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Abstract

Natural-language processing of historical documents is complicated by the abundance of variant
spellings and lack of annotated data. A common approach is to normalize the spelling of histori-
cal words to modern forms. We explore the suitability of a deep neural network architecture for
this task, particularly a deep bi-LSTM network applied on a character level. Our model compares
well to previously established normalization algorithms when evaluated on a diverse set of texts
from Early New High German. We show that multi-task learning with additional normalization
data can improve our model’s performance further.

1 Introduction

Interest in computational processing of historical documents is on the rise, as evidenced by the growing
field of digital humanities and the increasing number of digitally available resources of historical data.
Spelling normalization, i.e. the mapping of historical spelling variants to standardized/modernized forms,
is often employed as a pre-processing step to allow the utilization of existing tools for the respective
modern target language (Piotrowski, 2012).

Training data for supervised learning of spelling normalization is typically scarce in the historical
domain. Furthermore, dialectal influences and even individual preferences of an author can have a huge
impact on the spelling characteristics in a particular text, meaning that even training data from other
corpora of the same language and time period cannot always be reliably used.

Algorithms have often been developed with this fact in mind, e.g. by being based on some form
of phonetic, graphematic, or semantic similarity measure (Jurish, 2010; Bollmann, 2012; Amoia and
Martinez, 2013). On the other hand, neural networks – and particularly deep networks with several
hidden layers – are assumed to work best when trained on large amounts of data. It is therefore not clear
whether neural networks are a good choice for this particular domain.

We frame spelling normalization as a character-based sequence labeling task, and explore the suit-
ability of a deep bi-directional long short-term memory model (bi-LSTM) in this setting. By basing our
model on individual characters as input, along with performing some basic preprocessing (e.g., down-
casing all characters), we keep the vocabulary size small, which in turn reduces the model’s complexity
and the amount of data required to train it effectively. We show that this model outperforms both the ex-
isting normalization tool Norma (Bollmann, 2012) and a CRF-based tagger when evaluated on a diverse
dataset from Early New High German.

Furthermore, we experiment with a multi-task learning setup using auxiliary data that has similar, but
not identical spelling characteristics to the target text. We show that using bi-LSTMs with this multi-task
learning setup can improve normalization accuracy further, while Norma and CRF do not profit much
from the additional data in a traditional setup.

This work is licenced under a Creative Commons Attribution 4.0 International License. License details: http://
creativecommons.org/licenses/by/4.0/
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2 Datasets

We use a total of 44 texts from the Anselm corpus (Dipper and Schultz-Balluff, 2013) of Early New
High German.1 The corpus is a collection of several manuscripts and prints of the same core text, a
religious treatise. Although the texts are semi-parallel and share some vocabulary, they were written
in different time periods (between the 14th and 16th century) as well as different dialectal regions, and
show quite diverse spelling characteristics. For example, the modern German word Frau ‘woman’ can
be spelled as fraw/vraw (Me), frawe (N2), frauwe (St), fraüwe (B2), frow (Stu), vrowe (Ka), vorwe (Sa),
or vrouwe (B), among others.2

All texts in the Anselm corpus are manually annotated with gold-standard normalizations following
guidelines described in Krasselt et al. (2015). For our experiments, we excluded texts from the corpus
that are shorter than 4,000 tokens, as well as a few texts for which annotations were not yet available
at the time of writing (mostly Low German and Dutch versions). Nonetheless, the remaining 44 texts
are still quite short for machine-learning standards, ranging from about 4,200 to 13,200 tokens, with an
average length of 7,353 tokens.

For all texts, we removed tokens that consisted solely of punctuation characters. We also lowercase
all characters, since it helps keep the size of the vocabulary low, and uppercasing of words is usually not
very consistent in historical texts.

2.1 Conversion to labeled character sequences

Normalization is annotated on a word level; to reframe the problem as a character-based sequence label-
ing task, we need to align the historical wordforms and their normalizations on a character level. Ideally,
we would like these alignments to be linguistically plausible, i.e., characters that most likely correspond
to each other (e.g., historical j and modern i, as in jn – ihn ‘him’) should be aligned whenever possible.

The Levenshtein algorithm (Levenshtein, 1966) can be used to produce alignments that preferably
align identical characters, but is ambiguous when multiple alignments with the same Levenshtein dis-
tance exist. We therefore use iterated Levenshtein distance alignment (Wieling et al., 2009), which uses
pointwise mutual information on aligned segments to estimate statistical dependence, and favors align-
ments of characters that tend to cooccur often within the dataset. Since different texts can use the same
characters in different ways, we perform this iterated alignment separately for each text.

A difficulty of these alignments is that the two wordforms can be of different lengths. We introduce
a special epsilon label (ε) whenever a historical character is not aligned to any character in the normal-
ization. We cannot do that for the inverse case, since the historical characters are our units of annotation
and therefore need to be fixed, so we choose to perform a leftward merging of normalized characters
whenever they are not aligned to any character in the historical wordform. For the word-initial case, we
introduce a special “start of word” symbol ( ). This symbol is prepended to each word during both train-
ing and testing, and is assigned the epsilon label during training when there is no word-initial insertion.

Here is an example of the final character sequence representation for the word pair vsfuret – ausführt
‘(he) leads out’:

(1) v s f u r e t
a u s f üh r ε t

A consequence of this approach is that our labels cannot only be characters, but also combinations of
characters (such as üh in the example above); our label set is therefore potentially unbounded. However,
we found that this is not much of a problem in practice, since these cases tend to be comparatively rare.

3 Model

Our model architecture consists of: (i) an embedding layer for the input characters; (ii) a stack of bi-direc-
tional long short-term memory units (bi-LSTMs); and (iii) a final dense layer with a softmax activation to

1https://www.linguistics.rub.de/anselm/
2Abbreviations in brackets refer to individual texts using the same internal IDs that are found in the Anselm corpus.
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Figure 1: Flow diagram of the bi-LSTM character sequence labeling model, unrolled for time, for the
word pair jn – ihn ‘him’.

generate a probability distribution over the output classes at each timestep. An illustration of the model
can be found in Figure 1.

The embedding layer maps one-hot input vectors (representing historical characters) to dense vectors.
We did not use pre-trained embeddings; the embeddings are initialized randomly and learned as part of
the regular network training process.

LSTMs (Hochreiter and Schmidhuber, 1997) are a form of recurrent neural network (RNN) designed
to better learn long-term dependencies, and have proven advantageous to plain RNNs on many tasks.
Bi-directional LSTMs read their input in both normal and reversed order, allowing the model to learn
from both left and right context at each input timestep. A stack of bi-LSTMs, or a deep bi-LSTM, is a
configuration of several bi-LSTM units so that the output of the ith unit is the input of the (i+ 1)th unit.
In our model, we use a stack of three bi-LSTM layers.

The final dense layer is used to generate the output predictions, based on a linear transformation of the
bi-LSTM outputs for each timestep followed by a softmax activation. We train the model by minimizing
the cross-entropy loss across all output characters, and using backpropagation to update the weights in all
layers (including the embedding layer). During prediction, we generate output labels in a greedy fashion,
choosing the label with the highest probability for each timestep.

3.1 Multi-task learning setup

In multi-task learning (MTL), the performance of a model on a given task is improved by additionally
training it on one or more auxiliary tasks (Caruana, 1993). For our bi-LSTM model, this means that
all layers of the model are shared between the tasks apart from the final prediction layer, which is kept
separate for the main and auxiliary tasks. This way, errors in an auxiliary task that are backpropagated
through the network also affect the prediction of the main task, helping to regularize the network’s
weights and prevent overfitting.

Multi-task learning with (deep) neural network architectures was shown to be effective for a variety of
NLP tasks, such as part-of-speech tagging, chunking, named entity recognition (Collobert et al., 2011);
sentence compression (Klerke et al., 2016); or machine translation (Luong et al., 2016).

In our experiments, we regard spelling normalization within a target domain (i.e., a given historical
text) as our main task, while using normalization within related domains (i.e., texts from a similar time
period, but with distinct spelling characteristics) as our auxiliary task. During training, we alternate
between training on a random instance from the main and the auxiliary tasks.
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3.2 Hyperparameters
We set aside one of the texts (B) from the Anselm corpus for testing different hyperparameter configu-
rations. On this text, we achieved the best results with a dimensionality of 128 for the embedding and
bi-LSTM layers, using a dropout of 0.1, and training the model for 30 iterations. These settings were
subsequently used for all further experiments.

3.3 Other models used for comparison
For comparison, we also train and evaluate with the Norma tool described by Bollmann (2012), since it
was originally developed for the Anselm corpus and the implementation is publicly available.3 However,
Norma actually consists of a combination of three different normalization methods, one of which is a
simple wordlist mapping of historical tokens to normalized forms. Since this wordlist mapping is con-
ceptually very simple and could easily be added to our (or any other) normalization method, we exclude
it for the comparison, and only use Norma’s remaining two algorithms (which we denote Norma∗).

Additionally, since we frame the problem as a sequence labeling task, we compare our results to
a simple sequence labeling model using conditional random fields (CRF). The CRF model gets the
same input/output sequences as our bi-LSTM model (cf. Sec. 2.1), and uses the two preceding and
following characters from the historical wordform as additional features. Implementation was done with
CRFsuite (Okazaki, 2007) using the averaged perceptron algorithm for training.

4 Evaluation

We evaluate our model separately for each text in our dataset. From each text, we use 1,000 tokens as
our evaluation set, set aside another 1,000 tokens as a development set (which was not currently used),
and train on the remaining tokens (between 2,000 and 11,000, depending on the text). Both CRF and our
bi-LSTM model get their input as character sequences (as described in Sec. 2.1), while Norma requires
full words as input.

For the multi-task learning setup, we randomly sample from all Anselm texts and regard each text as
its own task. Effectively, we are learning a joint model over all Anselm texts with shared parameters
but distinct prediction layers, while viewing the text we are currently evaluating on as our main task and
the others as auxiliary tasks. The MTL setup is only applicable to our bi-LSTM model; however, since
the auxiliary task consists of spelling normalization with data from the same corpus (although with a
higher variety of different spelling characteristics compared to the target text), it is possible that the other
methods could also profit from this additional training data. We therefore also evaluate Norma and CRF
when the training sets have been augmented by 10,000 randomly sampled training examples from all
texts.

4.1 Word accuracy
Evaluation results in terms of word-level accuracy are presented in Table 1.

Columns “S” show results for the traditional setup without multi-task learning. The basic bi-LSTM
model performs better than Norma on 34 of the 44 texts. On average, there is an increase of 2.1 percent-
age points (pp), although the differences on individual texts vary wildly, from −2.9 pp (M5) to +9.6 pp
(M), giving a standard deviation of 2.7 pp. The CRF model, on the other hand, is almost always worse
than Norma, averaging a difference of −2.1 pp (±2.0). This indicates that the reformulation of the task
as character-based sequence labeling cannot alone be responsible for the bi-LSTM results, but the choice
of a neural network architecture is crucial, too.

Columns “S+A” present the results when using the augmented training set. For bi-LSTM, this is
the multi-task learning setup—using MTL improves the results by +0.7 pp (±2.8) on average, but
again there is a high variance within the individual scores. However, for the other methods, adding
the 10,000 randomly selected samples to the training set actually decreases the average accuracy, by
−0.4 pp for Norma and −2.0 pp for CRF. This is likely due to the fact that this additional training set
introduces a variety of spelling characteristics that are not found in the target text. While Norma and

3https://github.com/comphist/norma

134



ID Region Tokens Norma∗ CRF Bi-LSTM

S S+A S S+A S S+A†

B East Central 4,718 80.30% 77.80% 76.30% 72.80% 79.20% 81.70%
D3 East Central 5,704 80.50% 80.20% 77.20% 73.00% 80.10% 81.20%
H East Central 8,427 82.70% 82.90% 78.60% 76.00% 85.00% 82.30%

B2 West Central 9,145 76.10% 77.60% 74.60% 71.70% 82.00% 79.60%
KÄ1492 West Central 7,332 77.50% 74.40% 74.80% 68.40% 81.60% 80.50%
KJ1499 West Central 7,330 77.00% 72.90% 73.50% 68.40% 84.50% 79.20%
N1500 West Central 7,272 76.70% 75.30% 72.70% 67.20% 79.00% 79.20%
N1509 West Central 7,418 78.10% 73.30% 74.30% 68.80% 80.80% 80.10%
N1514 West Central 7,412 78.30% 73.80% 72.20% 69.90% 79.00% 80.10%
St West Central 7,407 72.60% 73.80% 70.30% 68.70% 75.50% 75.20%

D4 Upper/Central 5,806 75.60% 75.60% 72.40% 70.90% 76.50% 76.60%
N4 Upper 8,593 78.20% 78.10% 80.00% 78.40% 81.80% 83.40%
s1496/97 Upper 5,840 81.70% 83.40% 77.70% 76.90% 83.00% 84.10%

B3 East Upper 6,222 80.80% 80.60% 79.50% 79.10% 81.50% 83.20%
Hk East Upper 8,690 77.80% 79.30% 78.20% 77.90% 80.90% 82.20%
M East Upper 8,700 74.30% 74.40% 72.80% 68.40% 83.90% 80.90%
M2 East Upper 8,729 75.80% 76.00% 75.10% 72.40% 76.70% 80.20%
M3 East Upper 7,929 79.00% 79.70% 77.30% 74.10% 80.40% 79.60%
M5 East Upper 4,705 80.60% 80.70% 76.40% 78.30% 77.70% 82.90%
M6 East Upper 4,632 75.90% 76.30% 73.70% 74.40% 75.20% 79.30%
M9 East Upper 4,739 82.20% 81.50% 79.00% 76.90% 80.40% 83.60%
M10 East Upper 4,379 77.00% 78.60% 76.00% 75.80% 75.10% 81.30%
Me East Upper 4,560 79.70% 80.10% 76.90% 75.50% 80.30% 83.70%
Sb East Upper 7,218 78.00% 76.60% 75.70% 74.80% 80.00% 78.50%
T East Upper 8,678 76.70% 78.60% 73.40% 72.20% 75.80% 79.00%
W East Upper 8,217 75.90% 78.30% 78.20% 77.00% 81.40% 80.80%
We East Upper 6,661 83.10% 81.50% 78.60% 75.80% 81.50% 83.10%

Ba North Upper 5,934 79.80% 81.20% 80.20% 78.70% 80.70% 82.80%
Ba2 North Upper 5,953 81.40% 80.00% 78.10% 77.90% 82.50% 84.10%
M4 North Upper 8,574 76.90% 76.70% 75.70% 75.00% 79.40% 82.30%
M7 North Upper 4,638 79.40% 79.80% 75.60% 74.20% 78.20% 82.10%
M8 North Upper 8,275 78.50% 77.00% 78.20% 78.40% 81.10% 82.50%
n North Upper 9,191 79.60% 81.30% 81.90% 78.20% 84.40% 84.70%
N North Upper 13,285 75.50% 76.30% 71.70% 68.90% 79.00% 76.90%
N2 North Upper 7,058 82.20% 81.90% 80.30% 81.60% 84.30% 83.40%
N3 North Upper 4,192 79.10% 80.80% 76.40% 77.50% 77.60% 84.20%

Be West Upper 8,203 75.50% 76.40% 75.30% 73.40% 78.80% 78.00%
Ka West Upper 12,641 73.80% 74.10% 75.40% 72.80% 80.10% 80.30%
SG West Upper 7,838 80.10% 79.90% 78.00% 76.80% 81.70% 80.90%
Sa West Upper 8,668 72.60% 73.50% 71.90% 71.40% 76.10% 76.50%
St2 West Upper 8,834 73.20% 73.40% 73.20% 73.00% 78.20% 79.90%
Stu West Upper 8,686 77.70% 77.10% 76.50% 72.10% 79.40% 77.00%
Sa2 West Upper 8,011 77.50% 77.90% 73.50% 73.30% 79.50% 79.70%

Le Dutch 7,087 69.50% 60.30% 65.00% 55.80% 75.60% 67.50%

Average 7,353 77.83% 77.48% 75.73% 73.70% 79.90% 80.55%

Table 1: Word accuracy on the Anselm dataset, evaluated on the first 1,000 tokens; S = training set from
the same text, S+A = like S, but augmented with 10,000 tokens randomly sampled from the other texts;
† = Bi-LSTM (S+A) is the multi-task learning setup. Best results shown in bold.
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Figure 2: Word accuracy on the ‘B’ text for different sizes of the training set; left = train only on the
training set from ‘B’ (S); right = use augmented training set/multi-task learning (S+A).

CRF cannot handle this out-of-domain training data well, the MTL setup can actually profit from it in
many cases.

Table 1 also shows a rough classification of the dialectal regions from which the texts originate. There
is a slight trend for multi-task learning to be advantageous on texts from the East and North Upper
German regions, while for the Central and West Upper German texts, there are more instances of the
standard bi-LSTM model (S) being better than the MTL model (S+A). This could either be due to
linguistic properties of these dialectal regions, or due to the fact that East/North Upper German texts
make up the majority of the dataset, thereby also featuring more prominently in the “S+A” settings.

The latter hypothesis is supported by the case of the ‘Le’ text, which is the only Dutch text in the
sample (but which was nonetheless normalized to modern German in the corpus). Here, the “S+A” set-
tings of the experiments all show a dramatic decrease in accuracy (up to −9.2 pp), suggesting that it is
disadvantageous to augment the training set with samples that are too different from the target domain,
even for the MTL setup.

In general, however, one of the bi-LSTM models is always best; there is only one text (We) for which
Norma achieves an equal accuracy. This indicates that deep neural networks can be applied successfully
to the spelling normalization task even with a comparatively small amount of training data. Also, we
note that Norma always requires a lexical resource which it uses to filter results, while we do not.

4.2 Effect of training set size

In our evaluation, we use all but the first 2,000 tokens from a text for training (cf. the beginning of
Sec. 4). Consequently, the training sets for each text are of different sizes. We calculate Spearman’s rank
correlation coefficient (ρ) between the size of the training sets and the normalization accuracy for each
column in Table 1. We find no significant correlation for the CRF and bi-LSTM models (|ρ| < 0.25),
although there seems to be a moderate inverse correlation for the Norma results (ρ ≈ −0.48 on Norma
“S”). The reasons for this are beyond the scope of this paper, though.

The question of how much training data is needed to effectively train a model is particularly relevant
for historical spelling normalization, since training data can be very sparse in this domain. We therefore
choose to evaluate each method in a scenario where we consider a single text, but vary the size of the
training set, to estimate how well they perform with fewer data.

Figure 2 shows the results for different training set sizes on the ‘B’ text. Not surprisingly, when
training on only 100 tokens, accuracy is bad (< 41%) for CRF and bi-LSTM. Norma, on the other hand,
already achieves 67.4% in this scenario. The biggest gains for all three methods can be seen for training
set sizes between 100 and 1,000 tokens—for larger set sizes, the gains become less, and all three methods
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are within close range of each other.
For the “S+A” scenario, all models have noticeably higher accuracy even with only 100 tokens from

the ‘B’ text. However, the increases for Norma and CRF are not as high as in the “S” scenario; this is
not surprising, since the total training set for these methods always contains at least 10,000 tokens (from
the auxiliary set), and it is only the proportion of tokens coming from the ‘B’ text that increases. The
bi-LSTM model with multi-task learning behaves differently, though: while it starts off as the weakest
model (on 100 tokens), it is the best model when training on 1,000 tokens or more.

These learning curves illustrate that the MTL setup is fundamentally different from adding the auxil-
iary data to the training set normally, as is the case with CRF and the Norma tool. They also show that
our bi-LSTM models can be better than or at least competitive with CRF/Norma for training set sizes as
low as 1,000 tokens.

4.3 Multi-task learning with grapheme-to-phoneme mappings

It is conceivable to use different tasks than historical spelling normalization as the auxiliary task in a
multi-task learning setup. In particular, we also experimented with grapheme-to-phoneme mapping as
the auxiliary task, since it can be seen as a similar form of character-based sequence transduction.

For our dataset, we used the German part of the CELEX lexical database (Baayen et al., 1995), par-
ticularly the database of phonetic transcriptions of German wordforms. The database contains a total
of 365,530 wordforms with transcriptions in DISC format, which assigns one character to each distinct
phonological segment (including affricates and diphthongs). For example, the word Jungfrau ‘virgin’
is represented as ’jUN-frB. We randomly sampled 4,000 tokens from this dataset for our experiment,
and used the same algorithm as for the historical data to convert these mappings to a character-based
sequence representation (cf. Sec. 2.1).

The evaluation, however, showed no real benefit of this MTL setup compared to the bi-LSTM model
without MTL. While accuracy increased for some texts by up to 2.6 pp, it decreased slightly for the
majority of texts, averaging to a −0.4 pp difference to the basic model.

5 Related Work

Various methods have been proposed to perform spelling normalization on historical texts; for an
overview, see Piotrowski (2012). Many approaches use edit distance calculations or some form of
character-level rewrite rules, but require either hand-crafting of the rules (Baron and Rayson, 2008)
or a lexical resource to filter their output (Bollmann, 2012; Porta et al., 2013).

A newer approach is the application of character-based statistical machine translation (Pettersson et al.,
2013; Sánchez-Martı́nez et al., 2013; Scherrer and Erjavec, 2013). In contrast to our sequence labeling
approach, these methods do not require a fixed character alignment between wordforms, but it is not
clear whether this is actually an advantage. To our knowledge, a comparative evaluation between these
methods and other approaches has not yet been done.

Azawi et al. (2013) present the only other approach we are aware of that applies neural networks to
normalization of historical data. They also use bi-directional LSTMs, but differ from our approach in the
way they perform alignment between historical and modern wordforms. More importantly, they evaluate
their model on a single dataset, the Luther bible, which has much more regular spelling than the texts in
the Anselm corpus and is also significantly longer: they use about 200,000 tokens for their training set.

6 Conclusion and Future Work

We presented an approach to historical spelling normalization using bi-directional long short-term mem-
ory networks and showed that it outperforms a CRF baseline and the Norma tool by Bollmann (2012)
for almost all of the texts in our dataset, a diverse corpus of Early New High German, despite using a
relatively low amount of training data (about 2,000 to 11,000 tokens) and not making use of a lexical
resource (like Norma does). We showed further that multi-task learning with additional normalization
data can improve accuracy with bi-LSTMs, while adding the same data to the training set of Norma and
CRF does not help on average, and can even be detrimental.
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Many improvements to this approach are conceivable. Character-based statistical machine translation
has been successfully applied to spelling normalization (cf. Sec. 5), but we are not aware of any ex-
periments with neural machine translation (Cho et al., 2014) on this domain. Using an encoder–decoder
architecture, e.g. similar to Sutskever et al. (2014), would remove the need for an explicit character align-
ment (cf. Sec. 2.1) but could also make the model more complex and potentially more difficult to train,
so it is unclear whether this would be an improvement to our approach.

With regard to multi-task learning, our results seem to indicate that for the auxiliary task, it is prefer-
able to use data with similar characteristics to the data in the main task. On the other hand, depending
on the language variety to be annotated, such data might not always be readily available. We would
therefore like to do further experiments with auxiliary data from different corpora or even different string
transduction tasks, to see if and under which conditions they can have a beneficial effect on the spelling
normalization task.
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