
Proceedings of COLING 2014, the 25th International Conference on Computational Linguistics: Technical Papers,
pages 2018–2029, Dublin, Ireland, August 23-29 2014.

Generating Acrostics via Paraphrasing and Heuristic Search

Benno Stein Matthias Hagen Christof Bräutigam
Bauhaus-Universität Weimar, Germany

<first name>.<last name>@uni-weimar.de

Abstract
We consider the problem of automatically paraphrasing a text in order to find an equivalent text that
contains a given acrostic. A text contains an acrostic, if the first letters of a range of consecutive
lines form a word or phrase. Our approach turns this paraphrasing task into an optimization
problem: we use various existing and also new paraphrasing techniques as operators applicable to
intermediate versions of a text (e.g., replacing synonyms), and we search for an operator sequence
with minimum text quality loss. The experiments show that many acrostics based on common
English words can be generated in less than a minute. However, we see our main contribution in
the presented technology paradigm: a novel and promising combination of methods from Natural
Language Processing and Artificial Intelligence. The approach naturally generalizes to related
paraphrasing tasks such as shortening or simplifying a given text.

1 Introduction

Given some text, paraphrasing means to rewrite it in order to improve readability or to achieve other
desirable properties while preserving the original meaning (Androutsopoulos and Malakasiotis, 2010).
The paper in hand focuses on a specific paraphrasing problem: rewriting a given text such that it encodes
a given acrostic. A text contains an acrostic if the first letters of a range of consecutive lines form a
word or phrase read from top to bottom. A prominent and very explicit example of former Governor
Schwarzenegger is shown in Figure 1 (see the third and fourth paragraphs). Schwarzenegger himself
characterized the appearance of that acrostic a “wild coincidence”.1 However, such a coincidence is
highly unlikely: Using the simplistic assumption that first letters of words are independent of each other
if more than ten words are in between (line length in the Schwarzenegger letter) and calculating with
the relative frequencies of first letters in the British National Corpus (Aston and Burnard, 1998), the
probability for the acrostic in Figure 1 can be estimated at 1.15 · 10−12. Typically, a given text will not
contain a given acrostic but has to be reformulated using different wording or formatting to achieve the
desired effect. Thus we consider the purposeful generation of acrostics a challenging benchmark problem
for paraphrasing technology, which is subject to soft and hard constraints of common language usage.

The paper shows how heuristic search techniques are applied to solve the problem. Different paraphras-
ing techniques are modeled as operators applicable to paraphrased versions of a text. By pruning the
so-formed search space and by employing a huge corpus of text n-grams for the possible operators, we
are able to generate acrostics in given texts. Our algorithmic solution is a novel combination of techniques
from Natural Language Processing and Artificial Intelligence. We consider such combinations as a very
promising research direction (Stein and Curatolo, 2006; Sturtevant et al., 2012), and we point out that
the problem of acrostic generation serves as a serious demonstration object: the presented model along
with the heuristic search approach generalizes easily to other paraphrasing tasks such as text shortening,
improving readability, or e-journalism.

2 Related Work and Problem Definition

Rewriting a given text in order to “encode” an acrostic is a paraphrasing problem, which in turn is studied
in the domain of computational linguistics and natural language processing. We review relevant literature
This work is licenced under a Creative Commons Attribution 4.0 International License. Page numbers and proceedings footer
are added by the organizers. License details: http://creativecommons.org/licenses/by/4.0/
1
www.huffingtonpost.com/2009/10/30/schwarzenegger-f-bomb-in_n_340579.html, last accessed: June 12, 2014.

2018

To the Members of the Californian State Assembly:

I am returning Assembly Bill 1178 without my signature.

F or some time now I have lamented the fact that major issues are overlooked while many
u nnecessary bills come to me for consideration. Water reform, prison reform, and health
c are are major issues my Administration has brought to the table, but the Legislature just
k icks the can down the alley.

Y et another legislative year has come and gone without the major reforms Californians
o verwhelmingly deserve. In light of this, and after careful consideration, I believe it is
u nnecessary to sign this measure at this time.

Sincerely,
Arnold Schwarzenegger

Figure 1: Excerpt from a letter of former Governor Arnold Schwarzenegger to the Californian State
Assembly in October 2009. The third and fourth paragraphs contain the acrostic “F∗∗∗ You”.

of the topic and highlight techniques that will be employed in our work.
An important branch of the paraphrasing literature focuses on analyses with fixed corpora. Such corpora

typically are parallel in the sense that they contain different formulations of the same facts (Barzilay and
McKeown, 2001; Barzilay and Lee, 2003; Callison-Burch, 2008). These “facts” can be news articles on
the same event (Clough et al., 2002; Dolan and Brockett, 2005), different translations of a source text to a
target language (Pang et al., 2003), or cross-lingual parallel corpora (Bannard and Callison-Burch, 2005).
As most of the early parallel corpora were constructed manually (especially the judgments of whether a
pair of sentences forms a paraphrase), there are two shortcomings. First, the obtained paraphrases are
usually specific to the domain covered in the corpus (e.g., showbiz news) and often do not generalize well.
Second and probably more severe is the fact that manually building parallel corpora is very expensive,
such that the available ones are rather small: the METER corpus contains only 1717 texts on legal issues
and showbiz (Clough et al., 2002), the MSRP corpus contains only 5801 sentence pairs (Dolan and
Brockett, 2005). Recently, new methods employ machine learning techniques to automatically build larger
paraphrase collections from parallel corpora (Ganitkevitch et al., 2011; Ganitkevitch et al., 2013; Metzler
et al., 2011; Metzler and Hovy, 2011). We include the paraphrase database (Ganitkevitch et al., 2013)—a
database of extracted patterns from such large scale corpora—as one source of potential paraphrases in
our algorithm.

Compared to the large body of literature that “extracts” paraphrases from (parallel) corpora, there is
relatively little work on automatically paraphrasing a given text. Some of the early generation methods
are based on rules that encode situations wherein a reformulation is possible (Barzilay and Lee, 2003). A
problem with rules is that often the rather complicated patterns extracted from text corpora are hardly
applicable to a given to-be-paraphrased text: manually created corpora are simply too small and machine
generated paraphrasing rules often do not match in a given text. Other early methods use machine
translation (Quirk et al., 2004). However, the need for large and expensive parallel manual translation
corpora cannot be circumvented by using multiple resources (Zhao et al., 2008).

Another branch of paraphrasing methods is based on large thesaurus resources such as WordNet (Fell-
baum, 1998). The idea is to insert synonyms into a text when the context fits (Bolshakov and Gelbukh,
2004; Kauchak and Barzilay, 2006). The most recent approaches are statistics-based (Chevelu et al., 2009;
Chevelu et al., 2010; Zhao et al., 2009; Burrows et al., 2013).

Compared to the existing research, we have a more difficult use case here. Existing paraphrase
generation focuses on sentence paraphrasing, while we have to consider a complete text that has to be
rewritten/reformatted in order to contain a given acrostic. We will employ the above shown state-of-the-art
paraphrasing procedures as ”operators” in our approach. This new problem setting of applying different
operators to a complete text forms a search problem with a huge search space. In order to deal with
this search space, we apply powerful search heuristics from Artificial Intelligence. The combination of
heuristic search with established text level paraphrasing techniques represents a new approach to tackle
problems in computational linguistics. The acrostic generation problem is defined as follows:

2019

ACROSTIC GENERATION

Given: (1) A text T and an acrostic x .
(2) A lower bound lmin and an upper bound lmax on the desired line length.

Task: Find a paraphrased version T ∗ of T in monospaced font that encodes x in some
of its lines when possible. Each line of T ∗ has to meet the length constraints.

3 Modeling Paraphrasing as Search Problem

This section shows how to model paraphrasing in general and ACROSTIC GENERATION in particular as
a search problem (Pearl, 1984). The search space is a universe T of candidate texts for which we can
devise, at least theoretically, a systematic search strategy: if T is finite, each element n ∈ T is analyzed
exactly once. The elements in T represent states (nodes), and there is a limited and a-priori known set of
possibilities (edges, paraphrasing operators) to get from a node n to an adjacent or successor node ni. A
paraphrasing operator φ provides a number of parameters that control its application. Each state n ∈ T
is considered an acrostic (sub)problem; the dedicated state s ∈ T represents the original problem while
Γ ⊂ T is the set of solution nodes that have no problem associated with. The following subsections
will outline important properties of the search space and introduce a suited cost measure to control the
exploration of T .

3.1 Search Space Structure
Solving an instance of ACROSTIC GENERATION under a so-called state-space representation means to
find a path from s, which represents the original text T , to some goal state γ ∈ Γ. The problem of finding
an acrostic consists of tightly connected subproblems (finding subsequences of the acrostic) that cannot
be solved independently of each other. Most puzzles such as Rubik’s cube are of this nature: changing a
decision somewhere on the solution path will affect all subsequent decisions. By contrast, a so-called
problem-reduction representation will exploit the fact that subproblems can be solved independently of
each other. Many tasks of logical reasoning and theorem proving give rise to such a structure: given a set
of axioms, the lemmas required for a proof can be derived independently, which in turn means that the
sought solution (a plan or proof) is ideally represented by a tree.

Searching T under a state-space representation means to unfold a tree whose inner nodes link to
successor nodes that encode alternative decisions; hence these inner nodes are also called OR-nodes. Each
path from s that can be extended towards a goal state γ forms a solution candidate. Similarly, searching
T under a problem-reduction representation also means to unfold a tree—however, the tree’s inner nodes
must be distinguished as AND-nodes and OR-nodes, whereas the successors of an AND-node encode
subproblems all of which have to be solved. A solution candidate then is a tree comprised of (1) the root s,
(2) OR-nodes with a single successor, and (3) AND-nodes with as many successors as subproblems all of
which are characterized by the fact of being extensible towards goal states in Γ. Figure 2 contrasts both
search space structures.

Under either representation, OR-graphs as well as AND-OR-graphs, the application of a sequence of

⊥
γ

[T, x] Problem specification
Dead end: node with unsolvable problem
Goal state: no problem associated with node

OR-node AND-node

(a) (b)

Legend:

Solution
candidate

...

n4 n6n5

n1

s

n3n2

[T, x]

[T', y]

[T*]

...

... γ ⊥

n4 n6n5

n1

s

n2

[T, x]

[Ty , y]

⊥

...

[Tz , z]

γγ [Ty*] *][Tz...

Figure 2: (a) State-space representation (OR-graph) versus (b) Problem-reduction representation (AND-
OR-graph). OR-nodes encode alternative decisions, while AND-nodes decompose a problem into sub-
problems all of which are to be solved.

2020

operators will easily lead to situations where states are revisited—precisely: are generated again. Search
algorithms maintain so-called OPEN- and CLOSED-lists to manage the exploration status of generated
nodes. However, because of the intricate state encoding, which must inform about the effect of all applied
operators from s to an arbitrary node, the exponentially growing number of nodes during search, and the
necessity of efficiently querying these lists, sophisticated data structures such as externalized hash tables
and key value stores are employed. Typically, these data structures are tailored to the problem domain
(here: to paraphrasing), and they model heuristic access strategies to operationalize a probabilistically
controlled trade-off between false positive and true negative answers to state queries.

We have outlined the different search space structures since ACROSTIC GENERATION may show an OR-
graph puzzle nature at first sight: paraphrasing at some position will affect all following text. Interestingly,
there is a limited possibility to introduce “barriers” in the text, which allows for an AND-OR-graph
modeling and hence for an isolated subproblem treatment. Examples include paraphrasing operators that
do not affect line breaks, or acrostics consisting of several words and thus spanning several paragraphs.

Since in general the underlying linguistic considerations for the construction and maintenance of such
barriers are highly intricate and complex, we capture this structural constraint probabilistically as shown
in Equation (1). The equation models the problem difficulty or effort for acrostic generation, E, and
introduces Py◦z(|x|), which quantifies the probability for the event that an acrostic x can be treated
independently as two partial acrostics y and z, where x = yz.

E(x) =

 e(x) If |x| = 1.

Py◦z(|x|) ·
(
E(y) + E(z)

)
+ (1− Py◦z(|x|)) · E(y) · E(z) If |x| > 1.

(1)

Remarks. The effort for generating a single-letter acrostic of length 1 is e(x), with e(x) ≥ 1. Based on
e(x), we recursively model the true effort E(x) for generating an acrostic x = yz as follows: as additive
effort if the generation of the acrostics y and z can be done independently, and as multiplicative effort
otherwise. Observe how Py◦z controls the search space structure: if Py◦z = 0 for all partitionings of
x into y and z, one obtains a pure state-space representation for ACROSTIC GENERATION. Similarly,
the other extreme with Py◦z = 1 results in a series of |x| letter generation problems that can be solved
independently of each other.

As an estimate ê(x) for e(x) we suggest the multiplicative inverse of the occurrence probabilities
of the first letters in the English language, as computed from the British National Corpus (BNC). The
BNC is a 100 million word collection of written and spoken language from a wide range of sources,
designed to represent a wide cross-section of current British English (Aston and Burnard, 1998). The
BNC probabilities vary between 0.115719 for the letter “s” and 0.00005 for the letter “z”. As an estimate
for Py◦z we suggest the N(5, 0.5) distribution to model the paragraph lengths in T or, equivalently, the
number of characters of the (English) words in x. These choices give rise to Ê(x), the estimated effort for
generating an acrostic x. Ê(x) is used to assess the (residual) problem complexity and, under a maximum
likelihood approach, models the expected search effort. There is a close relation between the effort
estimate Ê and the quality estimate Q̂ introduced below, which will be exploited later on, in Equation (3).

3.2 Cost Measure Structure
Cost measures—equivalently: merit measures—form the heart of systematic search strategies and de-
termine whether an acceptable solution of a complex problem can be heuristically constructed within
reasonable time. Here, we refer to general best-first search strategies as well as variants that relax strict
admissibility. As a working example consider the following text T about Alan Turing taken from the
English Wikipedia, where the task is to generate the acrostic x = Turing with lmin = 55 and lmax = 60.

Alan Mathison Turing was a British mathematician, logician,
cryptanalyst and computer scientist. He was highly influential in
the development of computer science, giving a formalization of the
concepts of algorithm and computation with the Turing machine,
which can be considered a model of a general purpose computer.

2021

A possible solution T ∗ (a paragraph’s last line may be shorter than lmin) :

T he British mathematician Alan Mathison Turing was also an
u nrivaledlogician,cryptanalystandcomputerscientist.He
r evolutionized the development of computer science, giv-
i ng a formalization of the concepts of algorithm and defi-
n ite computation with the Turing machine, which can be re-
g arded a model of a general purpose computer.

T ∗ is of a high quality though it introduces an exaggerating tone, this way violating Wikipedia’s
neutrality standard. Also note that the applied paraphrasing operators vary in their quality, which is rooted
in both the kind and the context of the operators. Table 1 (left) shows a selection of the operators, some of
which are applied in a combined fashion. Section 4 introduces the operators in greater detail.

To further formalize the quantification of a cost measure C or a merit measure Q, we stipulate on the
following properties:

1. The quality of the original text T cannot be improved. Each paraphrasing operator φ introduces
unavoidable deficiencies in T .

2. The overall quality of a solution T ∗ depends on the quality of all applied paraphrasing operators.

3. Following readability theory and relevant research, the severity of text deficiencies—here introduced
by a paraphrasing operator φ—has a disproportionate impact on the text quality (Meyer, 2003).

4. To render different problems and solutions comparable, the achieved quality of a solution T ∗ has to
be normalized.

Equation (2) below shows the basic structure of Q, the proposed, unnormalized merit measure. Its
optimization yields Q∗. Q∗(n) assigns to a node n ∈ T the maximum paraphrasing quality of a text T ∗

that contains the partial acrostic associated with n. Likewise, Q∗(s) characterizes the quality of the
optimum solution for solving ACROSTIC GENERATION.

1
Q∗(n)

=

0 If n ∈ Γ.

min
i

{ 1
q(n, ni)

+
1

Q∗(ni)

}
Otherwise.

(2)

Remarks. The state (node) ni denotes a direct successor of the state (node) n in the search space T .
Associated with ni is a text resulting from the application of a paraphrasing operator φ to the text associated
with n, whereas q(n, ni) quantifies the local quality achieved with φ. The measure in Equation (2) is
both of an additive form and formulated as a minimization problem. As shown in the following, it can
be reformulated for a best-first algorithm scheme, ensuring admissibility under a delayed termination
condition. Also note that the merit measure operationalizes the above Property 3 via the harmonic mean
computation. Accordingly, we obtain a normalized overall quality Q̄∗ given an acrostic x as Q̄∗ = |x|·Q∗.

To turn Equation (2) into actionable knowledge, the quality q(n, ni) of a paraphrasing operator φ when
moving from n to a successor ni needs to be quantified. We employ for q the domain [0; 1], where 0 and 1
encode the worst and best achievable quality respectively. By construction the normalized quality Q̄∗ will
then lie in the interval [0; 1] as well, thus greatly simplifying the interpretation of the measure.

Table 1 (right) shows values for the local quality of the operators in the Alan Turing example, which
are derived from linguistic quality considerations and the experimental analysis detailed in Section 5. The
comment column argues the linguistic meaningfulness. If we agree on q = 1.0 for the first two lines of
the generated acrostic x = Turing and recursively apply the merit measure defined in Equation (2), we
obtain Q = 0.127 as unnormalized and Q̄ = |x| ·Q = 0.76 as normalized overall quality.

To make Equation (2) applicable as cost estimation heuristic f(n) in a best-first algorithm scheme,
Equation (3) below unravels its recursive structure in the usual way as f(n) = g(n)+h(n). The semantics
is as follows: under an optimistic estimate h(n) (= underestimating costs or overestimating merits) the

2022

Table 1: Left: Paraphrasing operators in the Alan Turing example. Right: Values for the local quality of
the respective operators, which entail the normalized overall quality Q̄ = 0.76 for the example.

Line Operator φ Text→ paraphrased text

3 synonym highly influential→revolutionized
4 hyphenation giving→ giv-ing
5 tautology computation→ defi-nite computation
6 synonym considered→ re-garded

q(n, ni) Comment

0.9 stylistically well, exaggerating tone
0.6 unexpected hyphen for a short word
0.6 tautology arguable, hyphen unusual
0.7 synonym suited, hyphen acceptable

total cost (the overall quality) for solving ACROSTIC GENERATION via a path along node n is always
larger (smaller) than f(n). In particular, g(n) accumulates the true cost (the achieved quality) for the
partial acrostic via a concrete path s = n0, n1, . . . , nk = n, while h(n) gives an underestimation of the
cost (overestimation of the quality) for the remaining part of the acrostic. Observe that the additive form
of Equation (2) guarantees the parent discarding property (Pearl, 1984), which states that no decision on a
path from n to a goal state γ can change the value for g(n).

A tricky part is the construction of h(n), which, on the one hand, may ensure admissibility, while, on
the other hand, should be as close as possible to the real cost. Here, the measure E(x) for the problem
difficulty from Equation (1) comes into play, which models the problem decomposability and which
informs us about the largest remaining subproblem (= the depth of the deepest remaining OR-graph) when
solving x. Without loss of generality, admissibility is ensured if (a) the probability Py◦z used in Ê(x)
is biased towards decomposability, and if (b) we assume that the remaining acrostic x can be solved by
always applying the cheapest (maximum quality-preserving) operator qmax.

1
Q̂(n)︸ ︷︷ ︸
f(n)

=
k∑

i=1

1
q(ni−1, ni)︸ ︷︷ ︸
g(n)

+ logK

(
Ê(τ(n))

)
· 1
qmax︸ ︷︷ ︸

h(n)

, where n0 = s, nk = n (3)

Remarks. τ(n) denotes the remaining acrostic x that is associated with node n ∈ T . The logarithm
base K serves for normalization purposes with regard to the BNC letter frequencies ê(x), |x| = 1,
which are used within Ê(x) in Equation (1). We define K as the multiplicative inverse of the occurrence
probability of the least frequent letter in the remaining acrostic x = τ(n), which gives rise to the inequality
logK(Ê(x)) ≤ |x|. This choice entails two properties: (1) it underestimates the remaining acrostic length
and hence ensures the admissibility characteristic of h(n), and, (2) it yields an increasing accuracy of
h(n) when approaching a goal state in Γ. Finally, we can substitute 1.0 as an upper bound for qmax, again
preserving the admissibility of h(n).

Admissibility, i.e., the guarantee of optimality during best-first search, may not be the ultimate goal: if
h(n) underestimates costs (overestimates merits) too rigorously, best-first search degenerates to a kind
of breadth-first search—precisely: to uniform-cost search. Especially if computing power is a scarce
resource, we may be better off with a depth-preferring strategy. Observe that the logarithm base K in
Equation (3) provides us a means to smoothly vary between the two extremes, namely by choosing K
from [Kmin;Kmax], where Kmin (Kmax) specifies the multiplicative inverse of the occurrence probability
of the most (least) frequent letter in the remaining acrostic x = τ(n).

4 Paraphrasing Operators

Most of the following operators used in our heuristic search process employ state-of-the-art linguistic
tools or are based on standard knowledge from Wikipedia. Table 2 shows information about the role of
individual operators in our experiments from Section 5; the table illustrates also the effort for preparing
(offline) and applying (online) the operators.

2023

4.1 Context-Independent Operators
Line break Since we are dealing with text that should spread over several lines, breaking between lines
is one of the most basic operators. Similarly, it is the most efficient operator, and Column 4 of Table 2
illustrates the performance of the others in relation to this operator. Line breaks are possible at the end of
sentences (i.e., a paragraph break), while a line break in between words is only possible if it falls in the
[lmin; lmax]-window given by the line length constraints.

Hyphenation Related to line breaks are hyphenations. We re-implemented and employ the standard
TEX hyphenation algorithm (Knuth, 1986). Analogous to line breaks, hyphenation is applicable if the line
after hyphenating (and line breaking) has a length in the [lmin; lmax]-window.

Function word synonym Specific groups of so-called synsemantic words can often be replaced by
each other without changing a text’s meaning. We have identified 40 such groups from a list of Sequence
Publishing2 and the Paraphrase Database (Ganitkevitch et al., 2013). Examples are {can, may}, {so, thus,
therefore, consequently, as a result}, and {however, nevertheless, yet}.
Contraction and expansion Some local text changes can be achieved by contracting or expanding for-
mulations like “he’ll” or “won’t”. We have identified 240 such pairs from Wikipedia.3 Other possibilities
are to spell out / contract standard abbreviations and acronyms. We have mined a list of several thousand
such acronyms from the Web.4 Finally, also small numbers can be spelled out or be written as numerals
(e.g., “five” instead of “5”). It is interesting to note that this operator was hardly ever used on successful
paths in our experiments.

Spelling In principle, we want to generate text that is correctly spelled. In certain situations, however, it
can nevertheless be beneficial to introduce some slight mistakes in order to change word lengths or to
generate letters not present in the correctly spelled text. We employ a list of 3 000 common misspellings
mined from Wikipedia5 (e.g., “accidently” instead of “accidentally”). We also include several standard
typos related to computer keyboards (e.g., an “m” is often typed as an “n” and vice versa) as well as
phonetic misspellings (e.g., “f” and “ph” often sound similar). Since the quality score of wrong spellings
tends to be low, this operator has to be treated with care. Especially at the beginning of words, typos are
less common than within words such that we allow typos only within words.

Wrong hyphenation Similar to wrong spellings is the purposeful choice of a wrong hyphenation. As
with wrong spellings the quality score is typically low. We thus employ this operator very carefully,
avoiding for instance syllables on a new line with just two letters. Analogous to correct hyphenation, the
line length has to be in the [lmin; lmax]-window to apply wrong hyphenation. Despite its questionable
quality, this operator is used pretty often in the experiments since it has a very high probability of
“generating” a desired letter.

4.2 Context-Dependent Operators
Synonym For identifying synonyms, WordNet’s synsets (Fellbaum, 1998) is used. Since only a small
subset of the synset members of a to-be-replaced word w is reasonable in the context around w in T ,
we check in the Google n-gram corpus (Brants and Franz, 2006) whether the synonym in fact fits in the
same context. In this regard the public and highly efficient Netspeak API (Stein et al., 2010; Riehmann
et al., 2012) is employed. For example, given “hello world”, the most frequent phrase with a synonym
for world is “hello earth”. The Google n-grams are up to five words long, such that at most four context
words can be checked before or after w. Previous studies showed that more context yields higher quality
synonyms (Metzler and Hovy, 2011; Pasca and Dienes, 2005), so that we use at least two words before or
after w. Higher quality scores are achieved if the context is matched before as well as after w.
2
sequencepublishing.com/academic.html\#function-words, last accessed: June 12, 2014

3
en.wikipedia.org/wiki/List_of_English_contractions\#English, last accessed: June 12, 2014,
en.wikipedia.org/wiki/English_auxiliaries_and_contractions, last accessed: June 12, 2014

4
www.acronymfinder.com, last accessed: June 12, 2014

5
en.wikipedia.org/wiki/Wikipedia:Lists_of_common_misspellings/For_machines, last accessed: June 12, 2014

2024

Table 2: Statistics for the applicability, usage, and effort of single operators. “Application probability”
reports whether an operator is applicable at all at some node, “Usage” reports the application probability
on a solution path, “Effort” reports the (online) application effort as multiple of the fastest operator (the
Line break operator), and “Offline time” reports the preprocessing time in ms per word before the actual
search is started. All numbers are profiled within the experiment setup described in Section 5.

Paraphrasing operator Application probability Usage probability Effort Offline time
(in %) (in %) (multiple of Line break) (in ms per word)

Line break 16.14 21.13 1.00 0.00
Hyphenation 5.48 9.38 1.22 1.38
Function word synonym 1.43 2.57 1.33 0.01
Contraction and expansion 0.29 0.00 1.93 0.02
Spelling 6.98 1.57 1.18 0.11
Wrong hyphenation 9.53 37.63 1.07 1.38
Synonyms 16.69 2.47 1.66 23.24
Word insertion or deletion 43.46 25.24 2.46 42.75

Average 12.50 12.50 1.49 14.35

Word insertion or deletion Similar to the synonym replacement, the insertion or deletion of short
phrases is handled. For all positions of the given text, the Google n-grams are checked with Netspeak
(see above) for a word w that sufficiently often appears within the context of the text. Similarly, for each
word w in the text, it is checked whether there are sufficiently many n-grams without the word but the
same surrounding context. In both cases, w is a candidate to be inserted or deleted. Given “hello world”,
the most frequently used intermediate word is “cruel”, yielding the phrase “hello cruel world.” Again,
as with synonyms, context size and quality are positively correlated. We thus use at least two words as
context and favor variants that match more context.

4.3 Further Operator Ideas
In pilot experiments, also the three operator ideas discussed below were analyzed. The ideas show
promising results for specific cases, but they easily lead to unexpected text flows due the introduction of
odd sentences or names. The operators require future work to better fit them in the given text’s context,
and they are not employed within the experiments in Section 5.

Tautology It is often possible to introduce entirely new phrases or sentences in a text, which may
confirm a previous sentence or which introduce a (nearly) arbitrary but true statement. We tested a small
list, including among others “As a matter of fact this is true.” or “I didn’t know that until now.” However,
due to improper context such tautologies may mess up a text significantly.

Sentence beginning The beginning of a sentence can often be modified without changing its meaning.
Possibilities include the addition of function words like “in general” or “actually”, but also the addition
of a prefix like “〈someone〉 said that . . . ” or “〈time〉 〈someone〉 said that . . . ” where 〈someone〉 is to be
replaced by a person’s name or {I, he, she} depending on the full context of the text (e.g., author’s name
or gender of name mentioned before). The 〈time〉 expression may expand to “yesterday” or “last week”,
etc. Especially with the usage of names, a whole bunch of letters can be generated. However, context is
more subtle for this operator compared to the usage of Google n-grams.

Full PPDB The paraphrase database (Ganitkevitch et al., 2013) comes in different sizes and quality
levels. Many synonymity relations for nouns are already covered by WordNet, and function word
replacements are already an operator on their own. Still, the rich variety of the full data set can form a
semantically strong operator. However, in our pilot experiments, the full PPDB patterns often decreased
text quality unacceptably, such that we refrained to use PPDB as a single operator in our experiments.

2025

5 Experimental Evaluation

Goal of the evaluation is to show that our approach is able to efficiently generate acrostics in different
situations. In this regard, we analyze the general success of acrostic generation, the influence of different
operators, and effects on the text quality.

5.1 Experiment Setup
To model different “use cases” in which acrostics have to be inserted, we use texts of different genres:
newspaper articles, emails, and Wikipedia articles. We sample 50 newspaper articles from the Reuters
Corpus Volume 1 (Lewis et al., 2004), 50 emails from the Enron corpus (Klimt and Yang, 2004), and
50 articles from the English Wikipedia. Each text contains at least 150 words excluding tables and lists.

As target acrostics for all of the above text types, the 25 most common adjectives, nouns, prepositions,
verbs, and 50 other common English words are chosen (in total 150 words).6 This scenario reflects the
inclusion of arbitrary words. Other target acrostics are formed by the 100 most common male and female
first names from the US (in total 200 words).7 This models the standard poetry usage of acrostics where
often a writer’s name is encoded. For all input texts, we also model self-referentiality by using a text’s first
phrases as the target acrostics (in total 150 phrases for which at least the first word has to be generated). In
these cases, the first letter of the acrostic is also the first letter of the text—a fact that enables the controlled
evaluation of the importance of the producibility of the first letter.

The evaluation system is a standard quad-core PC running Ubuntu 12.04 with 16 GB of RAM. A
relevant subset of all operator application possibilities is preprocessed and stored in-memory (e.g., the
synonym n-gram frequencies for every word), whereas the preprocessing time (about one minute in total
per run) is not counted for the search process. We then conduct an A∗ search using the preprocessed
operator tables and an admissible instance of Equation (3). To safe runtime, we slightly transform the
problem setting and require the acrostic to start at the beginning of the given text. Pilot experiments show
that a good choice for line lengths is lmin = 50 and lmax = 70. Note that this is only slightly more flexible
than a standard line length between 55 and 65 characters (i.e., about 10-12 words) but eases acrostic
generation. The experiments also reveal that a successful run (the acrostic can be generated) usually takes
less than 30 seconds for the search part. An unsuccessful run (the acrostic cannot be generated) takes five
to ten minutes until its termination caused by the memory constraints for the open list.

5.2 Experiment Discussion
Given our hardware and time restrictions, about 20% of the runs are successful altogether. The producibil-
ity of the first letter is critical for the overall success: we observe an almost 90% success rate for the
self-referential acrostics compared to the about 20% for all others. Statistics for the successful runs are
given in Table 3. As can be seen, our system is able to generate about 90 000 nodes with 550 goal checks
per second. This yields reasonable answer times on the test acrostics: the average number of goal checks
needed when the acrostic can be generated is below 10 000 (about 20 seconds of runtime). Only very few
successful runs took more than 40 seconds; the self-referential acrostics that often are two or three words
long form the main exception. Not that surprisingly, shorter acrostics are on average generated faster than
longer ones. Interestingly, besides self-referential acrostics, male first names seem to be the most difficult
acrostics when taking the required runtime into account. Note in this regard that many of the (longer)
female names start with a more common first letter, which can be generated faster.

Since our approach is the first attempt at the problem of acrostic generation, we cannot compare to other
systems from the literature. Instead, we compare to a baseline system that can only use line breaking and
hyphenation as its operators. This also helps to further examine the effect of the producibility of the first
letter. Whenever the acrostic’s first letter is not the first letter of the text, the baseline fails right from the
start: recall that for our experiments we require the acrostic to start at the text’s beginning. For less than
1% of our test cases, the baseline can generate the acrostic. Most of these few cases are self-referential
first words. Even if the first letter is already present, usually the second or third one are not producible by
6
en.wikipedia.org/wiki/Common_English_words, last accessed: June 12, 2014.

7
www.ssa.gov/OACT/babynames/decades/century.html, last accessed: June 12, 2014.

2026

Table 3: Experimental results for complete acrostic generations. For each of the acrostic types (Col-
umn 1), several thousand runs were conducted for which we report averaged values of the acrostic
lengths in letters (Column 2). The columns 3-10 relate to successful generations and report averaged
values for the runtime in seconds, size of the explored search tree, generated nodes and goal checks per
second, used main memory, and the quality change according to the introduced measures.

Acrostic type Length Runtime Nodes Nodes Goal checks Memory Quality-related measures
(in letters) (total in s) (total) (per s) (per s) (in MByte) ∆ WFC ∆ ARI ∆ SMOG

Common English words
Adjective 4.36 3.25 286 960 88 269 578 270 -0.99 -1.61 -0.91
Noun 4.47 3.40 285 016 83 837 576 277 -0.39 -0.96 -0.50
Preposition 3.44 3.16 280 593 88 853 556 243 -1.59 -2.28 -1.29
Verb 3.59 2.76 251 161 90 898 595 236 -0.95 -1.60 -0.92
Other 3.29 2.41 218 974 90 755 601 206 -1.10 -2.05 -1.11

Common US first names
Male 6.00 9.32 851 665 91 368 554 649 -0.74 -1.87 -0.93
Female 6.07 7.82 740 418 94 693 546 575 -0.60 -1.77 -0.93

Self-referential
First words 10.33 36.09 3 164 873 87 690 518 1 985 -0.31 -0.09 0.20

Average 5.19 8.53 759 957 89 545 565 372 -0.83 -1.53 -0.80

the simple operators. Using all operators, our approach is able to produce a self-referential acrostic of
more than seven characters in 80% of the cases. On average, acrostics of ten characters are possible for the
self-referential cases. This further highlights the importance of the first letter: whenever it is producible,
the success ratio is much higher.

To compare the importance of the different operators, we count for the successful generations in the
experiments of Table 3, how often operators are used and how long the search paths are. Table 2 contains
information on the applicability of the different operators. About 21% of the operator applications are line
breaks, another 9% are hyphenations. Interestingly, about 38% of the operator applications are wrong
hyphenations despite the low quality of this operator. Even though our heuristic tries to avoid wrong
hyphenations, there are a lot of situations where all other operators fail. Although not reflected by standard
quality metrics (see next subsection), a wrong hyphenation usually is eye-catching for human readers,
which gives rise to a desirable further quality improvement that should be aimed for in future work. The
other operator usages are mostly word insertions and deletions (about 25%), synonym replacements (3%),
and function words (3%). The context-independent operators of contractions and spelling correspond to
only about 1% of all operator applications.

5.3 Quality-Related Analysis
Table 3 also contains information about the text quality before and after generating the acrostic. To
algorithmically measure text quality-related effects, we employ a word frequency class analysis and a
readability analysis.

The frequency class WFC(w) of a word w relates to its customariness in written language and has
successfully been employed for text genre analysis (Stein and Meyer zu Eißen, 2008). Let ϕ(w) denote
the frequency of a word in a given corpus; then the Wortschatz8 defines WFC(w) as blog2(ϕ(w∗)/ϕ(w))c,
where w∗ denotes the most frequently used word in the respective corpus. Here we use as reference the
Google n-gram corpus (Brants and Franz, 2006) whose most frequent word is “the”, which corresponds to
the word frequency class 0; the most uncommonly used words within this corpus have a word frequency
class of 26. The readability of the text before and after acrostic generation is quantified according to
the standard ARI (Smith and Senter, 1967) and SMOG (McLaughlin, 1969) measures, implemented
in the Phantom Readability Library.9 Both measures have been designed to estimate the U.S. grade
8
wortschatz.uni-leipzig.de, last accessed: June 12, 2014.

9
http://niels.drni.de/s9y/pages/phantom.html, last accessed: June 12, 2014

2027

level equivalent to the education required for understanding a given text. Hence, larger readability
scores indicate more difficult texts. The Automated Readability Index ARI (Smith and Senter, 1967) is
designed for being easily automatable and uses only the number of characters (excluding whitespace and
punctuation), words, and sentences in the text (delimited by a period, an exclamation mark, a question
mark, a colon, a semicolon, or an ellipsis). The Simple Measure of Gobbledygook SMOG (McLaughlin,
1969) includes the number of words with more than three syllables, so-called polysyllables.

ARI = 4.71 · Characters

Words
+ 0.5 · Words

Sentences
− 21.43 SMOG = 1.0430 ·

√
30 · Polysyllables

Sentences
+ 3.1291

Of course, the above three measures cannot capture text quality as human judges would perceive it. Still,
they have their merits and can indicate interesting trends: On average, the texts after acrostic generation
use more common words (cf. the negative ∆ WFC) and are easier to read (cf. the negative ∆ ARI and
∆ SMOG) for almost all acrostic types. Thus, one may argue that the quality is not harmed too much; still
some issues like wrong hyphenation are ignored by the metrics (cf. the above discussion of individual
operators). A deeper analysis of operator quality and improved quality of paraphrased texts (e.g., further
operators or avoiding wrong hyphenations) constitute very promising directions for future work.

6 Conclusion and Outlook

We have presented the first algorithmic approach to acrostic generation. The experiments show that the
heuristic search approach is able to generate about 20% of the target acrostics in reasonable time, whereas
the producibility of the first letter plays a key role. Our solution successfully combines paraphrasing
techniques from Natural Language Processing with a heuristic search strategy from Artificial Intelligence.
This way, our problem modeling opens a novel and very promising research direction, and the application
of our framework to other paraphrasing problems is the most interesting line of future work. As for the
acrostic use case, the resulting text’s quality gives the most obvious possibility for improvements. We plan
to further analyze better quality measures for the individual operators and to develop more sophisticated
operators like changing a text’s tense or even anaphora exploitation (Schmolz et al., 2012).

References
Ion Androutsopoulos and Prodromos Malakasiotis. 2010. A Survey of Paraphrasing and Textual Entailment

Methods. Journal of Artificial Intelligence Research, 38(1):135–187.

Guy Aston and Lou Burnard. 1998. The BNC Handbook. http://www.natcorp.ox.ac.uk.

Colin J. Bannard and Chris Callison-Burch. 2005. Paraphrasing with Bilingual Parallel Corpora. In Proceedings
of ACL 2005, pages 597–604.

Regina Barzilay and Lillian Lee. 2003. Learning to Paraphrase: An Unsupervised Approach Using Multiple-
Sequence Alignment. In Proceedings of HLT 2003, pages 16–23.

Regina Barzilay and Kathleen McKeown. 2001. Extracting Paraphrases From a Parallel Corpus. In Proceedings
of ACL 2001, pages 50–57.

Igor A. Bolshakov and Alexander F. Gelbukh. 2004. Synonymous Paraphrasing Using WordNet and Internet. In
Proceedings of NLDB 2004, pages 312–323.

Thorsten Brants and Alex Franz. 2006. Web 1T 5-gram Version 1. Linguistic Data Consortium LDC2006T13.

Steven Burrows, Martin Potthast, and Benno Stein. 2013. Paraphrase Acquisition via Crowdsourcing and Machine
Learning. ACM Transactions on Intelligent Systems and Technology, 4(3):43:1–43:21.

Chris Callison-Burch. 2008. Syntactic Constraints on Paraphrases Extracted from Parallel Corpora. In Proceed-
ings of EMNLP 2008, pages 196–205.

Jonathan Chevelu, Thomas Lavergne, Yves Lepage, and Thierry Moudenc. 2009. Introduction of a New Para-
phrase Generation Tool Based on Monte-Carlo Sampling. In Proceedings of ACL 2009, pages 249–252.

Jonathan Chevelu, Ghislain Putois, and Yves Lepage. 2010. The True Score of Statistical Paraphrase Generation.
In Proceedings of COLING 2010 (Posters), pages 144–152.

2028

Paul Clough, Robert Gaizauskas, Scott S. L. Piao, and Yorick Wilks. 2002. METER: MEasuring TExt Reuse. In
Proceedings of ACL 2002, pages 152–159.

William B. Dolan and Chris Brockett. 2005. Automatically Constructing a Corpus of Sentential Paraphrases. In
Proceedings of the Third International Workshop on Paraphrasing 2005, pages 1–8.

Christiane Fellbaum. 1998. WordNet: An Electronic Lexical Database. MIT Press.

Juri Ganitkevitch, Chris Callison-Burch, Courtney Napoles, and Benjamin Van Durme. 2011. Learning Sentential
Paraphrases From Bilingual Parallel Corpora for Text-to-Text Generation. In Proceedings of EMNLP 2011,
pages 1168–1179.

Juri Ganitkevitch, Benjamin Van Durme, and Chris Callison-Burch. 2013. PPDB: The Paraphrase Database. In
Proceedings of HLT 2013, pages 758–764.

David Kauchak and Regina Barzilay. 2006. Paraphrasing for Automatic Evaluation. In Proceedings of HLT 2006.

Bryan Klimt and Yiming Yang. 2004. The Enron Corpus: A New Dataset for Email Classification Research. In
Proceedings of ECML 2004, pages 217–226.

Donald E. Knuth. 1986. The TEXbook. Addison-Wesley.

David D. Lewis, Yiming Yang, Tony G. Rose, and Fan Li. 2004. RCV1: A New Benchmark Collection for Text
Categorization Research. The Journal of Machine Learning Research, 5:361–397.

G. Harry McLaughlin. 1969. SMOG Grading: A New Readability Formula. Journal of Reading, 12(8):639–646.

Donald Metzler and Eduard Hovy. 2011. Mavuno: A Scalable and Effective Hadoop-Based Paraphrase Acquisi-
tion System. In Proceedings of the Third Workshop on Large Scale Data Mining 2011, pages 3:1–3:8.

Donald Metzler, Eduard H. Hovy, and Chunliang Zhang. 2011. An Empirical Evaluation of Data-Driven Para-
phrase Generation Techniques. In Proceedings of ACL 2011 (Short Papers), pages 546–551.

Bonnie J. F. Meyer. 2003. Text Coherence and Readability. Topics in Language Disorders, 23(3):204–224.

Bo Pang, Kevin Knight, and Daniel Marcu. 2003. Syntax-Based Alignment of Multiple Translations: Extracting
Paraphrases and Generating New Sentences. In Proceedings of HLT 2003, pages 102–109.

Marius Pasca and Péter Dienes. 2005. Aligning Needles in a Haystack: Paraphrase Acquisition Across the Web.
In Proceedings of IJCNLP 2005, pages 119–130.

Judea Pearl. 1984. Heuristics. Addison-Wesley.

Chris Quirk, Chris Brockett, and William B. Dolan. 2004. Monolingual Machine Translation for Paraphrase
Generation. In Proceedings of EMNLP 2004, pages 142–149.

Patrick Riehmann, Henning Gruendl, Martin Potthast, Martin Trenkmann, Benno Stein, and Bernd Froehlich.
2012. WORDGRAPH: Keyword-in-Context Visualization for NETSPEAK’s Wildcard Search. IEEE Transac-
tions on Visualization and Computer Graphics, 18(9):1411–1423.

Helene Schmolz, David Coquil, and Mario Döller. 2012. In-Depth Analysis of Anaphora Resolution Require-
ments. In Proceedings of TIR 2012, pages 174–179.

Edgar A. Smith and R. J. Senter. 1967. Automated Readability Index. Technical Report AMRL-TR-6620, Wright-
Patterson Air Force Base.

Benno Stein and Daniel Curatolo. 2006. Phonetic Spelling and Heuristic Search. In Proceedings of ECAI 2006,
pages 829–830.

Benno Stein and Sven Meyer zu Eißen. 2008. Retrieval Models for Genre Classification. Scandinavian Journal
of Information Systems (SJIS), 20(1):91–117.

Benno Stein, Martin Potthast, and Martin Trenkmann. 2010. Retrieving Customary Web Language to Assist
Writers. In Proceedings of ECIR 2010, pages 631–635.

Nathan Sturtevant, Ariel Felner, Maxim Likhachev, and Wheeler Ruml. 2012. Heuristic Search Comes of Age. In
Proceedings of AAAI 2012.

Shiqi Zhao, Cheng Niu, Ming Zhou, Ting Liu, and Sheng Li. 2008. Combining Multiple Resources to Improve
SMT-Based Paraphrasing Model. In Proceedings of ACL 2008, pages 1021–1029.

Shiqi Zhao, Xiang Lan, Ting Liu, and Sheng Li. 2009. Application-Driven Statistical Paraphrase Generation. In
Proceedings of ACL 2009, pages 834–842.

2029

