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Abstract

We develop an instance (token) based extension of the state of the art word (type) based part-of-
speech induction system introduced in (Yatbaz et al., 2012). Each word instance is represented
by a feature vector that combines information from the target word and probable substitutes
sampled from an n-gram model representing its context. Modeling ambiguity using an instance
based model does not lead to significant gains in overall accuracy in part-of-speech tagging be-
cause most words in running text are used in their most frequent class (e.g. 93.69% in the
Penn Treebank). However it is important to model ambiguity because most frequent words are
ambiguous and not modeling them correctly may negatively affect upstream tasks. Our main
contribution is to show that an instance based model can achieve significantly higher accuracy on
ambiguous words at the cost of a slight degradation on unambiguous ones, maintaining a compa-
rable overall accuracy. On the Penn Treebank, the overall many-to-one accuracy of the system is
within 1% of the state-of-the-art (80%), while on highly ambiguous words it is up to 70% better.
On multilingual experiments our results are significantly better than or comparable to the best
published word or instance based systems on 15 out of 19 corpora in 15 languages. The vector
representations for words used in our system are available for download for further experiments.

1 Introduction

Unsupervised part-of-speech (POS) induction aims to classify words into syntactic categories using un-
labeled, plain text input. The problem of induction is important for studying under-resourced languages
that lack labeled corpora and high quality dictionaries. It is also essential in modeling child language
acquisition because every child manages to induce syntactic categories without access to labeled sen-
tences, labeled prototypes, or dictionary constraints (Ambridge and Lieven, 2011). Categories induced
from data may point to shortcomings or inconsistencies of hand-labeled categories as discussed in Sec-
tion 4. Finally, the induced categories or the vector representations generated by the induction algorithms
may improve natural language processing systems when used as additional features.

Word-based POS induction systems classify different instances of a word in a single category (which
we will refer to as the one-tag-per-word assumption). Instance-based systems classify each occurence of
a word separately and can handle ambiguous words.

Examples of word-based systems include ones that represent each word with the vector of neighboring
words (context vectors) and cluster them (Schütze, 1995; Lamar et al., 2010b; Lamar et al., 2010a), use
a prototypical bi-tag HMM that assigns each word to a latent class (Brown et al., 1992; Clark, 2003),
restrict a HMM based Pitman-Yor process to perform one-tag-per-word inference (Blunsom and Cohn,
2011), define a word-based Bayesian multinomial mixture model (Christodoulopoulos et al., 2011), or
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Figure 1: The accuracy comparison of word and instance based part-of-speech induction models as a
function of target word ambiguity (as measured by gold-standard-tag perplexity described in Section 3.3)
on the Penn Treebank.

construct word vector representations based on co-occurrences with contextual features (Yatbaz et al.,
2012).

The obvious limitation of the one-tag-per-word assumption is that instances of ambiguous words that
have more than one POS role are grouped into the same class. For example, the word offer is tagged as
NN(399), VB(105) and VBP(34)1 in its 538 occurrences in the human labeled Wall Street Journal (WSJ)
Section of the Penn Treebank (PTB) corpus (Marcus et al., 1999). If all instances of offer are assigned
to the most frequent tag NN, 36% (139/538) will be erroneously labeled. In spite of this shortcoming,
word-based POS induction systems generally do well because the one-tag-per-word assumption is mostly
accurate: 93.69% of the word occurrences are tagged with their most frequent POS tag in the PTB
(Toutanova et al., 2003).

In order to handle ambiguous words, models without a strict one-tag-per-word assumption need to
group word instances into clusters according to their contexts. Some of these instance-based models bias
words to have few tags using sparse priors in a Bayesian setting (Goldwater and Griffiths, 2007; John-
son, 2007; Gao and Johnson, 2008), or posterior regularization (Ganchev et al., 2010). Schütze (1993)
represents the context of a word instance by concatenating context vectors of its left and right neigh-
boring words, and clusters word instances. Berg-Kirkpatrick et al. (2010) use an EM algorithm where
they replace the multinomial components with miniature logistic regressions and achieve the highest
instance-based accuracy on PTB. Christodoulopoulos et al. (2010) select prototypes of each cluster
from the output of Brown (1992) and feed them to a HMM model that can handle prototypes as fea-
tures (Haghighi and Klein, 2006). However none of these models achieve results comparable to the best
word-based systems.

In this work, we show that one can build an instance-based system that can perform significantly
better on highly ambiguous words (see Figure 1) and yet is competitive with word-based systems in
overall accuracy.

We follow the state of the art word-based system (Yatbaz et al., 2012) and use probable substitutes of a
word instance as its contextual features. The following examples illustrate how such paradigmatic (sub-
stitute based) contextual features can capture the similarity between two contexts where a syntagmatic
(neighbor based) representation would fail:

1NN, VB and VBP are three POS tags from the Penn Treebank corpus and they correspond to singular noun, verb in base
form and non-3rdperson singular verb in present tense, respectively. The numbers in parentheses are the frequencies.
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(1) “Pierre Vinken, 61 years old, will join the board as a nonexecutive director Nov. 29.”
director! chairman (.8242), director (.0127), directors (.0127) . . .

(2) “. . . Joseph Corr was succeeded by Frank Lorenzo, chief of parent Texas Air.”
chief! chairman (.9945), president (.0031), directors (.0012) . . .

Each sentence has the target words marked in bold (director and chief) and their likely substitutes
listed with probabilities2 in parentheses. Note that the two contexts have no words in common, therefore
syntagmatic (neighbor based) contextual features will fail to capture their similarity. However, paradig-
matic features such as the top substitutes “chairman”, “directors”, etc. clearly indicate the similarity and
help place these two instances into the same category.

Following (Globerson et al., 2007), we embed words and their contextual, orthographic, and morpho-
logical features in a high dimensional Euclidean space that relates their joint probability to distance. In
contrast to (Yatbaz et al., 2012) we build an instance-based POS induction system where each instance
has a vector representation that concatenates the word vector with the average of the contextual feature
vectors. We show that clustering of these instance vectors separate different roles of ambiguous words
well, and achieve comparable or better performance than the best word-based systems in matching the
gold tags on 19 corpora in 15 languages. All the code that can be used to replicate our findings is available
at https://github.com/ai-ku/upos_2014.

Section 2 describes the instance-based POS induction algorithm, Section 3 gives the results of our
experiments, Section 4 compares the output of the induction system with the gold tags, and Section 5
summarizes our contributions.

2 Algorithm

In this section, we describe the steps of our instance-based POS-induction algorithm:

1. Sample r substitutes for each word instance in the target corpus using an n-gram language model.

2. Construct r tuples for each instance where each tuple consists of a sampled substitute, the target
word, and the morphological and orthographical features of the target word (see Table 1).

3. Construct Euclidean embeddings of each word and each feature based on all tuples following Gle-
berson et al.(2007) and Maron et al.(2010).

4. Construct a vector representation for each instance by concatenating the embedding of the target
word with the average of its substitute embeddings.

5. Use k-means clustering to cluster the instance vectors where k is equal to the number of gold tags.

Steps 1 and 2 construct a tuple representation for each instance. Table 1 gives some example tuples for
Sentence (1) from the previous section. In this example r = 3, so three substitutes are sampled for each
instance as contextual features. The sampling is with replacement from the substitute word distribution
of a context given by the n-gram language model, so some substitute words may be repeated. The target
word and its other features are identical for each of the r tuples representing a single instance.

In step 3, we construct Euclidean embeddings for each unique word and feature value using the multi-
variable version of the CODE algorithm described in (Globerson et al., 2007). Given two categorical
variables W and F , the CODE algorithm constructs Euclidean embeddings (vectors) for each of their
distinct values in the same space. The distance between the embedding of a w value, �(w), and the
embedding of an f value,  (f), is related to their joint distribution p(w, f) as follows3

p(w, f) =
1
Z

p̄(w)p̄(f)e�d2
w,f

2Substitute probabilities are computed using a 4-gram language model.
3(Globerson et al., 2007) describes several ways to relate distances to probabilities, the model used here is the marginal-

marginal (MM) model.
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Word Subst Suf Cap Num
Vinken Makhlouf – T F
Vinken Makhlouf – T F
Vinken <unk> – T F
61 20 – F T
61 2000 – F T
61 eleven – F T
years years -s F F
years years -s F F
years years -s F F

Table 1: The tuples constructed for the instances of “Vinken”, “61” and “years” from Sentence (1). The
elements of each tuple are the target word, sampled substitute, suffix, capitalization, and number features.

where p̄ represents empirical probabilities (frequencies from the training data), dw,f is the distance be-
tween the embeddings �(w) and  (f) and Z =

P
w,f p̄(w)p̄(f)e�d2

w,f is a normalization constant.
Starting with random vectors for each distinct value of w and f , we use stochastic gradient ascent to
move the embedding vectors around to maximize the likelihood given by this model. Calculating the
normalization constant Z is the most expensive part of this procedure. We solve this problem following
(Maron et al., 2010) who suggest that a constant Z approximation can be used if the embedding vectors
are kept on the unit sphere.

As Table 1 shows, considering the target word and its contextual, morphological and orthographic
features gives us more than two variables. Yatbaz et al. (2012) adopt the two variable CODE algorithm
to this multi-variable case in an ad-hoc manner by considering the target word as w and all other features
as distinct f values. We implement the multi-variable extension of CODE suggested by (Globerson et
al., 2007) (Section 6.2) which optimizes the following likelihood function:

`(�, (1), . . . , (K)) =
KX

i=1

X
w,f (i)

p̄(w, f (i)) log p(w, f (i))

where w are the target words, � are the embeddings of target words, K is the number of different types
of features4, f (i) are the values of the i’th feature, and  (i) are the embeddings for the values of the i’th
feature. This extension can be seen as a set of K bivariate CODE models p(w, f (i)) that share the same
target word embeddings �(w) but build their own feature embeddings  (i)(f (i)).

Step 4 constructs a vector representation for each word instance with the concatenation of its word
type embedding and the average of its r substitute embeddings. If the original embeddings are in d
dimensional space, this results in a 2d dimensional vector representing an instance.

Step 5 clusters these 2d dimensional instance vectors using a modified k-means algorithm with smart
initialization (Arthur and Vassilvitskii, 2007) and assigns each instance to one of k clusters.

3 Experiments

In this section we present our instance-based POS induction experiments. Section 3.1 describes the accu-
racy metrics that we use to evaluate our results. Section 3.2 details the test corpus and the experimental
parameters used in the English experiments and compares our results with previous work. Section 3.3
compares the performance of type and instance based systems on ambiguous words. Finally, Section 3.4
extends the language and corpus coverage by applying the best performing instance based models to 19
corpora in 15 languages.

4For example the number of features K = 4 in Table 1: Subst, Suf, Cap, and Num.
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Model MTO VM
Clark (2003) .712 .655
Christodoulopoulos et al. (2011) .728 .661
Berg-Kirkpatrick et al. (2010) .755 -
Christodoulopoulos et al. (2010) .761 .688
Blunsom and Cohn (2011) .775 .697
Yatbaz et al. (2012) .8023 (.0070) .7207 (.0041)
Instance based (Sec. 2) .7952 (.0030) .6908 (.0027)

Table 2: Summary of results with MTO and VM scores for POS induction on the Penn Treebank. Stan-
dard errors are given in parentheses when available. All the models incorporate orthographic and mor-
phological features. Berg-Kirkpatrick et al. (2010) and Christodoulopoulos et al. (2010) use instance
based models.

3.1 Evaluation

We report many-to-one and V-measure scores for our experiments as suggested in (Christodoulopoulos
et al., 2010). The many-to-one (MTO) evaluation maps each cluster to its most frequent gold tag and
reports the percentage of correctly tagged instances. The MTO score can be increased by simply increas-
ing number of clusters, thus the number of clusters is fixed to match the number of gold tags in each
experiment. The V-measure (VM) (Rosenberg and Hirschberg, 2007) is an information theory motivated
metric that calculates the harmonic mean of completeness and homogeneity of the clusters. Complete-
ness of a cluster is maximized when all instances of a gold-tag are grouped into the same cluster and the
homogeneity is maximized when the members of a cluster belong to the same gold-tag.

3.2 Experimental Settings and Results

To make a direct comparison with previously published results, the Wall Street Journal Section of the
Penn Treebank was used as the test corpus (1,173,766 instances, 49,206 unique tokens) for English
experiments. PTB uses 45 part-of-speech tags which we used as the gold standard for evaluation in our
experiments.

To compute substitutes in a given context we trained a language model using the ukWaC corpus (⇡
2 billion tokens) constructed by crawling the “.uk” Internet domain (Ferraresi et al., 2008)5. We used
SRILM (Stolcke, 2002) to build a 4-gram language model with interpolated Kneser-Ney discounting.
Words that were observed less than 2 times in the language model training data were replaced by <unk>
tags, which gave us a vocabulary size of 4,254,946. The perplexity of the 4-gram language model on
the PTB is 303 and the unknown word rate is 0.008. For computational efficiency only the top 100
substitutes and their probabilities were computed for each position in the PTB using the FASTSUBS

algorithm (Yuret, 2012). We use the same orthographic features defined in (Yatbaz et al., 2012) and
generated morphological features using the unsupervised algorithm Morfessor (Creutz and Lagus, 2005).

The experiments were run using the following default settings (unless otherwise stated): (1) each
word was kept with its original capitalization; (2) 90 substitutes sampled per instance; (3) the learning
rate parameters for S-CODE were set to '0 = 50, ⌘0 = 0.2; (4) S-CODE convergence threshold, the log-
likelihood difference between two consecutive iterations, was set to 0.001; (5) the S-CODE dimensions
and Z̃ were set to 25 and 0.166, respectively; (6) a modified k-means algorithm with smart initialization
was used (Arthur and Vassilvitskii, 2007); (7) the number of k-means restarts was set to 128 to improve
clustering and reduce variance.

Each experiment was repeated 10 times with different random seeds and the results are reported with
standard errors in parentheses or error bars in graphs. Table 2 summarizes all the results reported in this
section and the ones we cite from the literature.

5We use the Penn Treebank Tokenizer to make the training data compatible with PTB.
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3.3 Word vs. Instance-Based Induction
Table 2 shows that the overall many-to-one accuracy of our instance based induction system is compa-
rable to (Yatbaz et al., 2012)6 and significantly higher than the other published results on the Penn Tree-
bank. However Figure 1 in the introduction suggests that this summary hides the large difference in the
answers given by the different systems. In this section we compare the performance of our instance-based
model to the word-based model of (Yatbaz et al., 2012) on word types at different levels of ambiguity
using the English Penn Treebank results.

We propose the gold-tag perplexity of a word as a measure of its degree of ambiguity defined as:

GP (w) = 2H(pw) = 2�
P

t pw(t)log2pw(t)

where w is a word, t is a tag, pw is the gold POS tag distribution of the word w and H(pw) is the entropy
of the pw distribution. A GP of 1 for a word w indicates that w is always associated with the same POS
tag. A word with N equally probable tags would have a GP of N .

Figure 1 plots the gold-tag perplexity versus the smoothed MTO accuracy for the word-based and
the instance-based POS induction systems on the Penn Treebank. To compose the plot, we found the
best mapping from the induced clusters to the gold-standard tags, then we computed the MTO accuracy
for each word using this mapping and plotted the MTO as a function of the word’s GP . We used the
Nadaraya-Watson kernel regression estimate (Nadaraya, 1964; Watson, 1964) with normal kernel of
bandwidth 1.0 to obtain smooth regression lines. The figure shows that the performance of the instance-
based induction model does not degrade as much as the word-based model as the ambiguity of the words
increase. However, only 14.94% of the instances in the PTB consists of words with GP greater than 1.5
and 45.71% consists of words with GP exactly 1. Thus, the overall accuracy numbers do not adequately
reflect the improvement on highly ambiguous words.

3.4 Multilingual Experiments
Following Christodoulopoulos et al. (2011), we extend our experiments to 8 languages from MULTEXT-
East (Bulgarian, Czech, English, Estonian, Hungarian, Romanian, Slovene and Serbian) (Erjavec, 2004)
and 10 languages from the CoNLL-X shared task (Bulgarian, Czech, Danish, Dutch, German, Por-
tuguese, Slovene, Spanish, Swedish and Turkish) (Buchholz and Marsi, 2006).

To sample substitutes, we trained language models of Bulgarian, Czech, Estonian, Romanian, Danish,
German, Dutch, Portuguese, Spanish, Swedish and Turkish with their corresponding TenTen corpora
(Jakubı́ček et al., 2013), and Hungarian, Slovene and Serbian with their corresponding Wikipedia dump
files7. Serbian shares a common basis with Crotian and Bosnian therefore we trained 3 different language
models using Wikipedia dump files of Serbian together with these two languages and measured the
perplexities on the MULTEXT-East Serbian corpus. We chose the Croatian language model since it
achieved the lowest perplexity score and unknown word ratio on MULTEXT-East Serbian corpus. We
use ukWaC corpora to train English language models.

We used the default settings in Section 3.2 and incorporated only the orthographic features8. Extracting
unsupervised morphological features for languages with different characteristics would be of great value,
but it is beyond the scope of this paper. For each language the number of induced clusters is set to the
number of tags in the gold-set. To perform meaningful comparisons with the previous work we train and
evaluate our models on the training section of MULTEXT-East9 and CONLL-X languages (Lee et al.,
2010).

Table 3 presents the performance of our instance based model on 19 corpora in 15 languages together
with the corresponding best published results from ⇧(Yatbaz et al., 2012), ‡(Blunsom and Cohn, 2011),

6The difference is not statistically significant at p = 0.05.
7Latest Wikipedia dump files are freely available at http://dumps.wikimedia.org/ and the text in the dump files

can be extracted using WP2TXT (http://wp2txt.rubyforge.org/)
8All corpora (except German, Spanish and Swedish) label the punctuation marks with the same gold-tag therefore we add

an extra punctuation feature for those languages.
9Languages of MULTEXT-East corpora do not tag the punctuations, thus we add an extra tag for punctuations to the tag-set

of these languages.
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Language Tags
Best

Published
MTO VM

Instance
Based

MTO / VM

W
SJ English 45 .802 / .721 ⇧ .795 / .691

M
U

LT
E

X
T-

E
as

t Bulgarian 12+1 .665 / .556? .664 / .513
Czech 12+1 .642 / .539? .705 / .511
English 12+1 .733 / .633? .835 / .661
Estonian 11+1 .644 / .533? .643 / .457
Hungarian 12+1 .682 / .548? .647/ .459
Romanian 14+1 .611 / .523? .660 / .528
Slovene 12+1 .679 / .567? .667 / .451
Serbian 12+1 .641 / .510† .594/ .402

C
oN

L
L

-X
Sh

ar
ed

Ta
sk Bulgarian 54 .704 / .596† .751 / .583

Czech 12 .701‡ / .484? .701 / .486
Danish 25 .761‡ / .591? .761 / .584
Dutch 13 .711‡ / .547? .712 / .537
German 54 .744? / .630† .749 / .618
Portuguese 22 .785‡ / .639? .782 / .607
Slovene 29 .642? / .539† .638 / .469
Spanish 47 .788‡ / .632? .753/ .602
Swedish 41 .682 / .589† .681 / .546
Turkish 30 .628 / .408? .637 / .401

Table 3: The MTO and VM scores on 19 corpora in 15 languages together with number of induced
clusters. Statistically significant results shown in bold (p < 0.05).

?(Christodoulopoulos et al., 2011) and †(Clark, 2003). All of the state-of-the-art systems in Table 3 are
word-based and incorporate morphological features.

Our MTO results are lower than the best systems on all of data-sets that use language models trained
on the Wikipedia corpora. ukWaC and TenTen corpora are cleaner and tokenized better compared to
the Wikipedia corpora. These corpora also have larger vocabulary sizes and lower out-of-vocabulary
rates. Thus language models trained on these corpora have much lower perplexities and generate better
substitutes than the Wikipedia based models. Our model has lower VM scores in spite of good MTO
scores on 14 corpora which is discussed in Section 4.

Among the languages for which clean language model corpora were available, our model performs
comparable to or significantly better than the best systems on most languages. We show significant
improvements on MULTEXT-East Czech, Romanian, and CoNLL-X Bulgarian. Our model achieves the
state-of-the-art MTO on MULTEXT-East English and scores comparable MTO with the best model on
WSJ. Our model shows comparable results on MULTEXT-East Bulgarian and Estonian, and CoNLL-
X Czech, Danish, Dutch, German, Portuguese, Swedish and Turkish in terms of the MTO score. One
reason for comparably low MTO on Spanish might be the absence of morphological features.

4 Discussion

In this section we perform further analysis on the clustering output of our model. The example below
illustrates the advantage of the instance-based approach:

(1) . . . it will also offer buyers the option . . .
Substitutes: give, help, attract

(2) The offer is being launched . . .
Substitutes: campaign, project, scheme

The word offer is a verb in the first sentence and a noun in the second one. Clustering the word
embeddings can not distinguish the different occurrences of the words (Yatbaz et al., 2012). On the
other hand, the substitutes of offer in the two sentences can disambiguate the correct category of the
corresponding occurrences. In our actual experiments our instance based representation distinguishes
the instances of offer as noun (cluster 26 and 12) and verb (cluster 35).

To illustrate how words are distributed in the induced clusters, we compare the most frequent clusters
of our model in Section 3 with the most frequent gold-tags of PTB in Figure 2.
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Figure 2: Each row corresponds to a gold tag and each column is an induced tag in the Hinton diagram
above. The area of each square is proportional to the joint probability of the given tag and cluster.

The low VM performance of our instance-based model compared to the state-of-the-art word-based
systems on some languages is due to the completeness part of the VM score. The Hinton diagram in
Figure 2 shows that large gold-tag groups are split into several clusters based on the substitutability of
words in that particular cluster (rows of the Hinton diagram). For example, proper nouns (NNP) are
split into three major clusters such that titles like Mr. or person names are in (40), nationality or country
related words like Japanese or U.S are in (22), and the rest of the proper nouns in cluster (30).

The gold-tags of PTB, on the other hand, do not always respect whether words with the same tag
are substitutable for one another. Freudenthal et al. (2005) argues, from the child language acquisition
perspective, that the standard linguistic definition of syntactic groups requires the substitutability of
words in a syntactic category. Word pairs that are placed in the same category in the PTB, such as “Mr.”
and “Friday”, “be” and “run”, “not” and “gladly”, “of” and “into” are clearly not generally substitutable.

Another noteworty example of completeness error is that our model splits the punctuation mark (,)
class of PTB into the clusters 15 and 43 based on the different usage patterns. The majority of the
(,) instances in cluster 15 are used in relative clauses, reported speech clauses or conjunctions while
cluster 43 generally consists of (,) instances that are used in non-essential clauses (ex: Time, the largest
newsweekly, . . . ).

5 Contributions

Our main contributions can be summarized as follows:

• We introduced an instance based POS induction system that can handle ambiguous words and is
competitive with the word-based systems in overall accuracy.

• We extended the S-CODE framework to handle more than two categorical variables.

• Our instance based system scores 79.5% many-to-one accuracy on the Penn Treebank and achieves
results that are significantly better than or comparable with the best published systems on 15 out of
19 corpora in 15 languages.

• All our code and data, including the substitute distributions and word vectors for the PTB,
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MULTEXT-East and CoNLL-X shared task corpora are available at the authors’ website at
https://github.com/ai-ku/upos_2014.
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Miloš Jakubı́ček, Adam Kilgarriff, Vojtěch Kovář, Pavel Rychlỳ, and Vı́t Suchomel. 2013. The tenten corpus
family. In International Conference on Corpus Linguistics, Lancaster.

Mark Johnson. 2007. Why doesn’t EM find good HMM POS-taggers? In Proceedings of the 2007 Joint Confer-
ence on Empirical Methods in Natural Language Processing and Computational Natural Language Learning
(EMNLP-CoNLL), pages 296–305, Prague, Czech Republic, June. Association for Computational Linguistics.

Michael Lamar, Yariv Maron, and Elie Bienenstock. 2010a. Latent-descriptor clustering for unsupervised pos
induction. In Proceedings of the 2010 Conference on Empirical Methods in Natural Language Processing,
EMNLP ’10, pages 799–809, Stroudsburg, PA, USA. Association for Computational Linguistics.

Michael Lamar, Yariv Maron, Mark Johnson, and Elie Bienenstock. 2010b. Svd and clustering for unsupervised
pos tagging. In Proceedings of the ACL 2010 Conference Short Papers, pages 215–219, Uppsala, Sweden, July.
Association for Computational Linguistics.

Yoong Keok Lee, Aria Haghighi, and Regina Barzilay. 2010. Simple type-level unsupervised pos tagging. In
Proceedings of the 2010 Conference on Empirical Methods in Natural Language Processing, EMNLP ’10,
pages 853–861, Stroudsburg, PA, USA. Association for Computational Linguistics.

Mitchell P. Marcus, Beatrice Santorini, Mary Ann Marcinkiewicz, and Ann Taylor. 1999. Treebank-3. Linguistic
Data Consortium, Philadelphia.

Yariv Maron, Michael Lamar, and Elie Bienenstock. 2010. Sphere embedding: An application to part-of-speech
induction. In J. Lafferty, C. K. I. Williams, J. Shawe-Taylor, R.S. Zemel, and A. Culotta, editors, Advances in
Neural Information Processing Systems 23, pages 1567–1575.

Elizbar A Nadaraya. 1964. On estimating regression. Theory of Probability & Its Applications, 9(1):141–142.

A. Rosenberg and J. Hirschberg. 2007. V-measure: A conditional entropy-based external cluster evaluation
measure. In Proceedings of the 2007 Joint Conference on Empirical Methods in Natural Language Processing
and Computational Natural Language Learning, pages 410–420.

H. Schütze and J. Pedersen. 1993. A Vector Model for syntagmatic and paradigmatic relatedness. In Proceedings
of the 9th Annual Conference of the University of Waterloo Centre for the New OED and Text Research, Oxford,
England.

Hinrich Schütze. 1995. Distributional part-of-speech tagging. In Proceedings of the seventh conference on
European chapter of the Association for Computational Linguistics, EACL ’95, pages 141–148, San Francisco,
CA, USA. Morgan Kaufmann Publishers Inc.

Andreas Stolcke. 2002. Srilm-an extensible language modeling toolkit. In Proceedings International Conference
on Spoken Language Processing, pages 257–286, November.

Kristina Toutanova, Dan Klein, Christopher D. Manning, and Yoram Singer. 2003. Feature-rich part-of-speech
tagging with a cyclic dependency network. In Proceedings of the 2003 Conference of the North American
Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1, NAACL
’03, pages 173–180, Stroudsburg, PA, USA. Association for Computational Linguistics.

2312



Geoffrey S Watson. 1964. Smooth regression analysis. Sankhyā: The Indian Journal of Statistics, Series A, pages
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