

1. Add all customers to the restaurants

2. Select a certain customer w̄i

3. Remove the customer from the restaurant. If a table becomes null, also remove the agent from the
parent restaurant recursively.

4. Add the customer to the leaf restaurant. He chooses a table with probabilities proportional to the
number of customers at each table. If the table is null, also add an agent to the parent restaurant
recursively. (Go back to Step 2).

The parameters are sampled using auxiliary variables from their posterior probability. Please see the
work of Teh (Teh, 2006) for the detailed sampling algorithm.

2.3 Problem of Contiguous Context Model

The N -gram model is modeled as a series of words, and has an advantage in expressing common phrases.
The Bayesian nonparametrics enables the N -gram model to tune the smoothing parameters automati-
cally. This improves the accuracy of predicting rare words in a large context.

Unexpected words degrade the prediction accuracy of the N -gram model. The unexpected words in-
clude noises, fillers, and hesitations in actual utterances. For example, the probability of p(sing|he, will)
is estimated reliably. However, the probability of p(sing|will, sh..), which includes a hesitation (“sh..”),
is estimated unreliably because the hesitation does not appear in the corpus. The patterns of insertion
location and bursty are also not determined in advance.

3 Bayesian Language Model based on Mixture of Segmental Contexts

This section explains the segmental context model for utterances. First, we explain the generative model
and then its parameter inference. Note that the aim of this model is to improve the accuracy of word
prediction under noisy context condition, not to detect fillers and hesitations.
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Figure 3: Process for segmental context model

3.1 Generative Model

We assume that the conditional distribution of each word wt given a context is a mixture of the segmental
N -gram context. The segmental N -gram is a part of context wt−i, .., wt−j , which begins at wt−i and
ends at wt−j .

p(w|wt−1
N−1) =

∑
i

∑
j>i

p(w|wt−1
N−1, i, j)p(i, j) =

∑
i

∑
j>i

p(w|wt−i
j )p(j|i)p(i) (4)

If we consider the N → ∞, the possible segmental patterns are also considered. Setting the start index
i of N -gram appropriately can eliminate the influence of the sequential unexpected words for predicting
the next word. The word probability term p(wt|wt−i

j ) is determined by HPYLM.
The stick-breaking process (SBP) represents the generative process of Eq. (4) as the same way of

VPYLM (Mochihashi and Sumita, 2007). The process consists of two parts; 1) decide the start index i
of N -gram and then 2) decide the end index j of N -gram. Each index is determined probabilistically
using SBP (Fig. 3).
Step1 - Process for start index i: First, the customer walks along the tables (word) from the start, wt−1.
The customer stops at the i-th table with probability ηi, and passes it with probability 1 − ηi. Therefore,
the probability that the customer stops at the i-th table is given by

p(i|η) = ηi

i−1∏
l=1

(1 − ηl). (5)

This probability decreases exponentially. We assume that the prior of parameters η is Beta distribution
Beta(α1, β1).
Step2 - Process for end index j: The end index j is also determined using the same process i. The
customer walks along the tables from the i-th table, and stops at or passes the j-th table with probability
ζj or 1 − ζj , respectively.

p(j|i, ζ) = ζj

j−1∏
l=1

(1 − ζl). (6)

The prior of parameters ζ is also assumed to be the Beta distribution Beta(α2, β2).
In fact, the whole process can be considered to be the combination of VPYLM and the start index

determination process. We thus can describe the probability as

p(wt|wt−1
∞ ) =

∑
i

Pvpy(w|wt−i−1
∞ )p(i). (7)

If we determine from which element, Pvpy(w|wt−i−1∞ ), the word comes in step 1, the latter process is
the same as the VPYLM. In practice, we set a maximum length of context for parameter estimation.
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Table 1: Parameters of experiment
Artificial noisy data Actual hesitation data

English Japanese Japanese
Target text War and Peace CSJ CSJ
Training 27876 sentences 110566 sentences 114372 sentences

479585 words 2828499 words 3084592 words
Test for clean 5128 sentences 7134 sentences 20440 sentences

88552 words 199100 words 184145 words
Test for noisy 5128 sentences 7134 sentences 2296 sentences

97373 words 218945 words 32342 words
Vocabulary size 10717 18357 19703
(α1, β1) (9, 1) (1, 1)
(α2, β2) (1, 9) (1, 8)

3.2 Inference of Start Index

We assume that all words in training data w̄ have the start index it as a latent variable, and are estimated
stochastically by Gibbs sampling. The start index it of the word w̄t is sampled given data w̄, seating
arrangement s, and start and end indexes of other words i−t and j−t as

it ∼ p(it|w̄, s−t, j−t, i−t) (8)

∝ p(wt|w̄−t, j−t, i)p(it|w̄−t, s−t, i−t, j−t) (9)

where the notation −t means that the t-th element corresponding to w̄t is excluded. Here, the first term,
p(w̄t|w̄−t, j−t, i), is calculated using VPYLM because the start index it is given. The second term is a
prior probability to select the start index. It can be calculated in the same way used in the VPYLM:

p(it = l|w−t, s−t, i−t, j−t) =
al + α1

al + bl + α1 + β1

l∏
k=1

bk + β1

ak + bk + α1 + β1
, (10)

where α1 and β1 are hyper-parameters of the Beta distribution. The al and bl are the count of customers
who stopped at and those who passed table w̄l. This probability is assumed to depend only on w̄l, not
whole context h. Since the probability of the word corresponding to w̄l is not important for the prediction
is low, the effect of an unexpected word on this index is reduced.

Once the start index is set, we can also draw the end index jt and the seating arrangement st through
VPYLM process. The jt is first drawn from its posterior distribution, and then seating st is also drawn
from its posterior distribution. After sampling, the average word probability is used for prediction.

The computational cost of our model is proportional to O(N) while the cost of the generalized lan-
guage model is roughly proportional to O(2N ). The enumeration of all combinations of words that
should be used is computationally heavy for models based on Bayesian nonparametrics when N be-
comes larger and we optimize parameters of the model. Moreover, the context pattern of the generalized
model is complex to deal with fillers and hesitations (insertion errors).

4 Experimental Evaluations

4.1 Experimental Setup

We used two kinds of text for evaluation: 1) artificial noisy text and 2) actual hesitation text (Japanese
only). The former is for the validation of our method with model-matched data, and the latter is for the
performance measurement with real utterances.

We used two languages English and Japanese text data for training and test dataset for the artificial
noisy text. The English text was “War and Peace” from project Gutenberg1, and the Japanese text was the
Corpus of Spontaneous Japanese (CSJ2), consists of transcriptions of Japanese speech. For the English

1http://www.gutenberg.org/
2https://www.ninjal.ac.jp/english/products/csj/
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text, we randomly selected 27,876 sentences from the entire of “War and Peace” for training data, and
used the remaining 5,128 sentences for test data. For Japanese text, we used 110,566 sentences in the
“non-core” set for training data and 7,134 sentences in the “core” set for test data. All hesitations and
fillers were eliminated from the Japanese corpus to make it formal text data 3. The utterances in the CSJ
that have 0.5-second short-pauses were separated into sub-utterances, and each sub-utterance was treated
as a sentence. The words that appeared more than once were selected for the vocabularies. The sizes of
vocabularies were 10,717 words for English text and 18,357 words for Japanese text. To simulate the
artificial noisy text, we added words randomly selected from vocabularies into the test data at a rate of
10 %. The OOVs in the test set were treated as a symbol, “<unk>”.

The raw CSJ Japanese transcription text was used for the actual hesitation text. In this experiment,
hesitations and fillers in the training set are not eliminated. The utterances that have 0.2-second short-
pauses were separated into sub-utterance, and each sub-utterance was treated as a sentence. The 0.2-
second is selected to make a rate of hesitation in noisy text about 8.0%. The test transcription data (“core”
set) were divided into two categories: hesitation-included noisy text (2,296 sentences) and clean text
(20,440 sentences). The number of hesitations in the test dataset was 2649 (about 2649/32342 = 8.1%
). The hesitation-included noisy text included hesitations, so its vocabulary was 19,703. The out of
vocabulary (OOV) words in the hesitation test data were replaced by words randomly selected from
the vocabulary set that had a phoneme distance to the OOV word of less than 2. This is because such
OOV words including unknown hesitations are actually mis-recognized and assigned similar-sounding
words in the ASR vocabulary. Therefore, the vocabulary set was closed. Note that frequent fillers and
hesitations remained in both the test and training sets. These settings are listed in Tab. 1.

We compared our model with other models: WB, KN, Modified KN (MKN) (Chen and Goodman,
1999), HPYLM, and VPYLM. The hyper-parameters, α2 and β2 of the Beta distribution used in VPYLM
were set to 1 and 9 for the artificial data, and 1 and 8 for the actual hesitation data. Additionally, those
of the start index process, α1 and β1, were set to 9 and 1 for the artificial data, and 1 and 1 for the actual
hesitation data. These parameters were selected to perform best for each test set to evaluate the limitation
of methods. For the English and Japanese text, N was set to 3, 4, 6, 10. For the Japanese transcription,
it was set to 3, 6, 8, 10. The predictive probability was averaged over 30 seating arrangements after
90 iterations of Gibbs sampling. We also investigate the performance of RNN language model 4 as a
reference. We tried several parameter set of RNN, such as the number of hidden layers and classes, and
they are also tuned for each test set. Note that the main interest of our experiments is the performance
comparison among Bayesian methods.

Perplexity (PP) was used as the evaluation criterion.

PP = 2P (wtest), P (wtest) = − 1
Ntest

∑
s∈wtest

log P (s), (11)

where s is a sentence in the test data and Ntest is the number of words in the test dataset. The PP was
calculated under the assumption that each sentence was independent. Smaller PP values mean better
word prediction accuracy. The prediction of OOVs, which are denoted by “<unk>”, in the artificial test
set is eliminated in calculating perplexity.

4.2 Results and Discussion

4.2.1 Artificial Noisy Data

The perplexity values for the two data sets and the four N -gram lengths can be seen in Tabs. 2 and 3 for
English and Japanese text, respectively. The clean text denotes the raw formatted text, and the noisy text
denotes the ones with randomly-added words. There is no noteworthy difference between the English
and Japanese text other than the range of PP.

The differences among methods for clean text data with N = 3 are clear. Like in the results of previous
studies, HPYLM and MKN had the lowest PP, followed by VPYLM and WB. Our model had worse PP

3All words were tagged by hand. The tags of fillers and hesitations were included.
4https://github.com/pyk/rnnlm-0.4b
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Table 2: Perplexity for English text

maximum context length N
Test dataset Method 3 4 6 10

Clean text

WB 167.9 163.8 163.2 163.2
KN 152.7 150.9 157.9 157.8

MKN 153.1 151.3 156.7 157.9
HPYLM 155.0 151.6 151.5 151.6
VPYLM 156.0 153.3 153.2 153.2

Ours 161.7 154.6 152.7 152.9
RNN 135.4

Noisy text

WB 365.9 360.0 359.2 359.2
KN 328.3 322.4 331.2 332.5

MKN 321.4 316.5 328.2 331.8
HPYLM 326.0 321.8 321.5 321.6
VPYLM 327.4 324.0 324.1 324.2

Ours 322.4 309.5 306.0 306.0
RNN 312.0

Table 3: Perplexity for Japanese text

maximum context length N
Test dataset Method 3 4 6 10

Clean text

WB 56.6 55.8 56.6 56.9
KN 53.1 50.7 50.4 51.4

MKN 52.3 50.0 49.4 50.3
HPYLM 52.1 50.0 49.5 49.5
VPYLM 52.2 50.5 50.0 49.9

Ours 53.1 51.0 50.4 50.5
RNN 46.1

Noisy text

WB 180.7 178.9 180.4 181.0
KN 174.0 166.1 163.4 165.0

MKN 164.4 158.3 156.3 159.3
HPYLM 160.9 156.9 156.1 156.0
VPYLM 158.8 155.0 153.3 152.4

Ours 147.0 143.2 143.2 144.3
RNN 166.1

Table 4: Perplexity for Japanese Transcription
maximum context length N

Test dataset Method 3 6 8 10

Clean text

WB 61.3 62.1 62.3 62.4
KN 57.6 55.5 56.1 56.4

MKN 53.9 56.8 54.8 54.0
HPYLM 56.3 54.5 54.5 54.5
VPYLM 56.4 54.7 54.7 54.7

Ours 57.4 55.0 55.0 55.0
RNN 46.0

maximum context length N
Test dataset Method 3 6 8 10

Noisy text

WB 102.4 104.4 104.8 104.9

(hesitations)

KN 95.6 92.2 93.2 93.7
MKN 93.1 89.5 89.8 90.6

HPYLM 91.3 89.0 89.1 89.0
VPYLM 91.2 89.0 89.0 89.1

Ours 91.8 88.2 88.1 88.2
RNN 83.1

than MKN, HPYLM and VPYLM. Since our model stochastically ignores some contiguous words in the
context, the prediction accuracy for formatted text was worse than those of other methods. This can be
reduced by using more text data or an improved model discussed in the next subsection. Using a longer
context improved the PPs of HPYLM and our model. Therefore, a longer context is useful for word
prediction. The perplexity of RNN was smallest, and RNN outperformed others by 15 and 4 points for
English and Japanese text.

The ranking were different for the noisy text data. The relative performances of WB, KN, MKN,
HPYLM, and VPYLM were almost the same as those for the clean text, but our model had the lowest
PP. Its performance improved with the context length N = 6 or 10. The perplexity of RNN is also
higher than that of our model. This indicates that the segmental context mixture works as intended, i.e.
reducing the negative effect of unknown context. The improvement with a longer context means that
Bayesian smoothing works well.

4.2.2 Actual Hesitation Data

The perplexity values for the four N -gram lengths can be seen in Tab. 4 for clean sentences and hesitation
included sentences. The perplexity was much higher for all four models with the noisy text mainly due to
hesitations and substitution errors caused by OOVs. Therefore, the word-prediction for actual utterance
is more difficult than written text.

The relative performances were almost the same as those for artificial noisy data although the im-
provement of perplexity seems to be slight. That indicates that our model is effective for the actual
transcription. The differences of perplexity among models are smaller than with artificial noisy data due
to a) the difference in the hesitation-word ratio (about 8 %) , b) the appearance of patterns of fillers or
hesitations in the training text, and c) the substitution of hesitations to pre-defined vocabularies (closed
vocabulary set). The substitution suffers the estimation of true skip probability Eq. (6) and (9) of hesi-
tations and true vocabulary. This means that we need to handle hesitation problem in raw-level symbol
sequence, such as phoneme sequence. The reason the RNN outperformed our model might be due to the
closed vocabulary set in this experiment. On the other hand, the context information in RNN might be
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Figure 4: Weakness of segmental context model

suffered from the contiguous noisy words that were caused by the combination of the noise word and
OOVs, “<unk>”, in the artificial noisy data, and RNN degraded prediction accuracy for artificial noisy
data. This indicated that RNN is unfamiliar to open-vocabulary tasks, such as lexicon acquisition.

The model validation with these text-level experiments provides us important knowledge and signif-
icant results for the next-level research step. Our method will be more effective for the word/phoneme
segmentation problem because the substitution of hesitations to OOVs does not happen and we have to
handle raw hesitation symbols. For example, the hesitation “to-” will be treated as itself “to-” or a pho-
netic expression “t u:”, and the skip prior/posterior probability Eq. (6) and (9) of a hesitation symbol will
be estimated properly. Our model will provide criteria for which words or symbols should be skipped.
Therefore, the model integration of ours and the OOV-free model (Mochihashi et al., 2009) is required
to process actual conversational utterances.

4.2.3 Remaining Problem on Model

The main problem of our model is clear from these results: it completely ignores neighbor context
and does not use it for prediction, as illustrated in Figure 4. Since the neighbor words are usually
useful for prediction, ignoring such words will degrade perplexity, especially that of clean text. The
actual fillers/hesitations and mis-recognized words move from head to tail in the context in predicting
words sequentially. Therefore, if the unknown segment is away from the context root, we can use the
neighbor context without risk. For example, the probability p̂(hard|work, mum, too) should be a mixture
of p(hard|work, mum), p(hard|work, too), p(hard|too) and so on. The probability p(hard|work, too) is
not considered in our current model. By modeling this property, our model will perform the same as
HPYLM and VPYLM for clean text.

The future work also includes the fundamental modification of our model and the application to
word/phoneme segmentation problem of actual utterances. Since hesitation is often a part of phoneme
sequence of a word, it also depends on the currently or previously uttered word. A new generative process
modeling above properties is required to deal with conversational utterances.

5 Conclusion

We proposed a segmental context mixture model to reduce the prediction error caused by noises, fillers,
and hesitations in utterances, which rarely appear in the training text. Although hesitations or fillers will
appear for speech transcriptions, they vary according to a speaker and topic. The model’s probability
consists of a mixture of conditioned probabilities of part of context words. The generative process can be
expressed by combining the stick-breaking process and the process used in the variable order Pitman-Yor
Language model (VPYLM). Experimental results revealed our model had better perplexity for noisy text
than hierarchical PYLM, VPYLM, Witten-Bell and Kneser-ney smoothing.

The remaining challenges include building a more specific process for fillers and mis-recognitions for
the language model and evaluation using text obtained by automatic speech recognition. For recognized
text, we can use the re-scoring technique to apply our model. As mentioned in the discussion, our
model can be improved by considering the movement property of filler and hesitations. Since our further
interest is to acquire lexicons and meaning from conversational speech signals through spoken dialogue,
the impact of our model on word segmentation should be evaluated.
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