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Abstract

This paper studies cross-lingual transfer for dependency parsing, focusing on very low-resource
settings where delexicalized transfer is the only fully automatic option. We show how to boost
parsing performance by rewriting the source sentences so as to better match the linguistic regu-
larities of the target language. We contrast a data-driven approach with an approach relying on
linguistically motivated rules automatically extracted from the World Atlas of Language Struc-
tures. Our findings are backed up by experiments involving 40 languages. They show that both
approaches greatly outperform the baseline, the knowledge-driven method yielding the best accu-
racies, with average improvements of +2.9 UAS, and up to +90 UAS (absolute) on some frequent
PoS configurations.

1 Introduction

The need to automatically process an increasing number of languages has made obvious the extreme de-
pendency of standard development pipelines on in-domain, annotated resources that are required to train
efficient statistical models. However, for most languages, annotated corpora only exist for a restricted
number of domains, when they exist at all. In response to such low-resource scenario, four main strate-
gies have been considered. The first is to hire experts and handcraft these resources, possibly with the
help of active learning techniques: Garrette and Baldridge (2013) show that this strategy can be effec-
tive and probably cheaper than expected. An alternative is to use models learned on some resource-rich
source language(s) to process a low-resource target language; note that this is only possible once the
source and target data have been mapped into a shared representation space (Zeman and Resnik, 2008).
When source-target parallel corpora are available, a third approach projects annotations across languages
via alignment links (Yarowsky and Ngai, 2001; Hwa et al., 2005; Lacroix et al., 2016). A variant using
artificial parallel corpora, obtained via Machine Translation, is suggested and discussed by Tiedemann
et al. (2014).

In this work, we focus on the problem of learning dependency parsers for an under-resourced lan-
guage and consider the delexicalized transfer approach of Zeman and Resnik (2008), in which the
shared source-target representation is obtained by replacing all tokens by their PoS (assuming a common
tagset). Thanks to this language-independent representation, a model trained with annotated sentences
in a source language can be readily applied to parse sentences in any other language. Delexicalized tech-
niques are especially useful in very low-resource settings, in which existing parallel corpora are likely
to be too small or even non-existing. The development of cross-linguistically homogeneous and consis-
tent schemes for PoS labels (Petrov et al., 2012) and, more recently, for dependency trees (McDonald
et al., 2013) has been of great help to improve the applicability and effectiveness of delexicalized trans-
fer methods. We contend, however, that having a universal PoS inventory is only a first step towards
making the source and target languages more alike. In particular, these shared representations may hide
fundamental differences in word order between source and target languages. As explained in § 2, these
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divergences introduce systematic biases in parsers: since many features rely on word linear sequence,
their distribution across languages varies in great proportions, preventing useful generalizations to be
effectively transferred cross-linguistically.

In the remaining sections, we study ways to improve the performance of delexicalized techniques by
making the source word sequence more similar to target sentences, prior to transferring information. Two
extensions are contrasted: a data-driven approach and a knowledge-driven approach (§ 3). The former
uses PoS-based statistical language models estimated on target data while the latter relies only on the
World Atlas of Language Structures (WALS) (Dryer and Haspelmath, 2013), which contains a series of
linguistic typological features documenting 2,679 languages. Experiments on 40 languages exhibiting
very different characteristics and covering several language families show that both methods outperform
standard delexicalized transfer by a wide margin (§ 4), with the knowledge-based approach having the
additional benefit to even dispense with the need of unlabeled target data and consequently to be readily
usable for more than thousand languages. Incidentally, our experiments thoroughly re-evaluates previous
proposals for improving baseline delexicalized transfer.

2 Motivations

2.1 Principles of Transition-Based Dependency Parsing

Transition-based dependency parsers (Nivre, 2008) are among the most popular methods for computing a
syntactic structure. For clarity, we illustrate our work on greedy ARCEAGER parsers which have achieved
state-of-the-art performance for many languages. However, our motivations hold regardless of the chosen
parsing system, and exploratory experiments with our methods have shown similar improvements with
other parsers (including graph-based parsers).

In an ARCEAGER parser, the parse tree is built incrementally while traversing the sentence from left
to right, by executing elementary actions that either move words in a buffer and a stack (via SHIFT

and REDUCE actions) or create dependency relationships between the word on top of the stack and the
leftmost word in the buffer (using the LEFT or RIGHT actions depending whether the head is in the buffer
or on the stack).

The actions performed during parsing are predicted by a feature-based classifier, a common choice
being the averaged perceptron of Collins and Roark (2004). It is custom to base the classifier decisions on
a limited window centered on the two tokens which could be moved or attached; the following features1

are typically extracted from these neighborhoods and combined together to yield feature tuples: top of
the stack (generally denoted s0) and deeper stack elements (s1, s2) to its left, head of the buffer (n0) and
additional tokens (n1, n2) on its right.

Transition-based parsers heavily rely on word order: for instance, as shown in Figure 1, in an ARCEA-
GER system, the dependency between two words will be predicted by two different actions depending
whether the head occurs before or after its dependent. More importantly, most features used in a de-
pendency parser (no matter the transition system) are sensitive to the word order, as they encode the
position of the word in the stack or in the buffer which, in turn, depends on the position of the word in
the sentence.2

Delicious | dishes typical of Spain
stack buffer

?

LEFT−−−→ ⊥ | dishes typical of Spain
stack buffer

SHIFT−−−→ dishes | typical of Spain
stack buffer

dishes | typical of Spain
stack buffer

?

RIGHT−−−−→
dishes typical | of Spain

stack buffer ···−−−→ · · ·

Figure 1: An order-sensitive sequence of transitions computing a dependency tree.

1For lexicalized parsers: the word forms and the PoS, for delexicalized: only the PoS.
2Graph-based parsing with standard feature templates is slightly less order-dependent, since the classification task and the

features of the candidate dependent and head are already abstracted from the linear sequence. However, many features, related
for instance to words located between these two tokens, remain sensitive to word order and our statement still holds.
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2.2 A Waste of Cross-Lingual Knowledge

Delexicalized transfer has proven to be an effective method to transfer parsers between languages (Ze-
man and Resnik, 2008; McDonald et al., 2013). However, while delexicalized transfer extracts use-
ful language-independent knowledge from training instances in the source language, we claim that this
knowledge is often not encoded in the right form to be effectively used to process target sentences, due
to divergences in word ordering.3

We illustrate this on delexicalized transfer from English to French. Let us assume that we have a
delexicalized English parser that is able to perfectly predict the dependency structure of the noun phrase
the following question and we use it to annotate the corresponding French phrase la question suivante
(literally, the question following4). Thanks to recent efforts in defining universal annotation schemes
for syntactic information, notably the Universal Dependencies (UD) project (Nivre et al., 2016), these
phrases can be represented in a unified manner by mapping word forms into the corresponding PoS,
yielding respectively DET ADJ NOUN and DET NOUN ADJ. As the English parser has learned that
‘DETs depend on NOUNs’ and that ‘ADJs depend on NOUNs’, the appropriate parse for the French
phrase should be obvious, as these rules apply cross-linguistically. PoS sequences thus seem to provide
an appropriate level of abstraction for cross-lingual transfer.

However, contrary to what this intuition suggests, the transfer of the ADJ-NOUN dependency of-
ten fails in practice. This is because the features underlying the high-level rules stated above are in
fact order-dependent. Indeed, when parsing the French phrase, the parser configuration will be mainly
described by the feature pair ‘s0=NOUN ∧ n0=ADJ’ (as question appears before suivante, it will be
put on the stack first) while for the English phrase the relevant parser configuration would look like
‘s0=ADJ ∧ n0=NOUN’. For lack of connecting these two situations, the parser has no way to predict the
correct attachment in French using only English training instances.

Experimentally,5 and denoting UAS
[
C2
C1

]
the percentage of C1 tokens depending on a C2 token that

are correctly attached by the parser, while the English delexicalized model has a UAS
[

NOUN
ADJ

]
of 91.1%

on English, it drops down to 50.8% for French. This decrease results directly from the word order
difference between French and English, as English adjectives are almost always preposed6 while their
position in French is less deterministic: in the French UD, 28% of the adjectives occur before their head
noun and 72% after it. As a result, the UAS

[
NOUN
ADJ

]
score on French actually decomposes as 96.8% for

UAS
[

NOUN
preposed ADJ

]
and 34.5% for UAS

[
NOUN
postposed ADJ

]
.7 These observations highlight the impact of word

order on delexicalized transfer: attachment patterns are not robust to variations in word ordering. Note
that transfer from French to English is much more successful, with a UAS

[
NOUN
ADJ

]
of 80.5%. This is

because the source language (here French) contains a sufficiently large number of preposed adjectives,
which makes it possible to learn the patterns that are useful for English.

The discrepancies in word order can have an even more dramatic effect when transferring parsers
between languages in which adjectives have a fixed position. This, for instance, happens when the source
is Bulgarian (almost only preposed adjectives) and the target is Hebrew (only postposed): the resulting
UAS

[
NOUN
ADJ

]
is as low as 28.7% (compared to an overall UAS of 60.1%). In the reverse direction, it

drops down to 2.8% (UAS
[

NOUN
preposed ADJ

]
of 0.7%, UAS

[
NOUN
postposed ADJ

]
of 54.5%, with an overall UAS of

50.6%).8

The impact of differences in word order on cross-lingual transfer is not limited to the attachment of
adjectives. Consider, for instance, the English phrase the neighbor’s car (DET NOUN PART NOUN) and

3The issues described in this section are at least partially solved by transfer with annotation projection but these techniques
require parallel data that are not always available.

4Keeping the original order (la suivante question) would be wrong in French.
5Our experimental data and protocols are presented in Section 4.
6In the English UD corpus, 93% of the adjectives come before the noun they depend on.
7This observation is consistent with the English monolingual scores (93.2% for the UAS

[NOUN
preposed ADJ

]
majority case, and

55.0% for the much rarer UAS
[NOUN

postposed ADJ

]
case).

8Source data quality cannot be the only cause of such poor results: when delexicalized models apply monolingually,
UAS

[NOUN
ADJ

]
is 97.4% in Bulgarian and 88.4% in Hebrew.
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its French translation la voiture du voisin (DET NOUN ADP NOUN). After attaching function words,
all that remains for the parser to process is the bigram NOUN NOUN: while the English parser has
been trained to predict a left dependency (car being the head of neighbor), for French it must predict a
right dependency (voiture being the head of voisin). Here the discrepancy of genitives’ position across
languages does not involve unseen features, but still leads the model to predict a wrong dependency with
high confidence.

Our work aims at addressing such scenarios in which knowledge transfer is impeded by the word
order of the source language. While current state-of-the-art models learn that ‘an ADJ followed by a
NOUN depends on that NOUN’ and ‘the first NOUN depends on the second NOUN’, we would like them
to transfer more abstract patterns such as ‘ADJs depend on NOUNs’ and ‘genitives depend on NOUNs’,
leaving it up to the target side to decide which of both NOUNs plays the role of genitive.

3 Boosting Delexicalized Transfer

3.1 Reshaping Training Instances

In this work, we propose to preprocess the source data before they are used to train a delexicalized parser,
that will then be directly applied on target sentences. This preprocessing aims at making the source
word sequences more similar to target sentences, with the goal to make the cross-lingual knowledge
more accessible after transfer. The available information is the same before and after preprocessing (no
dependency is ever added), but is presented at training time in a form that should make it more useful at
test time.

In the following, we introduce two ways of generating such transformations, by removing or permuting
tokens. The first approach uses a language model estimated on target PoS sequences to find the most
similar word order between the source and target languages in a lattice containing local reorderings of
the source sentence. The second strategy relies on a data bank of linguistic typological features, the
WALS (Dryer and Haspelmath, 2013), to generate a series of heuristic transformation operations.

The problem of finding good reorderings of a source sentence is closely related to the problem of word
(p)reordering in Statistical Machine Translation (SMT) (Bisazza and Federico, 2016). However, where
preordering aims to find an optimal (for SMT) permutation of source words for each source sentence,
our objective is less ambitious, as we only intend to ‘fix’ a sufficiently large number of divergent patterns
between the source and target languages, so as to increase the effectiveness of transfer at the model level.

3.2 Optimally Reordering the Training Corpus with a Language Model

Our first resource-light approach consists of two steps. We first generate a small subset of possible
token permutations, compactly encoded in a finite-state graph. In our experiments, we consider all the
permutations licensed by the MJ-2 reordering scheme (Kumar and Byrne, 2005), which generates all
possible local permutations within a window of three words. Machine Translation experiments have
shown that the MJ-2 constraints capture lots of plausible reorderings (Dreyer et al., 2007). In the context
of cross-lingual transfer, its local nature allows to correct several important divergences in word order
(e.g. the adjective-noun divergence described in § 2.2), while keeping the size of the reordering lattice
polynomial with respect to the sentence length (Lopez, 2009).

The permutation lattice is then searched for a reordering that (a) corresponds to a high probability
target PoS sequence and (b) preserves the projectivity constraint. In practice, we first generate the lattice
of MJ-2 reorderings, score it with a language model estimated on the target PoS sequences, and extract
the 1,000-best sequences. After filtering non-projective trees, we retain the one-best sequence (if one
projective tree exists), or the original sequence otherwise. We expect the word order of this transformed
source to be very close to the word order of a typical target sentence. We then transform the gold
dependency tree according to this permutation and use it to train a target-adapted model.

This approach can be viewed as an extension of the data selection technique of Søgaard (2011) in
which the delexicalized model is trained only on the source examples that are the most relevant for the
target at hand. The similarity between the source and target languages is based on the similarity between
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their PoS sequences: experimentally, the author retains the 90% sentences with lowest perplexity ac-
cording to a target PoS language model (PoSLM). We add here an extra degree of freedom by allowing
changes in the word order of the source PoS sequence, rather than simply discarding sentences.

3.3 Adapting the Training Corpus with Rewrite Rules
Our second proposal takes advantage of the linguistic knowledge that is now available for many lan-
guages. We use here the WALS, which contains a series of linguistic features documenting 2,679 lan-
guages. Some of these features are of prime interest for our study, and express general properties related
to word order. In this work we focus on the following seven features that describe whether some PoS
classes exist in a language and their relative position (preposed or postposed to the noun, or no dominant
order): 37A (definite articles), 38A (indefinite articles), 85A (order of adposition and noun), 86A (order
of genitive and noun), 87A (order of adjective and noun), 88A (order of demonstrative and noun) and
89A (order of numeral and noun).9

We first extract the relevant features for each language considered in our study, quantify their value and
automatically transform them to relate to the raw PoS sequences found in our corpora. We extrapolate
the order of DET and NOUN from feature 88A and identify the genitives mentioned by feature 86A as
NOUNs or PROPNs depending on a NOUN. With an otherwise straightforward mapping, this results
in the following set of properties: no definite DET, no indefinite DET (including the affix cases), and
a precedence rate (denoted PR) of 0% (postposed), 50% (no dominant order) or 100% (preposed) for
ADPs (resp. genitives, ADJs, DETs, NUMs) depending on a NOUN.10

The ‘No dominant order’ feature value of WALS provides very useful quantitative information: con-
trary to the PoSLM-based approach, which puts hard constraints on each phenomenon by choosing a
reordering even when several choices would be almost equally likely, WALS features indicate when and
how to balance our transformed treebanks.

By comparing two languages based on their feature values, it is then possible to define actionable
transformation rules that remove or permute tokens and their associated subtrees. Table 1 lists the trans-
formation rules derived from each pair of features. We preferred smooth transformations (with mean
PR objectives and error margins) to prevent a full transformation of the corpus and a risk of informa-
tion losses if the child position is less deterministic than expected. For instance, in the case of transfer
from English (ADP-NOUN) to Japanese (NOUN-ADP) and according to the fourth transformation rule,
we target a precedence rate of ADPs to NOUNs between 45% and 55%. This means that during source
treebank traversal, while the precedence rate in previous sentences is above 55% (resp. below 45%), any
encountered ADP-NOUN (resp. NOUN-ADP) bigram holding a dependency is switched, along with their
dependents to preserve projectivity. According to first rule, for transfer to Czech (no definite article)
from any source, all definite articles are systematically removed from source data.

Source feature Target feature Transformation rule

any no DEF-DET remove all definite DETs
any no IND-DET remove all indefinite DETs

PR = 0% PR ≥ 50% switch subtrees to reach PR = 50% (with 5% error margin)
PR = 100% PR ≤ 50% switch subtrees to reach PR = 50% (with 5% error margin)
PR = 50% PR = 100% switch subtrees to reach PR = 75% (with 5% error margin)
PR = 50% PR = 0% switch subtrees to reach PR = 25% (with 5% error margin)

Table 1: Transformation rules extracted from the comparison of the feature values of a language pair. All
other feature pairs result in a no-op.

For each sentence, we apply each rule on the whole sequence (and then iterate 3 times to capture recur-
9We do not consider here features (81A, 82A, etc.) describing the relative position of a head VERB and its dependents.

Their use would require us to condition our preprocessing patterns on labeled dependency relationship in the source, a task we
leave for future work.

10For ADPs, and for resilience to annotation inconsistencies, we also include ADPs that are heads of NOUNs.
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sive phenomena). Such heuristic rule application strategy is undoubtedly sensitive to the rule ordering,
but we have not yet investigated this aspect and simply apply rules according to the lexicographic order
of the child tag, breaking ties using word position.

In comparison to the PoSLM-based approach, the WALS-based approach suffers from a lack of ex-
haustivity regarding word order; by design, less phenomena will be captured. However, since the objec-
tive is not the best possible reordering but only more compatible PoS sequences, exhaustivity is probably
not a big issue. Besides, working with a discrete and reduced set of transformation operations gives us
a better control on the rewriting of dependencies. It also allows us to use extra operations such as word
deletion, a transformation that may be difficult to control in the approach described in § 3.2.

Altogether, this linguistically rich method presents a notable upside: since all the required information
is available in WALS, it is readily usable for more than thousand languages. Provided that PoS tags
can be generated for the target data to parse, no extra resource is required, while estimating a PoSLM
requires a sufficiently large corpus of reliably PoS-tagged target data.

4 Experiments

4.1 Experimental Setup

We evaluate our proposals on the Universal Dependencies corpus11 (Nivre et al., 2016) and compare them
with three baselines: (a) standard delexicalized transfer, (b) the data point selection method of Søgaard
(2011) and (c) the weighted multi-source combination of Rosa and Zabokrtsky (2015), that weights
and combines the hypotheses of several delexicalized source models using KLcpos3 (Kullback-Leibler
divergence of coarse PoS trigram distributions) as a syntactic similarity metric between languages. We
also include the UAS of KLcpos3 multi-source combination built on top of our knowledge-based model.

In all our experiments, we consider 3-gram PoS language models estimated on the training sets of
UD. The KLcpos3 metric is estimated on the same PoS sequences. From WALS, we extract and use
the 37A, 38A and 85A to 89A features. For some languages, this information was incomplete. We
completed missing features with a majority vote of the languages of same genus if available in the
database; otherwise (i.e. for ancient languages, all absent from WALS) we assumed that there were
separate article tokens and that there was no dominant order for word order features.

For each component of the algorithms, we use the universal PoS tagset and gold PoS tags. While this
scenario is probably unrealistic, it allows us to get a clearer picture of the net effect of a better syntactic
knowledge transfer, since possible sources of discrepancies between languages (e.g. more or less noisy
tag labels) have been removed. The parser is a greedy ARCEAGER transition-based parser trained with
a dynamic oracle (Goldberg and Nivre, 2012), an averaged perceptron classifier (Collins and Roark,
2004) and Zhang and Nivre (2011)’s feature templates (assuming fully delexicalized representations and
unlabeled arcs). We use the PanParser implementation (Aufrant and Wisniewski, 2016) and all the code
used in this work is available at https://perso.limsi.fr/aufrant/.

4.2 Results

Table 2 presents UAS results for the various transfer methods considered. As these experiments amount
to 6,320 evaluated parsers, we provide the results in a compacted form as follows. For each target
language, for mono-source transfer, we report the scores of the worst, median, best sources and the
average score (or average gain) over all sources.

Overall, both preprocessing techniques outperform the direct transfer method of Zeman and Resnik
(2008) as well as the selection strategy of Søgaard (2011). The WALS-based rewriting approach yields
higher improvements (+2.9 UAS on average) than the PoSLM-based reordering strategy (+2.3 UAS on
average). Thanks to the variety and the large number of sources, the multi-source methods have here
much higher accuracies, often better than the best source; even in this setting, using WALS provides us
with a slight improvement over the baseline multi-source parser.

11We consider the version 1.3 of the UD treebank. In order to present only fair sources, for languages where several treebanks
are available, we retain only the main treebank. This is the case for the following languages: cs, en, es, fi, grc, la, nl, pt, ru, sl
and sv.
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[ Mono-source ] [ Multi-source ]
Target Delexicalized PoSLM selection PoSLM reordering WALS rewrite rules Delex. WALS

min med max avg min med max ∆avg min med max ∆avg min med max ∆avg

ar 5.1 43.2 56.9 36.1 4.8 43.0 57.2 -0.2 18.9 45.1 57.2 +5.6 12.2 47.6 56.9 +5.7 57.3 57.8
bg 26.4 67.5 78.9 59.6 26.3 67.5 78.9 -0.1 35.5 65.1 74.4 +1.5 27.2 67.6 78.9 +1.8 79.6 79.0
ca 28.4 62.3 78.5 57.8 27.9 62.0 78.7 -0.1 33.5 60.8 75.5 -0.2 30.4 66.2 78.6 +1.9 79.2 79.1
cs 29.7 58.5 74.0 54.3 29.2 58.6 74.0 -0.0 37.1 58.4 68.8 +1.4 30.8 59.3 73.8 +1.4 74.0 73.8
cu 22.6 58.5 74.7 53.9 22.6 58.7 75.4 +0.0 38.2 60.2 70.0 +3.8 24.3 60.3 74.7 +1.6 74.7 74.7
da 28.0 64.5 75.3 58.2 27.5 63.8 75.3 -0.2 40.3 61.0 70.4 -0.0 28.6 64.6 74.5 +1.4 75.7 75.2
de 36.2 61.2 70.5 57.7 35.9 61.0 70.0 -0.2 45.4 61.1 69.3 +1.3 43.0 61.8 70.8 +1.5 68.7 68.7
el 29.0 51.0 67.8 49.5 28.9 50.5 68.2 -0.0 33.5 51.6 64.9 +0.4 29.8 51.6 67.6 +1.7 67.0 66.2
en 33.1 56.5 65.8 52.8 32.5 56.2 65.5 -0.2 38.4 57.0 63.8 +1.2 32.2 58.4 65.9 +1.2 65.7 66.0
es 30.0 63.9 78.5 58.9 29.3 64.4 78.5 -0.0 37.6 62.8 76.1 +0.3 31.5 66.6 78.4 +1.8 79.2 79.3
et 28.4 53.1 69.4 51.5 26.9 52.9 69.6 -0.2 36.3 57.0 67.9 +3.7 37.1 57.9 69.3 +4.4 69.4 69.3
eu 20.7 45.2 57.8 44.2 20.9 46.4 57.7 -0.1 24.3 54.6 64.1 +8.1 24.6 52.0 63.3 +5.7 55.7 60.9
fa 17.9 45.3 56.1 40.3 17.6 45.0 56.0 -0.1 26.7 46.3 56.8 +3.2 25.5 48.4 58.8 +5.2 61.4 63.3
fi 27.4 48.1 62.1 46.6 27.4 48.2 61.8 -0.0 32.4 50.2 58.8 +2.3 32.4 53.0 62.2 +3.7 62.1 62.2
fr 30.9 64.0 79.1 59.0 29.9 63.9 78.7 -0.2 35.0 61.4 76.8 +0.5 34.2 66.0 78.9 +1.8 79.8 79.5
ga 16.4 56.0 65.8 50.1 16.3 56.2 66.4 -0.1 26.6 56.2 64.6 +1.8 20.8 59.0 65.3 +2.3 67.4 67.2
gl 33.0 40.3 47.5 40.6 32.8 40.5 47.5 -0.1 32.1 43.0 48.2 +1.5 35.6 43.7 51.0 +2.6 46.7 46.6

got 26.4 58.0 72.7 54.3 26.4 57.5 73.4 -0.0 38.0 60.0 66.3 +3.1 28.2 58.9 73.9 +0.9 72.7 73.9
grc 32.5 53.9 57.3 50.7 29.8 53.9 57.8 -0.1 39.0 53.9 58.3 +1.1 32.4 53.9 57.8 +0.0 61.0 60.3
he 20.1 53.8 68.0 49.9 19.8 54.2 67.7 +0.1 30.2 54.1 63.6 +1.2 21.9 55.4 65.8 +1.6 71.2 68.7
hi 11.0 27.1 66.5 32.3 11.1 26.9 65.8 -0.1 22.0 37.5 61.6 +6.7 19.8 33.8 66.8 +5.4 37.1 44.2
hr 26.8 55.4 71.2 52.0 26.0 56.3 70.9 -0.2 35.7 56.3 66.9 +1.7 28.9 56.3 70.3 +1.5 73.9 73.0
hu 27.8 52.7 67.8 50.8 27.1 53.1 68.2 -0.0 40.4 56.3 65.4 +4.4 40.1 55.4 68.3 +3.4 63.0 64.4
id 17.4 49.2 70.1 48.8 18.2 49.0 70.3 +0.1 27.6 50.2 66.1 +1.5 23.1 53.8 69.6 +3.7 70.8 71.9
it 31.0 67.1 82.6 61.7 30.4 66.9 82.2 -0.1 38.1 67.0 80.7 +1.2 34.0 70.8 82.3 +2.2 83.2 82.9
ja 7.0 18.6 72.6 26.7 7.2 18.3 72.2 +0.1 15.7 32.9 70.6 +10.0 18.1 35.2 72.3 +11.4 63.3 63.5
kk 10.7 33.0 56.3 32.4 10.9 34.0 54.3 +0.2 17.9 35.2 52.6 +3.4 20.6 38.5 55.6 +4.9 53.9 54.6
la 14.4 49.9 64.1 47.1 14.3 50.0 63.5 +0.0 19.5 51.4 61.8 +1.9 21.1 53.3 63.3 +2.1 58.3 60.0
lv 22.6 40.3 55.7 40.6 22.5 40.1 55.8 -0.2 28.7 42.6 51.0 +1.8 35.0 47.1 55.4 +5.5 50.2 57.3
nl 27.5 51.9 61.7 48.9 27.9 52.2 62.2 +0.1 32.4 49.3 56.8 -2.4 28.4 52.4 60.4 +0.5 62.3 60.7
no 25.8 64.0 76.6 57.1 25.6 63.9 76.7 -0.1 37.2 58.5 69.2 -0.2 26.5 63.8 76.2 +1.3 76.6 76.5
pl 25.7 62.1 77.9 59.2 25.6 62.7 77.9 -0.1 36.0 65.6 76.2 +3.4 29.5 65.5 77.4 +2.4 78.0 77.6
pt 30.8 62.8 75.5 56.7 30.2 63.3 75.5 +0.0 35.7 60.0 73.5 -0.9 32.8 63.5 75.4 +1.4 75.5 75.7
ro 19.8 55.5 69.2 51.8 18.6 55.7 68.7 -0.1 31.7 58.5 67.7 +3.1 24.1 60.5 70.3 +4.0 71.8 72.0
ru 26.8 53.9 69.0 51.3 26.1 54.0 68.9 -0.0 34.6 55.1 67.9 +2.3 30.9 59.2 68.7 +4.2 71.0 70.4
sl 30.6 65.2 80.4 59.4 30.4 65.1 80.5 -0.0 41.8 64.8 77.4 +2.7 30.5 64.9 80.4 +1.4 80.4 80.4
sv 29.4 62.7 75.5 56.9 29.4 62.3 75.5 -0.2 39.6 60.1 70.6 +0.5 30.4 63.9 74.9 +2.3 73.1 73.5
ta 9.1 36.3 66.3 36.8 9.1 35.6 66.4 -0.0 18.9 43.7 64.5 +6.2 19.0 41.1 65.8 +4.7 66.3 65.8
tr 14.1 35.3 67.0 38.8 14.7 35.4 67.0 -0.1 19.5 39.5 64.5 +2.0 21.5 40.8 67.8 +3.5 58.6 58.5
zh 15.6 32.5 43.1 31.7 15.8 32.5 43.0 +0.1 18.9 35.5 41.8 +2.3 20.1 36.6 44.1 +3.5 40.2 42.2

Avg 23.7 52.0 68.2 49.2 23.3 52.0 68.1 -0.1 31.8 53.5 65.6 +2.3 27.9 55.2 68.3 +2.9 66.9 67.4

Table 2: UAS of the various mono-source and multi-source transfer methods, on each UD target language
(using UD language codes).
The first line reads as follows: for delexicalized transfer to Arabic, the worst, median and best sources
yield UAS scores of 5.1, 43.2 and 56.9, and the average score over all 39 sources is 36.1, which the
WALS-based method improves by 5.7 points.

Our experiments also show that the selection baseline method does not perform as well on Universal
Dependencies (Nivre et al., 2016) as it did on the CoNLL 2006 Shared Task. Those differences can be
explained in two ways. First, we experiment with cleaner treebanks and benefit from the availability of
unified tagsets and annotation schemes. This is in contrast with previous experiments, which were using
a tagset mapping as a preprocessing step, making the net effect of data selection more difficult to single
out and evaluate precisely. Second, the data selection method was primarily intended for distantly related
languages, whereas the UD corpus now offers a wide language diversity and often a few good sources
for which data size reduction is only detrimental.

In general, our methods do not improve the best source but have a large effect on bad and average
sources, often turning them into competitive sources. This is particularly true with PoSLM reordering,
which improves the worst sources by 8.1 points and degrades the best ones by 2.6 points. By contrast,
the WALS-based method is more conservative and offers lower but more reliable improvements, which
in average proves successful.

Table 3 reports the average over some language families12 of the UAS of the baseline, reordered and
WALS-based mono-source models. It shows that accuracies of related sources are only marginally mod-

12While the considered ancient languages belong to some of those families, we chose to gather them into a separate category,
since they rely on the same WALS completion heuristic, instead of their actual typological features.
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Target language
Romance Germanic Slavic Finno-Ugric Semitic Ancient

So
ur

ce
la

ng
ua

ge Romance 67.1‖65.6‖67.2 60.4‖60.4‖61.7 63.1‖63.5‖63.0 46.4‖50.8‖52.5 54.1‖52.1‖52.9 56.7‖56.5‖54.9
Germanic 61.2‖63.5‖65.8 65.9‖63.1‖65.8 61.3‖62.2‖63.2 57.2‖58.6‖58.5 41.2‖48.2‖49.8 54.5‖57.1‖56.7

Slavic 63.5‖61.7‖66.0 63.8‖60.5‖64.3 72.6‖68.4‖71.8 53.2‖57.0‖58.4 54.7‖53.6‖56.8 59.0‖59.2‖60.1
Finno-Ugric 46.3‖51.9‖52.3 57.1‖56.2‖57.6 53.8‖58.6‖56.9 64.1‖63.0‖64.2 30.0‖43.6‖41.5 50.8‖55.7‖56.1

Semitic 54.1‖54.2‖54.1 40.6‖48.2‖51.1 42.5‖54.6‖56.1 30.8‖41.2‖44.1 55.4‖55.6‖54.8 53.7‖55.9‖54.4
Ancient 56.1‖49.2‖55.9 56.7‖51.5‖56.1 60.9‖57.5‖60.6 52.2‖54.9‖56.0 51.1‖47.0‖50.6 62.7‖60.0‖62.6

Table 3: Delexicalized, PoSLM-based reordered and WALS-based UAS aggregated over language family
pairs.
The first column reads as follows: the average UAS over all pairs of two Romance languages is 67.1
for mono-source delexicalized transfer; it is slightly improved (67.2) by the WALS-based method. Over
all pairs of a Germanic source and a Romance target, the average mono-source UAS raises from 61.2
(delexicalized baseline) to 63.5 (PoSLM-based reordering) and 65.8 (WALS-based rules).

ified when source sentences are transformed according to WALS, which could be expected as related
languages share most of their typological features. On the contrary, large gains are obtained for dis-
tantly related languages. Such languages are typically poor sources in direct delexicalized transfer due
to systematic labeling errors that mostly concern few frequent word classes (in correlation with their
typological features). We have found that such errors can often be corrected by transforming the source
sentences. With those errors handled, the now competitive sources can in turn contribute with valuable
knowledge in multi-source settings.

4.3 A Fine-grained Analysis

We have also investigated the improvements made over the baseline by our best method, the WALS-
based rewriting rules, by analyzing the gain in accuracy separately for various PoS. It appears that, in
most cases, improvements mostly concern PoS classes covered by the WALS features. For instance, the
issue mentioned in § 2.2 for the English-French pair is almost solved with source reordering: 90.4% of
the postposed ADJs are correctly predicted by the WALS-based method (34.5% in the baseline), without
any detrimental impact on the preposed ones. The same holds for the Hebrew-Bulgarian textbook case,
where the UAS

[
NOUN
ADJ

]
raises from 0.7% to 95.1%.

We observe similar behaviors across the board for all the classes targeted by transformations: transfer
from Czech to Danish had UAS

[
NOUN
preposed NOUN

]
and UAS

[
NOUN
postposed NOUN

]
scores of 2.8% and 78.4%, with

WALS-based preprocessing they are respectively 61.1% and 80.4%. In Finnish-Arabic, scores of 6.3%
and 30.9% on ADJs and ADPs become 65.8% and 61.4%, etc. In whole, 21% of the considered language
pairs present very large gains (over +50 points) for at least one frequent tag pair (over 30 dependency
occurrences in test data).

Careful comparison of results for both PoSLM-based methods shows that reordering improves ADJs’
attachment for instance, when data selection does not. This can be explained in two ways. First, if
the source corpus contains a very limited number of preposed ADJs, even with perfect selection the
ADJs in final data cannot be mostly preposed. Second, data selection mostly targets sequences very
far from the target syntax: sentences that only disrespect a local preference of child position are less
fluent, and consequently have a lower rank, than their hypothetical counterpart with switched positions;
but they are not ungrammatical enough to be pushed into the 10% worst territory. On the other hand,
the data transformation approach is not restricted to preexisting n-grams, and it directly confronts the
given sequence with its counterpart to keep only the most fluent, thus acknowledging local preferences.
These key differences are confirmed experimentally on English-French data: PoSLM-based reordering
lowers the precedence rate of ADJs to NOUNs from 93% to 60%, while the rate varies by less than 1%
in Søgaard (2011)’s approach, leaving the majority case adjectives still under-trained.

Finally, detailed analyses reveal that the PoSLM reordering approach has lower improvements than
the WALS-based one on easy reorderings such as the nearly deterministic Hebrew-Bulgarian adjectives
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(UAS
[

NOUN
ADJ

]
of 93.2% with WALS, versus 86.1% with the PoSLM). This suggests that the data-driven

technique still wastes part of the available knowledge: indeed, the use of a probabilistic model to rank
reorderings does not guarantee that any interesting reordering is in fact selected. Another advantage of
the knowledge-rich approach is that the distribution of local word orderings is easier to control, since it
explicitly regulates the balance between co-existing word orders. Indeed, when two structures are pos-
sible and fluent, the PoSLM-based method will always prefer the majority class. While the projectivity
requirement generally softens this hard constraint by discarding many reordering candidates, the effect
holds for instance on typologically close languages: during transfer from French (PR = 28% for ADJ-
NOUN) to Italian (PR = 32%), PoSLM-based reorderings harden the preference down to PR = 16%,
and end up under-training the ADJ-NOUN minority class.

In spite of this, the PoSLM reordering is still competitive, since it covers more diverse phenomena.
For instance, when transferring from English to Tamil, the UAS

[
VERB
AUX

]
only raises from 31.4% to 35.0%

with the WALS-based method, but achieves a nice 91.2% with the PoSLM. Such improvements are
however less predictable and unexplained losses also occur, as for the UAS

[
VERB
AUX

]
in Hungarian-Tamil

(98.5% for the baseline and WALS, 66.4% with PoSLM reordering).
These results suggest that both approaches have their upsides and downsides, which remain to be

combined.

5 Related Work

The observation that cross-lingual transfer works better with typologically close or related languages
has been already made by many. Indeed, several works have already pointed out that unified annotation
schemes cannot compensate for syntactic divergences between source and target languages and that
reducing these divergences was likely to improve the performance of transfer.

When several sources are available, a natural approach is to give more weight to the instances observed
in related languages, where relatedness can be measured either based on linguistic description (Berg-
Kirkpatrick and Klein, 2010) or empirically (Cohen et al., 2011).

Søgaard (2011) follows similar intuitions but binarizes the weights to apply instance selection. Thus,
the delexicalized model is trained only on the source examples that are the most relevant for the target
at hand, using PoSLM perplexity as a relevance metric. Note that this strategy can be applied both in
mono-source and multi-source settings.

In Rosa and Zabokrtsky (2015)’s work, the syntactic similarity between languages is also based on the
similarity between their PoS sequences. They show how the KLcpos3 measure can be used to improve
cross-lingual transfer either by selecting the best source language, or by weighting the source contribution
to the output in a multi-source setting.

Both multi-source combination and data selection follow the same intuition that any source sentence or
part of it can provide useful information on the syntax of the target language, even when the divergence
between the source and the target is large. Indeed, a language is subject to many influences throughout
its evolution and can borrow a phenomenon from a very distant language. This is for instance the case
of Romanian, which belongs to the Romance family but has also strong Slavic influences.

As a result, both works aim at extracting useful knowledge even from poor sources, and our proposal
can be viewed as an extension that pushes further this intuition, to a finer grain: Rosa and Zabokrtsky
(2015) reward good source languages, Søgaard (2011) rewards target-relevant sentences, and our method
rewards relevant local patterns, by performing a local reordering of target-irrelevant parse subtrees rather
than ignoring the whole sentence. This has the effect of using the knowledge embedded in these subtrees
as well as in the rest of the sentence more effectively. To see this, consider the case of transferring
an English parser to a language in which no verb is labeled as auxiliary.13 In this case, the method of
(Søgaard, 2011) is likely to discard all the English sentences containing auxiliaries and the parser will
hardly see, in training, sentences involving passive constructions or past participles; by contrast, methods
based on data transformation would not remove the full sentence, but just the auxiliary – all the other
dependencies, e.g. the by-agent, can still contribute to learning.

13In the UD treebank this is, for instance, the case for Greek, Latvian or Galician.
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Thus, in comparison to previous works favoring close word orders at the cost of discarding some
training examples or reducing source contribution, our method differs by improving cross-lingual transfer
without knowledge loss.

In another line of work, Naseem et al. (2012) also distinguish the knowledge ‘ADJs depend on NOUNs’
from the ordering of both tokens, and use WALS to predict the latter. However, where our methods
compensate for word order divergences at the data level, their work aims at abstracting the dependency
prediction from word order, by designing a new parsing algorithm from scratch: their parser decomposes
as a dependent selection component, shared among languages, and an ordering component that is specific
to the target language. Even though it does not provide full order abstraction, our approach has the double
advantage of wrapping any state-of-the-art parsing system, and allowing an extra degree of flexibility by
manipulating the data, e.g. to handle PoS classes existing in only one language.

6 Conclusion

The contribution of this work is twofold. First, we have updated earlier results on delexicalized cross-
lingual model transfer by reproducing them on the recent Universal Dependencies treebank. This collec-
tion of treebanks contains more languages than were previously available. Furthermore, the consistency
of annotation schemes makes the analysis of results more reliable and enables to draw firmer conclusions.
Second, based on a thorough analysis of the weaknesses of delexicalized transfer, we have proposed two
strategies that aim to compensate for word sequence biases when transferring models across languages:
a data-driven method using PoSLMs for reordering and a knowledge-based method exploiting heuristic
rewrite rules extracted from WALS. The latter method proved to be the most effective of the two, with the
additional benefit of being entirely resource-free and thus readily usable for the over thousand languages
whose word order is specified in WALS. For the frequent PoS classes targeted by this method, we were
able to obtain huge improvements, often 30 and up to 90 points.

A first natural continuation of this work will be to complete our repertoire of preprocessing rules
with article insertions, PoS substitutions and patterns involving verbs, which were not considered so far.
Another direction we would like to investigate is to contrast our techniques with annotation projection,
which is another way to compensate for word order biases in cross-lingual transfer: by analyzing the
pros and cons of each method we might find ways to combine them so that we can also use parallel
data when available. We finally also aim at generalizing our WALS approach to other order-dependent
tasks. Indeed, from a higher-level point of view, the aforementioned issues are not specific to dependency
parsing, but occur theoretically with all data-driven NLP methods: however general it is, the linguistic
knowledge is always only available as instantiated on a given word sequence and through the proxy of a
particular data.
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